用户名: 密码: 验证码:
不同水、氮条件对水稻生长及部分生理特征的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源严重短缺是制约我国农业和农村经济发展的重要因素。水稻作为我国主要的粮食作物之一是耗水量最多的作物,氮素对水稻生产的影响仅次于水。研究水稻氮素营养和开发水稻节水种植,已成为广大农业科技工作者亟待解决的任务。实施水稻节水管理后,各种土壤生态环境发生变化,导致土壤硝态氮含量显著增加,进而可能成为水稻最重要的氮源形态。因此,开展水分胁迫条件下不同形态氮素对水稻生理、生长发育影响的系统性研究具有重要意义。
     为进一步弄清不同水、氮条件下水稻的生长及生理特性,试验采用PEG模拟水分胁迫,以汕优63、武育粳3号等水稻品种作为供试材料,对不同水分及不同氮素形态供应条件下水稻形态、生理、生长及产量等多项指标进行了分析测定。测定内容包括:(1)水分胁迫条件下水稻种子的发芽率及其部分抗旱指标如幼苗含水量、细胞膜透性、体内抗氧化酶活性等;(2)不同水、氮条件下水稻幼苗生物量、根系形态参数、根系活力及根基伤流量;(3)不同水、氮条件下水稻叶片的NO3-、Ca2+和Mg2+含量、浸出液电导率、相对含水量、水分临界饱和亏以及水势;(4)不同水、氮条件下水稻的NH4+-N、NO3--N的吸收表征参数;(5)根系烫伤和HgCl2处理条件下,不同形态氮素对水稻水分吸收的影响;(6)不同水、氮条件下水稻根系的细胞膜透性、膜电位及部分其他膜性质;(7)田间小区试验条件下不同氮素供应对旱作水稻产量及养分吸收的影响;(8)盆栽土-沙联合培养试验条件下不同氮素供应对旱作水稻根表铁氧化膜的影响。通过研究得到了以下主要结果:
     (1)水分胁迫对水稻胚根和胚芽生长的影响有所不同,轻度水分胁迫会促进水稻胚根的生长,抑制水稻胚芽的生长。与正常供水处理相比,50 g·L-1PEG处理使两品种水稻幼苗的K+、可溶性总糖、蔗糖、脯氨酸含量均上升;使武育粳3号水稻幼苗的SOD、POD和CAT的活性下降,丙二醛含量增加16.64%;使汕优63幼苗的SOD、POD和CAT的活性上升,但对细胞膜透性及丙二醛含量影响不大。
     (2)轻度水分胁迫能促进水稻根系生长,增加总根长、根表面积和根体积,但降低根平均直径。粳稻的临界水分胁迫点大于100 g·L-1PEG,而籼稻的临界水分胁迫点在50~100g·L-1PEG之间。正常水分供应条件下,NH4+-N/NO3--N为5/5的处理促进各品种水稻根体积的增加,促进扬粳9538、扬稻6号水稻根表面积的提高,增加连嘉粳1号、两优培九、扬粳9538水稻的根系直径;模拟水分胁迫后,各品种水稻根系表面积、体积均随NH4+-N/NO3--N的降低呈上升趋势,等量供应NH4+-N、NO3--N营养有利于提高各品种水稻根系直径。
     (3)正常水分条件下,NH4+-N有利于水稻地上部物质累积;NO3--N则促进根系物质累积;NH4+-N/NO3--N为5/5处理的水稻根系活跃吸收面积最大,活跃吸收面积比亦最高;水分胁迫后,NH4+-N/NO3--N为5/5的处理更有利于水稻地上部分的生长,NO3--N有利于水稻鲜重和干重增加,水稻的根系总吸收面积、活跃吸收面积均随NO3--N供应比例的增加呈上升趋势。水分胁迫显著降低各处理水稻的伤流量,正常水分条件下NH4+-N/NO3--N为5/5处理的水稻伤流量最大;水分胁迫后,9/1处理的水稻伤流量相对较多。
     (4)正常水分条件下,水稻幼苗叶片浸出液电导率随NH4+-N/NO3--N比例的降低呈上升趋势;模拟水分胁迫后,水稻幼苗叶片浸出液电导率随NH4+-N/NO3--N比例的降低呈下降趋势,且在NH4+-N/NO3--N比例为25/75时,叶片浸出液电导率低于正常水分培养条件下的叶片浸出液电导率。而水分胁迫条件使高NH4+-N/NO3--N处理的水稻叶片相对含水量降低、水分临界饱和亏上升,但对低NH4+-N/NO3--N处理(25/75)水稻叶片相对含水量和水分临界饱和亏影响很小。同样,低NH4+-N/NO3--N处理削弱了水分胁迫对水稻叶片水势的降低程度。低NH4+-N/NO3--N能总体上减轻水分胁迫对水稻水分生理的不良影响。
     (5)NH4+-N抑制汕优63水稻对NO3--N的吸收,促进武育粳3号水稻对NO3--N的吸收;经水分胁迫锻炼后,NH4+-N的存在促进汕优63水稻幼苗吸收NO3--N,抑制武育粳3号水稻对NO3--N的吸收;NO3--N的存在促进汕优63、武育粳3号水稻对NH4+-N的吸收。当环境中的NO3--N浓度低于NH4+-N浓度时,水稻对NO3--N的吸收受NH4+-N的抑制;当环境中的NO3--N浓度高于NH4+-N浓度时,NH4+-N的存在促进了水稻对NO3--N的吸收;当环境中NO3--N、NH4+-N两者浓度相差不大时,NH4+-N的存在对NO3--N的吸收影响不明显。高量NH4+-N的存在,将抑制水稻对NH4+-N自身的吸收。
     (6)不同氮素形态影响水稻生长、养分吸收与产量的形成;等量的铵、硝供应有利于提高水稻叶片的叶绿素含量和光合效率,最终提高水稻的生物学产量、经济产量;肥料中较高比例的NO3--N有利于提高作物体内可溶性总糖、蔗糖含量;大量供应NO3--N提高了土壤pH值,使土壤有效性铁、锰、铜、锌含量降低。
     (7)根系烫伤处理后,正常水分条件下,NH4+-N/NO3--N为9/1、5/5、1/9处理的水稻吸水量分别降低26.5%、24.1%、36.3%;而水分胁迫后,各处理水稻吸水量分别降低30.6%、23.9%、21.0%。加HgCl2处理后,正常水分条件下,NH4+-N/NO3--N为9/1、5/5、1/9处理的水稻吸水量分别降低47.1%、46.3%、31.8%,而水分胁迫后,各处理分别降低了46.6%、42.4%、23.5%。正常水分条件下,NH4+-N/NO3--N为9/1处理的水稻光合速率最高,5/5处理的水稻气孔导度、细胞间CO2浓度及蒸腾速率最低;水分胁迫后,9/1、1/9处理的水稻气孔导度、细胞间CO2浓度及蒸腾速率比正常水分处理的低,而5/5处理的水稻气孔导度、细胞间CO2浓度及蒸腾速率比正常水分处理的高。
     (8)水作条件下,扬稻6号水稻叶片中铁、锰累积量随NH4+-N/NO3--N的降低呈上升趋势。与水作相比,旱作条件降低了武育粳3号水稻叶片中锰、锌的浓度,提高了叶片中铁的浓度;水作条件下氧化胶膜大量存在,旱作后水稻根表仍然存有少量铁氧化胶膜。
     (9)正常水分条件下,大量供应NO3--N营养处理的水稻叶片、根系的电导率最高;水分胁迫后,大量供应NH4+-N营养处理的叶片、根系的电导率最高。不同水分条件下,单独供应NH4+-N处理培养水稻后营养液pH值均最低,单独供应NO3--N处理培养水稻后营养液pH值最高;模拟水分胁迫后,培养水稻后营养液的pH值比正常水分条件下相应处理的稍高。水分胁迫条件下,NH4+-N/NO3--N为5/5处理的水稻根系的膜电位基础值均较正常水分条件下测得的相应结果略有提高。
Shortage of water resource has been an critical restraining factor for the development of agriculture and rural economy in China. The production of rice, an important and the water consuming crop, depends mainly on water and nitrogen supply. It is pendent task for agricultural researchers to develop water-saving techniques for rice cultivationwhich, upon application, may lead to changes in microenvironments. Subsequently, soil nitrate nitrogen increases significantly and becomes the most important nitrogen source. However, there is a lack of systematic research concerning the influence of nitrogenforms on rice physiological growth in water stress conditions. This paper tries to uncover this enigma and thus provide theoretical instructions for efficient fertilization of water-saving cultivated rice.
     In this paper, rice cultivar including ShanYou 63, WuYuJing 3 were cultivated under different water stress condition simulated using PEG. Indices for rice morphology, physiology, growth and yields were determined. These include, (1) Germination ratio and some crucial drought resistance indices includingmoisture content, cell membrane penetrability and anti-oxidase, under water stress conditions. (2) Biomass, root morphological indices, root activity and bleeding sap amount of rice seedlings. (3) Index of NO3-and NH4+-N absorption. (4) Effects of interval water stress on characteristic parameters of NH4+ and NO3- adsorption. (5) Iinfluence of water and nitrogen treatment on water uptake was analyzed by root killing and treatment of HgCl2(0.5mol·L-1). (6) Cell membrane penetrability, potential and other properties of cell membrane of rice root. (7) The influence of nitrogen supply on dry farming rice yield and nutrient uptake in field experiments. (8) The ferrous film on root surface in soil-sand mixed pot culture experiment.
     The results showed that, (1) Water stress affected radicle and germ differently. Slight water stress enhanced the growth of rice radicle while reduced that of rice germs. Compared with normal water supply treatments, K+content, soluble sugar, sucrose and proline in two rice varieties increased under the treatment of PEG(50g·L-1). Under water stress conditions, the activity of SOD, POD, and CAT of WuYuJing 3 were higher. Malonic-aldehyde content in rice was increased by 16.64%. The activity of SOD, POD, and CAT of ShanYou 63 increased as well but no effects of water stress was found on cell membrane penetrability and the malonic-aldehyde content of Shanyou 63.
     (2) Slight water stress enhanced the growth of rice roots. Total root length, surface area and volume were increased, while average root diameter decreased. The threshold of water stress of japonica rice was 100g·L-1 PEG and between 50~100 g·L-1 PEG of hsien rice. Under normal water conditions, treatment of NH4+-N/NO3--N (5/5) enhanced the root volume of all rice varieties. Root surface areas of YangJing 9538 and YangDao 6 were enhanced, and root diameter of LianJiaJing 1, LiangYouPei 9 and YangJing 9538 were enhanced. Root surface area and volume of all rice varieties increased with the decrease of NH4+-N/NO3--N after water stress, signifying equivalent ammonium supply was liable to enhance rice root diameters.
     (3) Under condition of normal water supply, application of NH4+-N increased shoot mass accumulation while. NO3--N was benificial to total adsorption area and mass accumulation of rice roots. The active adsorption area and active adsorption area ratio reached the climax with NH4+-N/NO3--N at a ratio of 5/5. Best growth of rice shoot was obtained at NH4+-N/NO3--N(5/5) under water stress. NO3--N absorption increased fresh and dry weight and average diameter. Total adsorption area andactive adsorption area of rice roots increased with the incease of NO3--N ratio. Bleeding sap amount decreased in all water stress treatment. The highest bleeding sap amount was detected in the treatments with NH4+-N/NO3--N at a ration of 5/5 under normal water condition and NH4+-N/NO3--N(9/1) under water stress.
     (4) The electrical conductivity of rice seedling leaf extract increased with the decrement of NH4+-N/NO3--N under condition of normal water supply, while that decreased with the decrement of NH4+-N/NO3--N under water stress. The extract electrical conductivity of NH4+-N/NO3--N 25/75 was lea than that of normal water culture. Water stress led to the reduction of relative water content of high NH4+-N/NO3--N treatments and the rise of critical moisture saturation deficit, while the influence of low NH4+-N/NO3--N treatments was insignificant. Low NH4+-N/NO3--N generally alleviated the cacoethic effect of water stress on rice water physiology.
     (5) The existence of NH4+-N restrained the NO3--N uptake of rice seedling for ShanYou 63, but enhanced the NO3--N uptake for WuYuJing 3. The results were different while the rice be culvitaed in water stress condition for a few days. The existence of NH4+-N enhanced the NO3--N uptake for ShanYou 63, restrained the NO3--N uptake for WuYuJing 3. More NH4+-N were absorbed with the supply of NO3--N.The existence of NO3--N enhanced the uptake of NH4+-N for rice. When the consistence of NO3--N was less than that of NH4+-N, the uptake of NO3--N was restrained by NH4+-N. When the consistence of NO3--N was more than that of NH4+-N, the uptake of NO3--N was promoted by NH4+-N.
     (6) The nitrogen forms affected the yield, growth and nutrition uptake of rice. The nitrogen treatment of NH4+-N/NO3--N(5/5) enhanced the content of chlorophyll and photosynthesis efficiency of rice. Finally, the biological and economic yield of rice were increased. The treatment of supply higher proportion of NO3--N enhanced the content of soluble sugar and sucrose in rice, increased the pH of soil, while the availability of Fe, Mn, Cu and Zn were decreased.
     (7) For root killing treatment, under the non-water stress condition, the uptake of water under NH4+-N/NO3--N 9/1, 5/5 and 1/9 treatments were decreased by 26.5%, 24.1% and 36.3%, while 30.6%, 23.9% and 21.0% under water stress condition. For HgCl2 treatment, under the non-water stress condition, the uptake of water under NH4+-N/NO3--N 9/1, 5/5 and 1/9 treatments were decreased by 47.1%, 46.3% and 31.8%, while 46.6%, 42.4% and 23.5% under water stress condition. The treatment of water stress and nitrogen forms influenced water uptake, affected stomatal conductance and photosynthetic rate of rice.
     (8) Under non-water stress condition, the accumulation of Fe and Mn in leaves for YangDao 6 increased with the descending of NH4+-N/NO3--N. Under water stress condition, the consistence of Mn and Zn of leaves in Wu YuJing 3 was decreased, while the consistence of Fe were increased. Contray to water stress condition, there were more ferrous film existed on the root surface of rice under non-water stress condition.
     (9) The electrical conductivity of leaves and roots in rice was highest at the ratio of NH4+-N/NO3--N(1/9) under non-water stress condition, while the electrical conductivity of leaves and roots in rice was highest at the ratio of NH4+-N/NO3--N(9/1) under water stress condition. The supply of NH4+-N decreased the pH of nutrient solution, while the pH increased with the supply of NO3--N. Compared with the non-water stress condition, the cell membrane potential in NH4+-N/NO3--N(5/5) treatment was a little higher than that under water stress condition.
引文
Alcocer RM, Roberecht R, Thill DC. The response of Bouteloua scorpioides to water stress at two phonological stages[J]. Botanical Gazette. 1989,150(4):456~461.
    Allen S, Raven JA. Intracellular pH regulation in Ricinus communis grown with ammonium or nitrate as N source: The role of long distance transport[J]. Experiment Botany, 1986,38(189):580~596.
    Aslam M, Travis RL, Huffaker RC. Comparative induction of nitrate and nitrite uptake and reduction systems by ambient nitrate and nitrite in intact roots of barly(Hordeum vulgare L.) seedling[J]. Plant Physiol. 1993,102:811~819.
    Bray EA. Molecule responses to water deficit[J]. Plant physiol. 1993,103:1035~1040.
    Chabbi A, Hines ME, Rumpel C, et al. The role of organic carbon excretion by bulbous rush and its turnover and utilization by bacteria under iron plaque in extremely acid sediments[J]. Environ Exn Bot. 2001,46(3):237~245.
    Crawford NM. Nitrate: Nutrient and signal for plant growth[J]. Plant Cell. 1995,7:859-868
    Cregg BM, Rothstein DE. Effects of nitrogen form on nutrient uptake and physiology of Fraser fir(Abies fraseri)[J]. Forest Ecology and Management. 2005,219:11,69~80.
    Eghball B, Maranville JW. Root development and nitrogen influx of corn genotypes grown under combined drought and nitrogen stress[J]. Agronomy Journal. 1993,85:147~152.
    Filleur S, Daniel-Vedele F. Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differentiall display[J]. Planta. 1999,207:461~469.
    Gazzarini S, Lejay L, Gojon A, et al. Three functional tranporters for cinstitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopois roots[J]. Plant Cell. 1999,11:937~948.
    Henriksen GH, Raman DR, Walker LP, et al. Measurement of net fluxes of ammonium and nitrate at the surface of barley root using ion-selective microelectrodes[J]. Plant Physiol. 1992, 99:734~747.
    Herbert J, Kronzucker, et al. Ammonium toxicity and the real cost of transport[J]. Trends in Plant Science. 2001,6:1360~1385.
    Joseph JV, Zhuo DG, Siddiqi MY, et al. Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley[J]. Plant Physiology. 2000,123:307~318.
    Kirk GJD. Plant mediated processes to acquire nutrients: Nitrogen uptake by rice plants[J]. Plant and Soil. 2001,232:129~134.
    Kosala R, Lukadz K, Ernst S, et al. Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels(aquaporins) or blockage of apoplastic pores[J].J Exp Bot. 2004,55:433~447.
    Kronzucker HJ, Glass ADM, Siddiqi MY, et al. Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice: implications for rice cultivation and yield potentia[J]. New Plytol. 2000,145:471~476.
    Kronzucker HJ, Kirk GJD, Siddiqi MY, et al. Effects of hypoxia on 13NH4+ flux in rice roots: Kinetics and compartmental analysis[J]. Plant Physiol. 1998,116:581~587.
    Lynch JP. Root architecture and plant productivity[J]. Plant physiol. 1995,109:7~13.
    Mathilde O, Filleur S, Fraisier V, et al. Nitrate transport in plants: which gene and which control[J]. Journal of Experimental Bontany. 2002,53(370):825~833.
    Morgean MA,Jackson WA, Vilk JA. Concentration-dependence of the nitrate assimilation pathway in maize roots[J]. Plant Cell. 1995,7:859~868.
    Muthusamy S. Effect of mirronutrients on rice brown spot incidence[J]. International Rice Research Newsletter. 1998,13:32~33.
    Sandrine FR, Ledeunff E, Laine P. Effect of nitrate pulses on BnNRT1 and BnNRT2 genes: Mrna levels and nitrate influx rates in relation to the duration of N deprivation in Brassica mapus L[J]. Journal of Experimental Botany. 2002,53:1711~1721.
    Schiefelbein JW, Benfey PN. The development of plant roots: New approachest undergound problems[J]. Plant Cell. 1991,3:1426~1432.
    Shelden MC, Dong B, De Bruxelles G, et al. Arabidopis ammonium transporters,AtAMT1;1 and AtAMT1;2 have different biochemical properties and functional roles[J]. Plant Soil. 2001,231:151~160.
    Vidmar JJ, Zhou D, Siddiqi MY, et al. Isolation and characterization of HvNRT2.3 and HvNRT2.4, cDNAs encoing high-affinity nitrate transporters form roots of Hordeum vulgare[J]. Plant Phusiol. 2000,122:783~792.
    Wiesler F, Horst WJ. Root growth and nitrate utilization of maize cultivars under field conditions[J]. Plant and soil. 1994,163:267~277.
    Yoichiro K, et al. Improvement of rice (Oryza sativa L.) growth in upland conditions with deep tillage and mulch[J]. Soil and Tillage Research. 2007,92(1-2):30~44
    Zhang H, Rea J, Peter W, et al. Dual path ways for regulation of root branching by nitrate[J]. Plant Biology. 1999,96(11):6529~6534.
    Zhang WH, Tyerman SD. Inhibition of water channels by HgCl2 in intact wheat root cells[J]. Plant Physiology, 1999,120:849~857.
    柏彦超,沈淮东,薛巧云,等.不同水、氮对不同基因型水稻根系生长的影响[J].灌溉排水学报. 2007,27(6):69~72.
    柏彦超,王娟娟,倪梅娟,等.水分及铵、硝营养对水稻幼苗氮素吸收的影响[J].植物营养与肥料学报. 2008,14(1):184~188.
    曹翠玲,李生秀.氮素形态对玉米幼苗碳水化合物及养分累积的影响[J].华中农业大学学报,2003,22(5):457-461.
    常江,张自立,都红建,等.外源稀土对水稻伤流组分的影响[J].植物营养与肥料学报,2004,10(5):522~525.
    陈贵,周毅,郭世伟,等.水分胁迫条件下不同形态氮素营养对水稻叶片光合效率的调控机理研究[J].中国农业科学. 2007,40(10):2162~2168.
    戴廷波,曹卫星.作物增铵营养的生理效应[J].植物生理学通讯,1999,34(6):448~493.
    戴维,塞克勒.新世纪的水资源短缺[J].水利水电快报,2000,21(8):1~5.
    邓世媛,陈建军.干旱胁迫下氮素营养对作物生长及生理代谢的影响[J].河南农业科学,2005,11:24~26.
    东先旺.不同肥水组合对夏玉米水分利用效率及经济效益的影响[J].华北农学报,2000,15(1):81~85.
    董永华,史吉平,李广敏,等.外施6-BA和ABA提高玉米幼苗抗旱能力的作用及效果[J].西北植物学报,1998a,18(2):202~206.
    董永华,史吉平,商振清,等.喷施生长素和赤霉素对土壤干旱条件下小麦幼苗生理特性的影响[J].华北农学报,1998b,13(3):18~22.
    董钻,谢甫娣.土壤水分胁迫对大豆体内酶活性和膜透性的影响[J].大豆科学,1995,4(4):290~298.
    段爱旺,张寄阳.中国灌溉农田粮食作物水分利用效率的研究[J].农业工程学报,2000,16(4):41~44.
    段英华,张亚丽,沈其荣,等.增硝营养对不同基因型水稻苗期氮素吸收同化的影响[J].植物营养与肥料学报,2005,11(2):160~165.
    樊明寿,孙亚卿,邵金旺,等.不同形态氮素对燕麦营养生长和磷素利用的影响[J].作物学报,2005,31(1):114~118.
    范晓荣,沈其荣,崔国贤,等.旱作水稻内源激素变化及其与水稻形态和生理特性的关系[J].土壤学报,2002,39(2):206~213.
    房志勇,唐保军.麦茬旱种水稻苗期施氮效应研究[J].华北农学报,1990,5(3):76~81.
    封克,汤炎,张素玲.铵离子对不同基因型水稻吸收硝酸根离子的影响[J].植物生理学通讯,2001,37(3):192~194.
    封克,汪晓丽,陈平,等.旱稻和水稻不同基因型根细胞膜特性与氮素吸收的关系[J].中国农业科学,2004,37(11):1705~1708.
    封克,汪晓丽,陈平,等.水稻苗期不同时段NO3-吸收特点及其受NH4+的影响[J].中国农业科学,2003,36(3):307~312.
    冯广龙,罗元培,杨培岭.节水灌溉对小麦干物质分配、灌浆及水分利用效率的影响[J].华北农学报,1998,13(2):11~17.
    冯尚友.水资源持续利用与管理导论[M].北京:科学出版社,2000:11~27.
    高尔明,等.麦茬水稻旱种氮肥施用量的研究[J].河南农业大学学报,1987,21(1):71.
    高吉寅,胡荣海.水稻等品种苗期抗旱生理指标的探讨[J].中国农业科学,1984,17(4):41~45.
    高秀兰,等.水稻旱作施肥技术研究[J].辽宁农业科学,1994,(3):24~27.
    关义新,戴俊英,陈军,等.土壤干旱下玉米叶片游离脯氮酸的累积及其与抗旱性的关系[J].玉米科学,1996,4(1):437~445.
    郭世伟,吴良欢,沈其荣,等.中国覆盖旱作水稻理论与实践.养分资源综合管理理论与实践丛书[M].北京:中国农业大学出版社,2006.
    韩建民,史吉平,董永华.干旱且无昼夜温差条件下玉米幼苗叶片ψw、ψs、ψp和叶片伸长速度的变化[J]. 河北农业大学学报,1996,19(1):22~25.
    韩建民.抗旱性不同水稻品种对渗透胁迫的反应及与渗透调节关系[J].河北农业大学学报,1990,13(1):17~21.
    何宝安,方红军,明万才.水分胁迫对水稻植株性状及产量的影响[J].黑龙江水利科技,2002,3:44~45.
    何文寿,李生秀,李辉桃.六种作物不同生育期吸收铵、硝态氮的特性[J].作物学报,1999,25(2):221~226.
    何文寿,李生秀,李辉桃.水稻对铵态氮和硝态氮吸收特性的研究[J].中国水稻科学,1998,12(4):249~252.
    胡秀芳,程敏生,王雁来,等.水稻施用微量元素肥料的研究[J].垦殖与稻作,2005,2(2):1007~5003.
    黄昌勇.土壤学[M].北京:中国农业出版社,2000:211.
    黄薇,王薪,赵文明,等.渗透胁迫对青小麦根质膜H+-ATPase活力的影响及其与脯氨酸积累的关系[J].海南大学学报自然科学版,2002,20(1):33~36.
    黄义德,张自立.水稻覆膜旱作的生态生理效应[J].应用生态学报,1999,10(3):305~308.
    姜文来.中国21世纪水资源安全对策研究[J].水科学进展,2001,12(1):66~71.
    姜孝成,周广洽,陈良碧.开花灌浆期干旱胁迫对水陆稻细胞膜透性和产量性状的影响[J].中国水稻科学,1998,12:34~38.
    蒋明义,杨文英,徐江,等.渗透胁迫诱导水稻幼苗的氧化伤害[J].作物学报,1994,20(6):733~738.
    金安世,等.旱作水稻营养特性的研究[J].土壤通报,1985,16(6):272~274.
    金留福,董树亭.水稻苗期水分胁迫对植株光合和干物质生产的影响[J].江西农业大学学报,1989,12.
    康绍忠,张建华,梁建生.土壤水分与温度共同作用对植物根系水分传导的效应[J].植物生态学报,1999,23(3):211~219.
    李德全,邹琦,程炳篙.抗早性不同的冬小麦幼苗对渗透胁迫的生理反应[J].植物学通报,1992,9 (3):35~39.
    李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质[J].植物生理学报,1992,8(1):37~44.
    李海波,王小兵.不同氮、磷状况对水稻根生长及细胞周期蛋白激酶(CDKs)基因表达的影响[J].植物生理与分子生物学学报,2002,28(1):59~64.
    李合生.植物生理生化学实验原理和技术[M].北京:高等教育出版社,2000.
    李荣刚,夏源陵,吴安之,等.太湖地区水稻节水灌溉与氮素淋失[J].河海大学学报,2001,29(3):21~25.
    李世清,田霄鸿,李生秀.养分对旱地小麦水分胁迫的生理补偿效应[J].西北植物学报,2000,20(1):22~28.
    李阳生,李绍清.淹涝胁迫对水稻生育后期的生理特性和产量性状的影响[J].武汉植物学研究,2000,18(2):117~122.
    李英能.节水农业新技术[M].江西科学技术出版社,1998.
    梁芳.水分胁迫下杂交稻幼苗体内脯氨酸积累对膜脂过氧化的影响[J].湘潭师范学院学报(自然科学版),2001,23(3):83~86.
    梁森,韩莉,李慧娴,等.水稻旱作栽培方式及调亏灌溉指标试验研究[J].干旱地区农业研究,2002,20(2):13~19.
    梁永超,胡锋,杨茂才,等.水稻覆膜旱作高产节水机理研究[J].中国农业科学,1999,32(1):26~32.
    凌祖铭.极早熟陆稻新品系“秦爱”的抗旱性试验[J].北京农业大学学报,1983,9(1):11~20.
    刘宁,高玉葆,贾彩霞,等.渗透胁迫下多花黑麦草叶内过氧化物酶活性和脯氨酸含量以及质膜相对透性的变化[J].植物生理学通讯,2000,36(1):11~14.
    刘桃菊,戚昌瀚,唐建军.水稻根系建成与产量及其构成关系的研究[J].中国农业科学,2002,35(11):1416~1419.
    卢从明,张其德,匡廷云.水分胁迫抑制水稻光合作用的机理[J].作物学报,1994,20(5):601~606.
    卢向阳.水稻旱育秧生长发育及生理生化特性研究[M].长沙:湖南农业大学,1994.
    鲁如坤.植物营养学[M].北京:化学工业出版社,1998:281~296.
    陆建飞,丁艳锋,黄丕生,等.持续土壤水分胁迫对水稻物质积累和运转的影响[J].江苏农业学报,1998,19(2):43~48.
    吕殿青,杨进荣,马林英.灌溉对土壤硝态氮淋吸效应影响的研究[J].植物营养与肥料学报,1999,5(4):307~315.
    吕世华,张福锁.水旱轮作田作物锰营养研究十年的回顾与展望[J].土壤农化通报,1997,12(1):1~7.
    罗安程,杨肖娥.氮钾供应水平与水稻生育后期对不同形态氮吸收的关系[J].中国农业科学,1998,31(3):62~65.
    马瑞巧,熊振湖. 21世纪城市污水资源化战略的科学实施[J].天津城市建设学院学报,2002,8(4):273~276.
    毛桂莲,许兴,徐兆桢.植物耐盐生理生化研究进展[J].中国生态农业学报,2004,12(1):43~46.
    孟雷,李磊鑫,陈温福,等.水分胁迫对水稻叶片气孔密度、大小及净光合速率的影响[J].沈阳农业大学学报,1999,30(5):477~480.
    庞士铨.植物逆境生理学基础[M] .哈尔滨:东北林业大学出版社,1989:125~126.
    钱晓晴,顾竹英,周明耀,等.水分供应和氮素形态对水稻一些水分生理特征的影响[J].作物学报,2007,33(12):2016~2020
    钱晓晴,沈其荣,王娟娟,等.模拟水分胁迫条件下水稻的氮素营养特征[J].南京农业大学学报,2003,26(4):9~12
    钱晓晴,沈其荣,徐国华.配合施用NH4+-N和NO3--N对旱作水稻生长与水分利用效率的影响[J].土壤学报,2003,40(4):807~812
    钱晓晴,沈其荣,徐勇,等.不同水分管理方式下水稻的水分利用效率与产量[J].应用生态学报,2003,14(3):399~404.
    邱福林,张伟平.水分胁迫对水稻生长影响的研究进展[J].栽培技术,2000,2:7~9.
    全松华,汪永国,罗绍球,等.苗床土壤pH值对水稻秧苗素质的影响[J].杂交水稻,2004,19(4):45~46.
    任光照,徐子恺,王国新.我国水资源开发利用业绩与前景[J].水文,1995(5):11~16.
    沈元月,黄丛林,张秀海,等.植物抗旱的分子机制研究[J].中国生态农业学报,2002,10(1):30~34.
    施积炎,袁小凤,丁贵杰.作物水分亏缺补偿与超补偿效应的研究现状[J].山东农业生物学报,2000,19(3):226~233.
    石庆华,黄英金,李木英.水稻根系性状与地上部的相关及根系性状的遗传研究[J].中国农业科学,1997,30(4):61~67.
    石英,冉炜,沈其荣.不同施氮水平下旱作水稻土壤无机氮的动态变化及其吸氮特征[J].南京农业大学学报,2001,24(2):61~65.
    石英,沈其荣,茆泽圣,等.旱作条件下水稻的生物效率及表层覆盖的影响[J].植物营养与肥料学报,2001,7(3):271~277.
    石英,沈其荣,茆泽圣,等.旱作水稻根际土壤铵态氮和硝态氮的时空变异[J].中国农业科学,2002,35(5):520~524.
    石玉林.中国农业需水与节水高效农业建设[M].北京:中国水利水电出版社,2001(1):11,23,87.
    史瑞和.植物营养原理[M].江苏科学技术出版社,1989.
    苏佩,山仑.春小麦种子萌发和成苗过程中水分需求的量化研究[J].植物生理学通讯,1991,27(4): 275~277.
    孙传清,张文绪.水稻根系性状和叶片水势遗传及其相关研究[J].中国农业科学,1995,28(1):42~48.
    孙静文,陈温福,曾雅琴,等.氮素水平对粳稻根系形态及其活力的影响[J].沈阳农业大学学报,2003,34(5):344~346.
    孙骏威,杨勇,黄宗安,等.聚乙二醇诱导水分胁迫引起水稻光合下降的原因探讨[J].中国水稻科学,2004,18(6):539~543.
    孙曦.作物营养与施肥[M].北京:中国农业出版社,1990:103.
    汤广民.水稻旱作的需水规律与土壤水分调控[J].中国农村水利水电,2001(9):18~23.
    汤章城.植物对水分胁迫的反应和适应性Ⅱ.植物对干旱的反应和适应性[J].植物生理学通讯,1993,(4):1~7.
    唐连顺,李广敏,等.水分胁迫对玉米膜脂过氧化及保护膜的影响[J].河北农业大学学报,1992,15(2):34~40.
    王昌全,曾莉,卢俊宇.土壤水分状况与水稻生长的关系[J].西南农业学报,1998,10(2):67~70.
    王朝辉,李生秀.不同生育期缺水和补充水对冬小麦氮磷钾吸收及分配影响[J].植物营养与肥料学报,2002,8(3):265~270.
    王福荣,等.旱作水稻生理特性与栽培技术研究[J].吉林农业大学学报,1982,(2):1~10.
    王巩,陆引正,张步阔.不同水稻品种对钾的吸收生理特征性研究[J].耕作与栽培,2001,2:25~30.
    王环,胡荣海,昌小平.水分胁迫下小麦地上部和地下部的反应及其抗旱性研究[J].西北植物学报,1996,16(2):107~115.
    王甲辰,刘学军,张福锁,等.不同土壤覆盖物对旱作水稻生长和产量影响[J].生态学报,2002,22(6):922~925.
    王娜,陈国祥,邵志广.不同形态氮素配比对水稻光合特性的影响[J].江苏农业学报,2002,18(1):18~22.
    王万里.植物对水分胁迫的响应[J].植物生理学通讯,1981,(5):55~64.
    王喜庆,李生秀,高亚军.土壤水分在提高氮肥肥效中的作用机制[J].西北农业大学学报,1997,25(1):16~19.
    王小兵,吴平.硝态氮(NO3--N)对水稻侧根生长及其氮吸收的影响[J].植物学报,2002,44(6):678~683.
    王友贞,许浒,曹秀清,等.水稻旱作覆膜节水效果与提高降雨利用率的研究[J].中国农村水利水电,2001:4~5.
    王余龙,姚庆友,刘宝玉,等.不同生育时期氮素供应水平对杂交水稻根系生长及其生活力的影响[J].作物学报,1997,23(6):699~705.
    王志琴,杨建昌,朱庆森,等.水分胁迫下外源多胺对水稻叶片光合速率与籽粒充实的影响[J].中国水稻科学,1998,12(3):185~188.
    王忠.植物生理学[M].中国农业出版社,2000:453.
    文汉,聂凡.干旱对水稻抽穗后旗叶衰老和产量构成因子的影响[J].安徽农业大学学报,2000,27(2):135~137.
    巫伯舜.水稻的旱种技术[M].北京:农业出版社,1985.
    吴传余.水稻覆膜旱作栽培技术试验稻田地膜效应的研究[J].灌溉排水,2001,20(4):63~65,72.
    肖焱波,李文学,段宗颜,等.植物对硝态氮的吸收及其调控[J].中国农业科技导报,2002,4(2):56~59.
    严小龙.植物营养遗传学[M].北京:中国农业出版社,1995:33~34.
    燕平梅,章艮山.水分胁迫下脯氨酸的累积及其可能的意义[J].太原师范专科学校学报,2000,4:27~28.
    杨安中.水稻秸秆与地膜二无覆盖旱作栽培效应研究[J].水土保持学报,2000,14(2):66~69.
    杨建昌,王志琴,刘立军,等.旱种水稻生育特性与产量形成的研究[J].作物学报,2002,28(1):11~17.
    杨建昌,王志琴,朱庆森,等.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J]. 中国农业科学,1996,29(4):58~66.
    杨建昌,朱庆森,王志琴,等.土壤水分对水稻产量与生理特性的影响[J].作物学报,1995,21(1):111~114.
    杨孔平,郑丕尧,周殿玺,等.水、陆稻在水田、旱地栽培的生态适应性研究.稻株生育、形态与组织结构的生态适应性[J].北京农业大学学报,1991,17(2):19~29.
    杨肖娥,孙羲.生育后期追施NO3--N和NH4+-N对水稻的生理效应[J].土壤通报,1990,21(3):111~114.
    姚雅琴,汪沛洪,胡东维,等.水分胁迫下小麦叶肉细胞超微结构变化与抗旱性的关系[J].西北植物学报,1993,13(1):16~20.
    余叔文,陈景治,刘存德,等.水、陆稻的比较研究.水稻老来青和陆稻南通早的水分关系及抗旱性的比较[J].植物学报,1958,7(4):187~199.
    张达,林杉.通气状况与氮素形态对水稻和旱稻生长的影响[J].哈尔滨师范大学自然科学学报,2002,18(4):97~102.
    张殿忠,汪沛洪.水分胁迫与植物氮代谢的关系Ⅰ.水分胁迫对小麦叶片氮代谢的影响[J].西北农业大学学报,1988,16(3):9~15.
    张福锁.环境胁迫与植物营养[M] .北京:北京农业大学出版社,1993:127~141.
    张福锁.土壤与植物营养研究新动态[M].北京:北京农业大学出版社,1992:73~82.
    张敬锁,李花粉,张福锁.不同形态氮素对水稻体内镉形态的影响[J].中国农业大学学报1998,(5):90~94.
    张启舜,沈振荣.中国农业持续发展的水危机及共对策[J].作物杂志,1997(6):9~12
    张矢,吴宪章,蒋本福,等.水稻陆稻地膜覆盖栽培技术效应[J].黑龙江农业科学. 1983,(5):20~24.
    张文绪.旱稻“秦爱”与水稻“寒二”在不同播期的条件下籽粒灌浆过程的初步研究[J].北京农业大学学报,1986,12(1):23~30.
    张亚丽,沈其荣,段英华.不同氮素营养对水稻的生理效应[J].南京农业大学学报,2004,27(2):130~135
    张玉屏,李建才,黄义德,等.水分胁迫对水稻根系生长和部分生理特性的影响[J].安徽农业科学,2001,29(1):58~59.
    赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J].生态科学,1998,17(2):37~42.
    赵同华,等.锌锰肥对旱作水稻产量及品质的影响[J].河北农业大学学报,1990,13(3):118~120.
    赵言文,丁艳锋,陈留根,等.水稻旱育秧苗抗旱生理特性研究[J].中国农业科学,2001,34(3):283~291.
    赵正宜,迟道才,刘宗琦,等.水发胁迫对水稻生长发育影响的研究[J].沈阳农业大学学报,2000,31(2):214~217.
    郑家国,任光俊,陆贤军,等.花后水分亏缺对水稻产量和品质的影响[J].中国水稻科学,2003,17(3):239~243.
    郑丕尧,杨孔平,王经武,等.水、陆稻在水田、旱地栽培的生态适应性研究[J].稻株碳、氮代谢的生态适应性观察.中国水稻科学,1990,4(2):69~74.
    周毅,郭世伟,沈其荣.局部根系干早条件下分蘖期水稻对供氮形态的生物学响应[J].水土保持学报,2005,19(6):169~173
    周毅,郭世伟,宋娜等.供氮形态和水分胁迫耦合作用下分蘖期水稻的光合、水分与氮素利用[J].中国水稻科学,2006,20(3):313~318
    周毓珩.旱作水稻播种量研究[J].辽宁农业科学,1986,(2):7~9.
    周毓珩.水稻品种在旱作时主要经济性状变化规律研究[J].辽宁农业科学,1986,(1):10~13.
    朱杭申,黄丕生.土壤水分胁迫与水稻活性氧代谢[J].南京农业大学学报,1994,17(2):7~11.
    朱剑钊,李启真. Mn及Mn/Fe比对水稻生长影响的病因研究[J].农业环境保护,1998,17(2):74~77.
    朱庆森,邱泽森.水稻各生育期不同土壤水势对产量的影响[J].中国农业科学,1994,27(6):15~22.
    朱庭芸.水稻高产高效益灌溉原理与方法[M].沈阳:辽宁科学出版社,1994.
    邹春琴,王晓凤,张福锁,等.铵态氮抑制向日葵生长的作用机制初步探讨[J].植物营养与肥料学报,2004,10(1):82~85.
    邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700