用户名: 密码: 验证码:
Tyro3 RTKs调节精子发生的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哺乳动物精子发生是一个极其复杂的、且受到严格调控的细胞分化过程,可以分为三个时期:有丝分裂期、减数分裂期和精子形成期。在这一过程中,精原细胞逐渐转化成高度分化的单倍体精子,成熟的精子释放到曲细精管管腔。曲细精管中唯一的体细胞——Sertoli细胞,和发育中的各级生精细胞始终通过细胞间的直接接触和/或旁分泌信号途径进行着物质和信息的交流,且Sertoli细胞的结构和功能随生精周期发生着明显的周期性波动,但是,Sertoli细胞调节精子发生的分子基础仍不是很清楚。基因敲除技术的出现,为这一领域的探究提供了新的工具。Tyro3受体酪氨酸激酶(Receptor tyrosine kinases,RTKs)亚家族包括三个成员:Axl、Tyro3和Mer。虽然以前已有研究证实Tyro3 RTKs三个基因同时敲除的雄性小鼠不育,但其机理未明。鉴于此,我们利用Tyro3 RTKs基因敲除小鼠为模型,深入研究了Tyro3 RTKs在调节精子发生中的功能,研究结果为阐明Tyro3 RTKs调节精子发生的机理提供了初步的实验依据。
     我们对不同基因型雄性Tyro3 RTKs基因敲除小鼠的生育能力进行了观察。与正常雌性小鼠的交配实验表明:单基因敲除小鼠(A、M和T)生育能力与正常相仿;双基因敲除小鼠生育能力因所敲除的基因不同而异,AT型敲除小鼠的生育能力正常,但AM和MT型小鼠的生育能力均较正常明显下降。三基因敲除的杂合体小鼠生育能力进一步下降,以aMT型与AMt型小鼠最为明显。三基因同时敲除的TAM型小鼠完全丧失了生育能力。而且,各种基因型小鼠睾丸重量/体重比值和附睾精子计数的结果显示与其生育能力吻合。生育能力低下的基因型小鼠睾丸重量/体重比值下降,附睾精子数量减少,反之亦然。TAM型小鼠睾丸重量/体重比值降为正常的30%,附睾内完全缺失成熟精子,出现大量未成熟精子。这些结果提示Tyro3 RTKs亚家族的成员之间在调节精子发生上存在相互协调,Mer可能起到更重要的作用。
     利用半薄切片技术,我们详细观察了TAM雄性小鼠生后发育阶段(3天、1周、2周、3周、5周、8周和15周)睾丸的形态学变化,并对前3周睾丸内精原细胞、初级精母细胞、精子细胞、支持细胞、肌样细胞和退化的细胞进行了计数。我们发现TAM小鼠精原细胞、支持细胞和肌样细胞的数量没有改变。但自2周开始,睾丸出现早期退化现象,初级精母细胞数量较正常下降,退化细胞增多,3周时改变更加明显,而且圆形精子细胞数量也减少。这些退化现象随年龄增长而不断加剧。5周曲细精管上皮中长形精子细胞数量明显减少,而退化细胞显著增多,Sertoli细胞胞质中出现空泡;8周曲细精管中已少见长形精子细胞,且不同成熟阶段的精子细胞同时出现于同一个曲细精管横切面上,提示精子发生的不同步;同时可见部分残余体脱落到管腔中。15周小鼠已基本无长形精子;Sertoli细胞空泡化、精子细胞发育不同步、发育各个阶段的生精细胞脱落及合胞体形成的现象更加明显;偶尔可见少量仅剩下Sertoli细胞和精原细胞的曲细精管。应用流式细胞术对小鼠睾丸内细胞进行了核型分析,与形态学观察的结果完全一致,TAM小鼠浓缩的单倍体核显著减少刚好对应了长形精子的严重缺失。这些表型清楚地反映了Sertoli细胞和生精细胞之间的连接出现异常,提示Tyro3 RTKs可能参与介导Sertoli细胞与生精细胞之间的黏附功能。这个假说也得到了体外实验的证实,体外培养的3周TAM小鼠Sertoli细胞与生精细胞的黏附能力显著下降。
     本文对睾丸内脂滴进行了分析。脂滴是Sertoli细胞胞质中的一种重要的内含物,其确切的功能和代谢情况目前仍不是很清楚。我们采用了冰冻切片油红O染色、结合Image-Pro Plus图像分析系统进行显微定量分析,详细观察了生后发育阶段到成年后小鼠睾丸中脂滴的动态变化规律。结果发现,Sertoli细胞内脂滴的量随小鼠性成熟而逐渐增加,与生精细胞的发育进展呈现正相关,生精细胞越多,脂滴的量就越高。而且成年后小鼠睾丸曲细精管内的脂滴可以分为两个部分,分别位于基底部的Sertoli细胞内和管腔部的精子细胞细胞质叶(残余体)中,二者的量均有与生精周期相伴的周期性改变。前者Ⅸ—Ⅰ期水平较高,后者Ⅶ—Ⅷ期水平较高。并且,无论是青春期还是成年后,Sertoli细胞内脂滴的量始终与其吞噬的曲细精管内凋亡生精细胞以及残余体的量呈现非常紧密的时空相关性,提示其可以作为评价Sertoli细胞吞噬功能的指标。这一推测也得到了体外吞噬实验的证实,与凋亡生精细胞共培养后,Sertoli细胞内脂滴的量明显增加。另外,我们还分离了各期的曲细精管,利用荧光素/荧光素酶反应体系和血小板分析仪,检测了各期曲细精管内ATP的含量,同时利用酶组化法检测了ATP酶的含量。我们发现各期曲细精管内ATP的含量与该期Sertoli细胞内脂滴的量成正相关,与ATP酶的量成负相关。这些结果提示Sertoli细胞内的脂滴可用作产生能量的原料,为精子发生提供能量。Sertoli细胞中的脂代谢仍然值得进一步的研究。
     最后,我们观察了TAM小鼠生后发育阶段到成年后睾丸内脂滴的动态变化规律。与同年龄正常小鼠相比较,TAM小鼠Leydig细胞的脂滴含量无明显改变,曲细精管内的脂滴却有明显改变。TAM Sertoli细胞内的脂滴2周时开始下降,且随年龄增长而降低更加明显;而且,其脂滴的含量与生精上皮的完整性成正比,破坏越严重的曲细精管,其内的脂滴含量越少,反之亦然;而且脂滴含量丧失了正常的周期性变化规律,15周TAM小鼠Sertoli细胞内脂滴含量仅为正常的13%。鉴于Sertoli细胞内脂滴的量可以作为评价Sertoli细胞吞噬功能的指标,这些结果提示TAM小鼠Sertoli细胞的吞噬功能受损。体外吞噬实验的结果也证实了这一推论。我们还发现TAM小鼠曲细精管中ATP的量也降低,同时ATP酶的量增加,这与我们的推论完全一致。TAM小鼠Sertoli细胞的吞噬能力降低,导致脂滴形成减少,水解产生的ATP也随之减少,为缓解能量供应的不足,ATP酶代偿性的增多。
     结论:Sertoli细胞可能是Tyro3 RTKs的直接作用靶点。Tyro3 RTKs可能调节Sertoli细胞与生精细胞之间的黏附以及Sertoli细胞的吞噬功能,进而调节精子发生。TAM小鼠可能是研究Sertoli细胞调节精子发生机理的有用模型。
Mammalian spermatogenesis is a synchronized,regulated and complex process of cellular differentiation,which includes three distinct phases of cellular and molecular changes: mitosis,meiosis and spermiogenesis.In this process,spermatogonial "stem cell" is gradually transformed into a highly differentiated haploid spermatozoon,which will then be released into the lumen at spermiation.As the only somatic cell in the seminiferous epithelium,Sertoli cells communicate with germ cells through direct cell-cell contact and paracrine signaling.The structure and function of Sertoli cells exhibit a stage-dependent change during the spermatogenic cycle.However,the molecular bases of the spermatogenesis regulated by Sertoli cells remain to be defined.The genetic studies using gene knockout model have provided directly insights into this field.The Tyro3 subfamily of receptor tyrosine kinases(RTKs) is composed of Tyro3,Axl and Mer.Although a previous study demonstrated that the male mice triply mutant for Tyro3 RTKs were infertile,the mechanisms underlying this defect have not been elucidated.Thus,we investigated the roles of Tyro3 RTKs in regulating spermatogenesis with an effort to understand the mechanisms.
     We assessed the fertility of male Tyro3 RTKs knockout mice with different genotypes by mating experiment.It was shown that all male mice singly mutant for Tyro3 RTKs had normal fertility.Although mice doubly mutant for Axl and Tyro3(AT) exhibited normal fertility,a significant low fertility was observed in male mice doubly mutant for Axl and Mer(AM) and Mer and Tyro3(MT).Notably,the triple mutant mice for Tyro3 RTKs (TAM) were completely sterilized.It was consistent with the results of the ratio value between testes weight and body weight and epididymal sperm count in male Tyro3 RTKs knockout mice with different genotypes.These results suggest that three members of Tyro3 RTKs subfamily regulate male fertility in a redundant manner,and Mer may play a more important role than other two members.
     In order to define the defect of spermatogenesis in TAM mice,high-power histological analysis of semithin sections of testes from mice at postnatal day 3,and 1,2,3,5,8,15 weeks was performed.We also scored the numbers of spermatogonia,Sertoli cells,myoid cells,the primary spematocytes,round spermatids and degenerating cells in early developing mice.We found that the numbers of spermatogonia,Sertoli cells and myoid cells showed no apparent difference between WT and TAM mice.From 2 weeks,the numbers of primary spematocytes,and then spermatids in TAM mice were reduced.The testicular degeneration became more severe as the mice aging.At 5 weeks postnatal, elongating or elongated spermatids were scarcely observed in the seminiferous epithelium, and Sertoli cell vacuolization was frequently observed.In 8-week-old mice,elongating or elongated spermatids were rare seen in the seminiferous epithelium;spermatids at different maturation steps were simultaneously present in the same cross section of some tubules, indicating asynchronized development of haploid cells during spermiogenesis,and some degenerated cells or residual bodies sloughed off to the lumen.In 15-week-old mice,most seminiferous tubules were devoid of spermatids.Sertoli cell vacuolization,asynchronized development of haploid spermatids,sloughing of developing spermatogenic cells and appearance of multinucleated spermatids(symplasts) became progressively more severe. Occasionally,only Sertoli cells and spermatogonia could be found in some tubules.In addition,we examined the DNA contents of testicular cells using flow cytometry,and the results were consistent with the histological finding.Marked decreased elongated spermatids in TAM mice could result in a lower HN cell peak.These results indicated the adhering junctions between Sertoli cell and spermatogenic cells were impaired,and it was also clarified by an in vitro binding assay.The TAM Sertoli cells showed a dramatic reduction in binding spermatogenic cells in vitro.These results suggest that Tyro3 RTKs participate in the binding of Sertoli cells to apoptotic spermatogenic cells.
     Lipid droplet is one of Sertoli cell cytoplasmic components,and its function and metabolism remain to be defined.In the present study,using morphometric analysis method,we investigated the dynamic changes of lipid droplets in Sertoli cells during postnatal development in detail.It was shown that the level of lipid droplets in Sertoli cells increased concomitance to the sex maturity,and they were well in accordance with the spermatogenic cells development.The more spermatogenic cells,the higher level of lipid droplets.Meanwhile,there were two parts of lipid droplets in the seminiferous tubules of adult mice,and they were located in the cytoplasmic lobes(residual bodies) of spermatids in middle of the tubules and in the cytoplasm of Sertoli cells in periphery of the tubules, respectively.Both of them appeared in stage-dependent manner.The former peaked at stagesⅦ-Ⅷ,and the latter at stagesⅨ-Ⅰ,just after spermiation.Thus,the temporal relationship between phagocytosis of residual bodies and degenerating spermatogenic cells and the increased lipids level in Sertoli cells from newborn to adulthood suggests that lipid droplets may be useful criterion to evaluate the phagocytic ability of Sertoli cells.The hypothesis was confirmed by an in vitro phagocytosis assay.After co-culture with apoptotic spermatogenic cells,the level of lipid droplets in Sertoli cells was dramatically increased.In addition,we detected the level of ATP and ATPase in the different staged seminiferous tubules.We found that the level of ATP was consistent with that of lipid droplets in Sertoli cells,and lipid droplets could be hydrolyzed to produce ATP to apply for the energy consumption during spermatogenesis.
     We also investigated the level of lipid droplets in TAM mice.Compared with WT mice, Leydig cells in TAM mice did not exhibit apparent changes in the levels of lipid droplets. However,it was different in the seminiferous tubules.The level of lipid droplets in TAM Sertoli cells was decreased from 2 weeks,and became worse as aging.The level of lipid droplets in the seminferous epithelium was consistent with the integrity of the tubules.Unlike the stage-dependent formation of lipid droplets in the seminiferous epithelium of WT mice,only few lipid droplets were found in all TAM seminiferous tubules without a stage-dependent manner,and the level of lipid droplets in 15-week-old TAM Sertoli cells was reduced to only 13%of that in WT mice.Considering the phagocytosis of apoptotic spermatogenic cells or residual bodies resulted in the formation of lipid droplets in Sertoli cells,the significant decreased level of lipid droplets in TAM Sertoli cells might reflect an impaired phagocytic ability of TAM Sertoli cells.The phagocytosis assays in vitro had further confirmed this speculation.In addition,we found the level of ATP in TAM Sertoli cells was lower,and ATPase higher than that in WT Sertoli cells.It might also reflect the defect of phagocytic ability of TAM Sertoli cells,which led to the deficiency of ATP and the compensation of increased ATPase.
     In summary,the results of this study strongly suggested that Sertoli cells were primarily affected by losing Tyro3 RTKs in TAM mice.Tyro3 RTKs might involve in the binding of Sertoli cells with apoptotic spermatogenic cells and the phagocytic ability of Sertoli cells. The mice mutant for Tyro3 RTKs could be a useful model for further understanding the roles of Sertoli cells in regulating germ cell maturation.
引文
[1] Russell LD, Ettlin RA, Sinha Hikim AP, and Clegg ED. Histological and histopathological evaluation of the testis. 1990. Cache River Press, Clearwater.
    
    [2] Russell LD, Griswold MD. The Sertoli Cell. 1993. Cache River Press, Clearwater.
    
    [3] Skinner MK, Griswold MD. Sertoli cell biology. 2005. Elsevier Academic Press,San Diego.
    
    [4] Dym M. Spermatogonial stem cells of the testis. Proc Natl Acad Sci U S A 1994,91(24): 11287-11289.
    
    [5] Braun RE. Every sperm is sacred~or is it? Nat Genet 1998,18(3): 202-204.
    
    [6] Packer AI, Besmer P, Bachvarova RF. Kit ligand mediates survival of type A spermatogonia and dividing spermatocytes in postnatal mouse testes. Mol Reprod Dev 1995, 42(3): 303-310.
    
    [7] Mori C, Nakamura N, Dix DJ et al. Morphological analysis of germ cell apoptosis during postnatal testis development in normal and Hsp 70-2 knockout mice. Dev Dyn 1997, 208(1): 125-136.
    
    [8] Bianco-Rodriguez J, Martinez-Garcia C. Spontaneous germ cell death in the testis of the adult rat takes the form of apoptosis: re-evaluation of cell types that exhibit the ability to die during spermatogenesis. Cell Prolif 1996, 29(1): 13-31.
    
    [9] Allan DJ, Harmon BV, Roberts SA. Spermatogonial apoptosis has three morphologically recognizable phases and shows no circadian rhythm during normal spermatogenesis in the rat. Cell Prolif 1992, 25(3): 241-250.
    
    [10] Chemes H. The phagocytic function of Sertoli cells: a morphological, biochemical,and endocrinological study of lysosomes and acid phosphatase localization in the rat testis. Endocrinology 1986, 119(4): 1673-1681.
    
    [11] Morales CR, Clermont Y. Phagocytosis and endocytosis in Sertoli cells of the rat. Bull Assoc Anat (Nancy) 1991, 75(228): 157-162.
    
    [12] Morales C. CYaHL. Nature and function of endocytosis in sertoli cells of the rats. The American Journal of Anatomy 1985,173(203-217.
    
    [13] Matzuk MM, Lamb DJ. Genetic dissection of mammalian fertility pathways. Nat Cell Biol 2002,4 Suppl(s41-49.
    
    [14] Hafizi S, Dahlback B. Signalling and functional diversity within the Axl subfamily of receptor tyrosine kinases. Cytokine Growth Factor Rev 2006, 17(4): 295-304.
    
    [15] Neubauer A, Fiebeler A, Graham DK et al. Expression of axl, a transforming receptor tyrosine kinase, in normal and malignant hematopoiesis. Blood 1994,84(6): 1931-1941.
    
    [16] Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene 2000, 19(49): 5548-5557.
    
    [17] Lai C, Lemke G. Structure and expression of the Tyro 10 receptor tyrosine kinase.Oncogene 1994, 9(3): 877-883.
    
    [18] Mark MR, Scadden DT, Wang Z et al. rse, a novel receptor-type tyrosine kinase with homology to Axl/Ufo, is expressed at high levels in the brain. J Biol Chem 1994,269(14): 10720-10728.
    
    [19] Taylor IC, Roy S, Yaswen P et al. Mouse mammary tumors express elevated levels of RNA encoding the murine homology of SKY, a putative receptor tyrosine kinase.J Biol Chem 1995, 270(12): 6872-6880.
    
    [20] Janssen JW, Schulz AS, Steenvoorden AC et al. A novel putative tyrosine kinase receptor with oncogenic potential. Oncogene 1991, 6(11): 2113-2120.
    
    [21] O'Bryan JP, Frye RA, Cogswell PC et al. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase.Mol Cell Biol 1991, 11(10): 5016-5031.
    
    [22] Rescigno J, Mansukhani A, Basilico C. A putative receptor tyrosine kinase with unique structural topology. Oncogene 1991, 6(10): 1909-1913.
    
    [23] Graham DK, Dawson TL, Mullaney DL et al. Cloning and mRNA expression analysis of a novel human protooncogene, c-mer. Cell Growth Differ 1994, 5(6):647-657.
    
    [24] Jia R, Hanafusa H. The proto-oncogene of v-eyk (v-ryk) is a novel receptor-type protein tyrosine kinase with extracellular Ig/GN-III domains. J Biol Chem 1994,269(3): 1839-1844.
    
    [25] Nagata K, Ohashi K, Nakano T et al. Identification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. J Biol Chem 1996,271(47): 30022-30027.
    [26] Stitt TN, Conn G, Gore M et al. The anticoagulation factor protein S and its relative,Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 1995,80(4): 661-670.
    
    [27] Varnum BC, Young C, Elliott G et al. Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature 1995, 373(6515): 623-626.
    
    [28] Hafizi S, Dahlback B. Gas6 and protein S. Vitamin K-dependent ligands for the Axl receptor tyrosine kinase subfamily. Febs J 2006, 273(23): 5231-5244.
    
    [29] Bellosta P, Costa M, Lin DA et al. The receptor tyrosine kinase ARK mediates cell aggregation by homophilic binding. Mol Cell Biol 1995, 15(2): 614-625.
    
    [30] Chen H, Bernstein BW, Bamburg JR. Regulating actin-filament dynamics in vivo. Trends Biochem Sci 2000, 25(1): 19-23.
    
    [31] Scott RS, McMahon EJ, Pop SM et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 2001, 411(6834): 207-211.
    
    [32] Lemke G, Lu Q. Macrophage regulation by Tyro 3 family receptors. Curr Opin Immunol 2003, 15(1): 31-36.
    
    [33] Caraux A, Lu Q, Fernandez N et al. Natural killer cell differentiation driven by Tyro3 receptor tyrosine kinases. Nat Immunol 2006, 7(7): 747-754.
    
    [34] Lu Q, Gore M, Zhang Q et al. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 1999, 398(6729): 723-728.
    
    [35] Lu Q, Lemke G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 2001,293(5528): 306-311.
    
    [36] Wang H, Chen S, Chen Y et al. The role of Tyro 3 subfamily receptors in the regulation of hemostasis and megakaryocytopoiesis. Haematologica 2007, 92(5):643-650.
    
    [37] Wang H, Chen Y, Ge Y et al. Immunoexpression of Tyro 3 family receptors-Tyro 3,Axl, and Mer—and their ligand Gas6 in postnatal developing mouse testis. J Histochem Cytochem 2005, 53(11): 1355-1364.
    
    [38] Sertoli E. Dell'esistenza di particolari cellule ramificate nei canalicoli seminiferi de testicolo umano. Morgagni 1865, 7: 31-40.
    
    [39] Johnson AD, Gomes WR, and Vandemark NL. Testicular Lipids. 1970. In The Testis,Vol 2, 194-258.
    [40] Shi QX, Friend DS. Effect of gossypol acetate on guinea pig epididymal spermatozoa in vivo and their susceptibility to capacitation in vitro. J Androl 1985,6(1): 45-52.
    
    [41] Ye SJ, Ying L, Ghosh S et al. Sertoli cell cycle: a re-examination of the structural changes during the cycle of the seminiferous epithelium of the rat. Anat Rec 1993,237(2): 187-198.
    
    [42] Yamada D, Yoshida M, Williams YN et al. Disruption of spermatogenic cell adhesion and male infertility in mice lacking TSLC1/IGSF4, an immunoglobulin superfamily cell adhesion molecule. Mol Cell Biol 2006,26(9): 3610-3624.
    
    [43] van der Weyden L, Arends MJ, Chausiaux OE et al. Loss of TSLC1 causes male infertility due to a defect at the spermatid stage of spermatogenesis. Mol Cell Biol 2006, 26(9): 3595-3609.
    
    [44] Deitch AD, Law H, deVere White R. A stable propidium iodide staining procedure for flow cytometry. J Histochem Cytochem 1982, 30(9): 967-972.
    
    [45] Cheng CY, Mather JP, Byer AL et al. Identification of hormonally responsive proteins in primary Sertoli cell culture medium by anion-exchange high performance liquid chromatography. Endocrinology 1986,118(2): 480-488.
    
    [46] Xiong W, Chen Y, Wang H et al. Gas6 and the Tyro 3 receptor tyrosine kinase subfamily regulate the phagocytic function of Sertoli cells. Reproduction 2008,135(1): 77-87.
    
    [47] Galdieri M, Ziparo E, Palombi F et al. Pure Sertoli Cell Cultures: A New Model for the Study of Somatic-Germ Cell Interactions. J Androl 1981, 2(5): 249-254.
    
    [48] Shiratsuchi A, Kawasaki Y, Ikemoto M et al Role of class B scavenger receptor type I in phagocytosis of apoptotic rat spermatogenic cells by Sertoli cells. J Biol Chem 1999, 274(9): 5901-5908.
    
    [49] Pickren JW. Identification of oil-red-0 stained granules in sputum macrophages.Jama 1971, 215(12): 1985.
    
    [50] Dharia S, Slane A, Jian M et al. Effects of aging on cytochrome b5 expression in the human adrenal gland. J Clin Endocrinol Metab 2005, 90(7): 4357-4361.
    
    [51] Tuder RM, Zhen L, Cho CY et al. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol 2003, 29(1): 88-97.
    [52] Parvinen M, Vanha-Perttula T. Identification and enzyme quantitation of the stages of the seminiferous epithelial wave in the rat. Anat Rec 1972, 174(4): 435-449.
    
    [53] Chen YM, Lee NP, Mruk DD et al. Fer kinase/FerT and adherens junction dynamics in the testis: an in vitro and in vivo study. Biol Reprod 2003, 69(2):656-672.
    
    [54] Yang NC, Ho WM, Chen YH et al. A convenient one-step extraction of cellular ATP using boiling water for the luciferin-luciferase assay of ATP. Anal Biochem 2002, 306(2): 323-327.
    
    [55] Padykula HA, Herman E. Factors affecting the activity of adenosine triphosphatase and other phosphatases as measured by histochemical techniques. J Histochem Cytochem 1955,3(3): 161-169.
    
    [56] Tanaka H. A comparative study of enzymatic staining reactions in the human pathological kidney obtained by needle biopsy. Acta Pathol Jpn 1962, 12(177-203.
    
    [57] Wachstein M, Meisel E. A comparative study of enzymatic staining reactions in the rat kidney with necrobiosis induced by ischemia and nephrotoxic agents (mercuhydrin and DL-serine). J Histochem Cytochem 1957, 5(3): 204-220.
    
    [58] Rodriguez I, Ody C, Araki K et al. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. Embo J 1997,16(9): 2262-2270.
    
    [59] Wang RA, Nakane PK, Koji T. Autonomous cell death of mouse male germ cells during fetal and postnatal period. Biol Reprod 1998, 58(5): 1250-1256.
    
    [60] Clermont Y, Leblond CP, Messier B. [Duration of the cycle of the seminal epithelium of the rat.]. Arch Anat Microsc Morphol Exp 1959,48: (Suppl) 37-55.
    
    [61] Leblond CP, Clermont Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci 1952, 55(4): 548-573.
    
    [62] Clermont Y, Leblond CP. Spermiogenesis of man, monkey, ram and other mammals as shown by the periodic acid-Schiff technique. Am J Anat 1955,96(2): 229-253.
    
    [63] Leblond CP, Clermont Y. Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the periodic acid-fuchsin sulfurous acid technique. Am J Anat 1952,90(2): 167-215.
    
    [64] Kerr JB, Mayberry RA, Irby DC. Morphometric studies on lipid inclusions in Sertoli cells during the spermatogenic cycle in the rat. Cell Tissue Res 1984, 236(3): 699-709.
    
    [65] Kerr JB, De Kretser DM. Cyclic variations in Sertoli cell lipid content throughout the spermatogenic cycle in the rat. J Reprod Fertil 1975,43(1): 1-8.
    
    [66] Sasso-Cerri E, Giovanoni M, Hayashi H et al. Morphological alterations and intratubular lipid inclusions as indicative of spermatogenic damage in cimetidine-treated rats. Arch Androl 2001,46(1): 5-13.
    
    [67] Kerr JB, Millar M, Maddocks S et al. Stage-dependent changes in spermatogenesis and Sertoli cells in relation to the onset of spermatogenic failure following withdrawal of testosterone. Anat Rec 1993, 235(4): 547-559.
    
    [68] Shiratsuchi A, Umeda M, Ohba Y et al. Recognition of phosphatidylserine on the surface of apoptotic spermatogenic cells and subsequent phagocytosis by Sertoli cells of the rat. J Biol Chem 1997, 272(4): 2354-2358.
    
    [69] Pineau C, Le Magueresse B, Courtens JL et al. Study in vitro of the phagocytic function of Sertoli cells in the rat. Cell Tissue Res 1991, 264(3): 589-598.
    
    [70] Munoz EM, Fogal T, Dominguez S et al. Ultrastructural and morphometric study of the Sertoli cell of the viscacha (Lagostomus maximus maximus) during the annual reproductive cycle. Anat Rec 2001, 262(2): 176-185.
    
    [71] Kerr JB, de Kretser DM. Proceedings: The role of the Sertoli cell in phagocytosis of the residual bodies of spermatids. J Reprod Fertil 1974, 36(2): 439-440.
    
    [72] Sharpe RM, McKinnell C, Kivlin C et al. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood.Reproduction 2003, 125(6): 769-784.
    
    [73] Kastner P, Mark M, Leid M et al. Abnormal spermatogenesis in RXR beta mutant mice. Genes Dev 1996, 10(1): 80-92.
    
    [74] Mascrez B, Ghyselinck NB, Watanabe M et al. Ligand-dependent contribution of RXRbeta to cholesterol homeostasis in Sertoli cells. EMBO Rep 2004, 5(3):285-290.
    
    [75] Robertson KM, Schuster GU, Steffensen KR et al. The liver X receptor-{beta} is essential for maintaining cholesterol homeostasis in the testis. Endocrinology 2005,146(6): 2519-2530.
    
    [76] Gehin M, Mark M, Dennefeld C et al. The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol Cell Biol 2002, 22(16): 5923-5937.
    
    [77] Nakamura T, Yao R, Ogawa T et al. Oligo-astheno-teratozoospermia in mice lacking Cnot7, a regulator of retinoid X receptor beta. Nat Genet 2004, 36(5):528-533.
    
    [78] Selva DM, Hirsch-Reinshagen V, Burgess B et al. The ATP-binding cassette transporter 1 mediates lipid efflux from Sertoli cells and influences male fertility. J Lipid Res 2004, 45(6): 1040-1050.
    
    [79] Huyghe S, Schmalbruch H, De Gendt K et al. Peroxisomal multifunctional protein 2 is essential for lipid homeostasis in Sertoli cells and male fertility in mice.Endocrinology 2006, 147(5): 2228-2236.
    
    [80] Cohen PL, Caricchio R, Abraham V et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med 2002, 196(1): 135-140.
    
    [81] Seitz HM, Camenisch TD, Lemke G et al. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J Immunol 2007,178(9): 5635-5642.
    
    [82] Behrens EM, Gadue P, Gong SY et al. The mer receptor tyrosine kinase: expression and function suggest a role in innate immunity. Eur J Immunol 2003, 33(8):2160-2167.
    
    [83] Prasad D, Rothlin CV, Burrola P et al. TAM receptor function in the retinal pigment epithelium. Mol Cell Neurosci 2006, 33(1): 96-108.
    
    [84] Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature 2000,407(6805): 784-788.
    
    [85] Hoist LS, Hoffmann AM, Mulder H et al Localization of hormone-sensitive lipase to rat Sertoli cells and its expression in developing and degenerating testes. FEBS Lett 1994, 355(2): 125-130.
    
    [86] Gillot I, Jehl-Pietri C, Gounon P et al. Germ cells and fatty acids induce translocation of CD36 scavenger receptor to the plasma membrane of Sertoli cells.J Cell Sci 2005, 118(Pt 14): 3027-3035.
    
    [87] Retterstol K, Haugen TB, Tran TN et al. Studies on the metabolism of essential fatty acids in isolated human testicular cells. Reproduction 2001, 121(6): 881-887.
    
    [88] Retterstol K, Tran TN, Haugen TB et al. Metabolism of very long chain polyunsaturated fatty acids in isolated rat germ cells. Lipids 2001, 36(6): 601-606.
    
    [89] Galardo MN, Riera MF, Pellizzari EH et al. The AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-b-D-ribonucleoside, regulates lactate production in rat Sertoli cells. J Mol Endocrinol 2007, 39(4): 279-288.
    
    [90] Dawson AG, Chappell JB. The oxidative activities of membrane vesicles from Bacillus caldolyticus. Energy-dependence of succinate oxidation. Biochem J 1978,170(2): 395-405.
    
    [91] Rovetto MJ. Energy metabolism in the ischemic heart. Tex Rep Biol Med 1979,39(397-407.
    1. ROSSEN-RUNGE EC. The process of spermatogenesis in mammals. Biol Rev 37: 343-377, 1962
    
    2. The Sertoli Cell, edited by Russell LD and Griswold MD. Clearwater, FL: Cache River, 1993
    
    3. RUSSELL LD, ETTLIN RA, SINHA HIKIM AP, AND CLEGG EJ. Histological and Histopathological Evaluation of the Testis. Clearwater, FL: Cache River, 1990, p. 1-52
    
    4. ALBERTS B, BRAY D, LEWIS J, RAFF M, ROBERTS K, AND WATSON JD. Cell junctions,cell adhesion, and the extracellular matrix. In: Molecular Biology of the Cell. New York: Garland,1994, p. 949-1009
    
    5. DYM M. The male reproductive system. In: Histology: Cell and Tissue Biology (5th ed.), edited by Weiss L. Amsterdam: Elsevier Biomedical, 1983, p. 1000-1053.
    
    6. JEGOU B. The Sertoli-germ cell communication network in mammals. Int Rev Cytol 147: 25-96,1993
    
    7. RUSSELL LD. Sertoli-germ cell interactions: a review. Gamete Res 3: 179-202, 1980
    
    8. RUSSELL LD AND PETERSON RN. Sertoli cell junctions: morphological and functional correlates. Int Rev Cytol 94: 177-211, 1985
    
    9. MITIC LL AND ANDERSON JM. Molecular architecture of tight junctions. Annu Rev Physiol 60:121-142, 1998
    
    10. STEVENSON BR AND KEON BH. The tight junction: morphology to molecules. Annu Rev Cell Dev Biol 14: 89-109, 1998
    
    11. RODRIGUEZ-BOULAN E AND NELSON WJ. Morphogenesis of the polarized epithelial cell phenotype. Science 245: 718-725, 1989
    
    12. DE KRETSER DM AND KERR JB. The cytology of the testis. In: The Physiology of Reproduction, edited by Knobil E and Neill J. New York: Raven, 1988, vol. 1, p. 837-932
    
    13. DYM M AND FAWCETT DW. The blood-testis barrier in the rat and the physiological compartmentation of the seminiferous epithelium. Biol Reprod 3: 308-326, 1970
    
    14. SETCHELL BP. The functional significance of the blood-testis barrier. J Androl 1: 3-10, 1980
    
    15. FANNING AS, MITIC LL, AND ANDERSON JA. Transmembrane proteins in the tight junction barrier. J Am Soc Nephrol 10: 1337-1345, 1999
    
    16. MITIC LL, VAN ITALLIE CM, AND ANDERSON JM. Molecular physiology and pathophysiology of tight junctions. I. Tight junction structure and function: lessons from mutant animals and proteins. Am J Physiol Gastrointest Liver Physiol 279: G250-G254, 2000
    
    17. MARTIN-PADURA I, LOSTAGLIO S, SCHNEEMANN M, WILLIAMS L, ROMANO M, FRUSCELLA P, PANZERI C, STOPPACCIARO A, RUCO L, VILLA A, SIMMONA D, AND DEJANA E. Junctional adhesion molecule, a novel member of the immunoglobulins superfamily that distributes at intercellular junctions and modulates monocytes transmigration. J Cell Biol 142:117-127, 1998
    
    18. VAN ITALLIE CM AND ANDERSON JM. Occludin confers adhesiveness when expressed in fibroblasts.J Cell Sci 110: 1113-1121, 1997
    19. CITI S AND CORDENONSI M. Tight junction proteins. Biochim Biophys Acta 1448: 1-11, 1998
    
    20. ANDO-AKATSUKA Y, SAITOU M, HIRASE T, KISHI M, SAKAKIBARA A, ITOH M,YONEMURA S, FURUSE M, AND TSUKITA S. Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J Cell Biol 133: 43-47, 1996
    
    21. CHUNG NPY, MRUK D, MO MY, LEE WM, AND CHENG CY. A 22-amino acid synthetic peptide corresponding to the second extracellular loop of rat occludin perturbs the blood-testis barrier and disrupts spermatogenesis reversibly in vivo. Biol Reprod 65: 1340-1351, 2001
    
    22. HUBER D, BALDA MS, AND MATTER K. Occludin modulates transepithelial migration of neutrophils. J Biol Chem 275: 5773-5788,2000
    
    23. FURUSE M, ITOH M, HIRASE T, NAGAFUCHI A, YONEMURA S, TSUKITA S, AND TSUKITA S. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 127: 1617-1626, 1994
    
    24. BALDA MS, WHITNEY JA, FLORES C, GONZALEZ S, CEREIJIDO M, AND MATTER K.Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apicalbasolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 134: 1031- 1049, 1996
    
    25. CHEN YH, MERZDORF C, PAUL DL, AND GOODENOUGH DA. COOH terminus of occludin is required for tight junction barrier function in early Xenopus embryos. J Cell Biol 138: 891-899,1997
    
    26. CYR DG, HERMO L, EGENBERGER N, MERTINEIT C, TRANSLER JM, AND LAIRD DW.Cellular immunolocalization of occludin during embryonic and postnatal development of the mouse testis and epididymis. Endocrinology 140: 3815-3825, 1999
    
    27. WIEBE JP, KOWALIK A, GALLARDI RL, EGELER O, AND CLUBB BH. Glycerol disrupts tight junction-associated actin microfilaments, occludin, and microtubules in Sertoli cells. J Androl 21:625-635,2000
    
    28. FUJIMOTO K. Freeze-fracture replica electronic microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J Cell Sci 108: 3443-3449, 1995
    
    29. SAKAKIBARA A, FURUSE M, SAITO M, ANDO-AKATSUKA Y, AND TSUKITA S. Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol 137:1393-1401, 1997
    
    30. TSUKAMOTO T AND NIGAM SK. Role of tyrosine phosphorylation in the reassembly of occludin and other tight junction proteins. Am J Physiol Renal Physiol 276: F737-F750, 1999
    
    31. CORDENONSI M, MAZZON E, DERIGO L, BARALDO S, MEGGIO F, AND CITI S. Occludin dephosphorylation in early development of Xenopus laevis. J Cell Sci 110: 3131-3139, 1997
    
    32. LYNCH RD, TKACHUK-ROSS LJ, MCCORMACK JM, MCCARTHY KM, ROGERS RA,AND SCHNEEBERGER EE. Basolateral but not apical application of protease results in a rapid rise of transepithelial electrical resistance and formation of aberrant tight junction strands in MDCK cells. Eur JCell Biol 66: 257-267, 1995
    
    33. SAITOU M, FUJIMOTO K, DOI Y, ITOH M, FUJIMOTO T, FURUSE M, TAKANO H, NODA T, AND TSUKITA S. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 141: 397-408, 1998
    34. SAITOU M, FURUSE M, SASAKI H, SCHULZKE JD, FROMM M, TAKANO H, NODA T,AND TSUKITA S. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11:4131-4142, 2000
    
    35. MURESAN Z, PAUL DL, AND GOODENOUGH DA. Occludin IB, a variant of the tight junction protein occludin. Mol Biol Cell 11: 627-634, 2000
    
    36. MOROI S, SAITOU M, FUJIMOTO K, SAKAKIBARA A, FURUSE M, YOSH1DA O, AND TSUKITA S. Occludin is concentrated at tight junctions of mouse/ rat but not human/guinea pig Sertoli cells in testes. Am J Physiol Cell Physiol 214: C1708-C1717, 1998
    
    37. FURUSE M, HATA M, FURUSE K, YOSHIDA Y, HARATAKE A, SUGITANI Y, NODA T,KUBO A, AND TSUKITA S. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156: 1099-1 111, 2002
    
    38. MORITA K, FURUSE K, FUJIMOTO K, AND TSUKITA S. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA 96:511-516, 1999
    
    39. FURUSE M, FUJITA K, HIRAGI T, FUJOMOTO K, AND TSUKITA S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence homology to occludin. J Cell Biol 141: 1539-1550,1998
    
    40. MULHOLLAND DJ, DEDHAR S, AND VOGL AW. Rat seminiferous epithelium contains a unique junction (ectoplasmic specialization) with signaling properties both of cell/cell and cell/matrix junctions. Biol Reprod 64: 396-407, 2001
    
    41. FURUSE M, SASAKI H, FUJOMOTO K, AND TSUKITA S. A single gene product, claudin-1 or-2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143: 391—401,1998
    
    42. MORITA K, SASAKI H, FUJIMOTO K, FURUSE M, AND TSUKITA S. Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis. J Cell Biol 145:579-588, 1999
    
    43. GOW A, SOUTHWOOD CM, LI JS, PARIALI M, RIORDAN GP, BRODIE SE, DANIAS J,BRONSTEIN JM, KACHAR B, AND LAZZARINI RA. CNS myelin and Sertoli cell tight junction strands are absent in Osp/Claudin-11 null mice. Cell 99: 649-659, 1999
    
    44. TSUKITA S AND FURUSE M. Pores in the wall: claudins constitute tight junction strands containing aqueous pores. JCell Biol 149: 13-16,2000
    
    45. HELLANI A, JI JW, MAUDUIT C, DESCHILDRE C, TABONE E, AND BENAHMED M.Developmental and hormonal regulation of the expression of oligodendrocyte-specific protein/claudin 11 in mouse testis. Endocrinology 141: 3012-3019, 2000
    
    46. FURUSE M, SASAKI H, AND TSUKITA S. Manner of interaction of heterogeneous claudin species within and between tight junction strands. JCell Biol 147: 891-903, 1999
    
    47. CHEN YH, LU Q, SCHNEEBERGER EE, AND GOODENOUGH DA. Restoration of tight junction structure and barrier function by downregulation of the mitogen-activated protein kinase pathway in Rastransformed Madin-Darby canine kidney cells. Mol Biol Cell 11: 849-862, 2000
    
    48. KUMAR NM AND GILULA NB. The gap junction communication channel. Cell 84: 381-388,1996
    
    49. PAUL DL. New functions of gap junctions. Curr Opin Cell Biol 7: 665-672, 1995
    50. PALMERI D, VAN ZANTE A, HUANG CC, HEMMERICH S, AND ROSEN SD. Vascular endothelial junction-associated molecule, a novel member of the immunoglobulin superfamily, is localized to intercellular boundaries of endothelial cells. J Biol Chem 275: 19139-19145, 2000
    
    51. AURRAND-LIONS M, DUNCAN L, BALLESTREM C, AND IMHOF BA. JAM-2, a novel immunoglobulin superfamily molecule, expressed by endothelial and lymphatic cells. J Biol Chem 276:2733-2741,2001
    
    52. ARRATE MP, RODRIGUEZ JM, TRAN TM, BROCK TA, AND CUNNINGHAM SA. Cloning of human junctional adhesion molecule 3 (JAM3) and its identification as the JAM2 counter-receptor. J Biol Chem 276: 45826-45832, 2001
    
    53. DEL MASCHIO A, DE LUIGI A, MARTIN-PADURA I, BROCKHAUS M, BARTFAI T,FRUSCELLA P, ADORINI L, MARTINO G, FURLAN R, DE SIMONI MG, AND DEJANA E.Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to junctional adhesion molecule (JAM). J Exp Med 190: 1351-1356, 1999
    
    54. BAZZONI G, MARTINEZ-ESTRADA OM, ORSENIGO F, CORDENONSI M, CITI S, AND DEJANA E. Interaction of junctional adhesion molecule with the tight junction components: ZO-1,cingulin, and occludin. J Biol Chem 275: 20520-20526, 2000
    
    55. ITOH M, SASAKI H, FURUSE M, OZAKI H, KITA T, AND TSUKITA S. Junctional adhesion molecule (JAM) binds to P.A.R.-3: a possible mechanism for the recruitment of P.A.R.-3 to tight junctions.J Cell Biol 154: 491-497, 2001
    
    56. STEVENSON BR, SILICANO JD, MOOSEKER MS, AND GOODENOUGH DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zona occludens) in a variety of epithelia. J Cell Biol 103: 755-766, 1986
    
    57. ANDERSON JM, STEVENSON BR, JESAITIS LA, GOODENOUGH DA, AND MOOSEKER MS. Characterization of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J Cell Biol 106: 1141-1149, 1988
    
    58. BYERS S, GRAHAM R, DAI HN, AND HOXTER B. Development of Sertoli cell junctional specializations and the distribution of the tightj unction- associated protein ZO-1 in the mouse testis.Am JAnat 191:35-47, 1991
    
    59. ITOH M, FURUSE M, MORITA K, KUBOTA K, SAOTO M, AND TSUKITA S. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins.J Cell Biol 147: 1351-1363, 1999
    
    60. PELLETIER RM, OKAWARA Y, VITALE ML, AND ANDERSON JM. Differential distribution of the tight junction associated protein ZO-1α~+ and a" isoforms in guinea pig Sertoli cells: a possible association with F-actin an G-actin. Biol Reprod 57: 367-376, 1997
    
    61. CITI S, SABANAY H, JAKES R, GEIGER B, AND KENDRICK-JONES J. Cingulin, a new peripheral component of tight junctions. Nature 333: 272-276, 1988
    
    62. CITI S, SABANAY H, KENDRICK-JONES J, AND GEIGER B. Cingulin: characterization and localization.J Cell Sci 93: 107-122, 1989
    
    63. KEON BH, SCHAFER S, KUHN C, GRUND C, AND FRANKE WW. Symplekin, a novel type of tight junction plaque protein. JCell Biol 134: 1003-1018, 1996
    
    64. UEKI K, RAMASWAMY S, BILLINGS SJ, MOHRENWEISER HW, AND LOUIS DN. Chromosomal localization to 19q13.3 partial genomic structure and 5'cDNA sequence of the human symplekin gene. Somatic Cell Mol Genet 23: 229-231, 1997
    
    65. ZAHRAOUI A, LOUVARD D, AND GALLI T. Tight junction, a platform for trafficking and signaling protein complexes. J Cell Biol 151: F31- F36, 2000
    
    66. DENKER BM AND NIGAM SK. Molecular structure and assembly of the tight junction. Am J Physiol Renal Physiol 274: F1-F9, 1998
    
    67. N1SHI M, MIZUSHIMA A, NAKAGAWARA KI, AND TAKESHIMA H. Characterization of human junctophilin subtype genes. Biochem Biophys Res Commun 273: 920-927, 2000
    
    68. TAKESHIMA H, KOMAZAKI S, NISHI M, LINO M, AND KANGAWA K. Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6: 11-22, 2000
    
    69. CITI S. Protein kinase inhibitors prevent dissociation induced by low extracellular calcium in MDCK epithelial cells. J Cell Biol 117: 169-178, 1992
    
    70. LI JCH, SAMY TE, GRIMA J, CHUNG SSW, MRUK D, LEE WM, SILVESTRINI B, AND CHENG CY. Rat testicular myotubularin (rMTM), a protein tyrosine phosphatase expressed by Sertoli and germ cells, is a potential marker for studying cell-cell interactions in the rat testis. J Cell Physiol 185: 366-385, 2000
    
    71. NILSSON M, FAGMAN H, AND ERICSON LE. Ca~(2+)-dependent and Ca~(2-)-independent regulation of the thyroid epithelial junction complex by protein kinases. Exp Cell Res 225: 1-11, 1996
    
    72. STUART RO, SUN A, PANICHAS M, HEBERT SC, BRENNER BM, AND NIGAM SK. Critical role for intracellular calcium in tight junction biogenesis. J Cell Physiol 159: 423-433, 1994
    
    73. BALDA MS, GONZALEZ-MARISCAL L, MARCIAS-SILVA M, TORRES- MARQUEZ MEJ,GARCIA-SAINZ A, AND CEREIJIDO M. Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J Membr Biol 122:193-202, 1991
    
    74. JANECKI A, JAKUBOWIAK A, AND STEINBERGER A. Effects of cAMP and phorbol ester on transepithelial electrical resistance of Sertoli cell monolayers in two-compartment culture. Mol Cell Endocrinol 82: 61-69, 1991
    
    75. DENU JM AND DIXON JE. Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr Opin Chem Biol 2: 633-641, 1998
    
    76. TSUKITA S, OISHI K, AKIYAMA T, YAMANASHI Y, YAMAMOTO T, AND TSUKITA S. Specific proto-oncogenic tyrosine kinases of Src family are enriched in cell-to-cell adherens junctions where the level of tyrosine phosphorylation is elevated. J Cell Biol 113: 867-879, 1991
    
    77. BIELKE W, BLASCHKE RJ, MIESCHER GC, ZURCHER G, ANDRES AC, AND ZIEMIECKI A. Characterization of a novel murine testis-specific serine/threonine kinase. Gene 139: 235-239,1994
    
    78. RUBIN LL AND STADDON JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci 22: 11-28, 1999
    
    79. BEHRENS J, VAKAET L, FRIIS R, WINTERHAGER E, VAN ROY F, MAREEL WM, AND BIRCHMEIER W. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/β-catenin complex in cells transformed with a temperature- sensitive v-Src gene. J Cell Biol 120: 757-766, 1993
    
    80. STADDON JM, HERRENKNECHT K, SMALES C, AND RUBIN LL. Evidence that tyrosine phosphorylation may increase tight junction permeability. J Cell Sci 108: 609-619, 1995
    81. COLLARES-BUZATO CB, JEPSON MA, SIMMONS NL, AND HIRST BH. Increased tyrosine phosphorylation causes redistribution of adherens junction and tight junction proteins and perturbs paracellular barrier function in MDCK epithelia Eur J Cell Biol 76: 85-92, 1998
    
    82. LI JCH, MRUK D, AND CHENG CY. Regulation of the inter-Sertoli tight junction permeability barrier by the interplay of protein kinases and protein phosphatases. J Androl 22: 847-856, 2001
    
    83. FARSHORI P AND KACHAR B. Redistribution and phosphorylation of occludin during opening and resealing of tight junctions in cultured epithelial cells. J Membr Biol 170: 147-156, 1999
    
    84. ANDREEVA AY, KRAUSE E, MULLER EC, BLASIG IE, AND UTEPBERGENOV DI. Protein kinase C regulates the phosphorylation and cellular localization of occludin. J Biol Chem 276:38480-38486, 2001
    
    85. PROVOST E AND RIMM DL. Controversies at the cytoplasmic face of the cadherin based adhesion complex. Curr Opin Cell Biol 11: 567-572, 1999
    
    86. GRIMA J, WONG CSC, ZHU LJ, ZONG SD, AND CHENG CY. Testin secreted by Sertoli cells is associated with the cell surface and its expression correlates with the disruption of Sertoli-germ cell junctions but not the inter-Sertoli tight junction. J Biol Chem 273: 21040-21053, 1998
    
    87. BERRIDGE MJ, LIPP P, AND BOOTMAN MD. The versatility and universality of calcium signaling. Nature Rev Mol Cell Biol 1:11-21, 2000
    
    88. DODANE V AND KACHAR B. Identification of isoforms of G proteins and PKC that colocalize with tight junctions. J Membr Biol 149: 199-209, 1996
    
    89. SAHA C, NIGAM SK, AND DENKER BM. Expanding role of G proteins in tight junction regulation: Gα_s stimulates TJ assembly. Biochem Biophys Res Commun 285: 250-256, 2001
    
    90. GRISWOLD MD. Interactions between germ cells and Sertoli cells in the testis. Biol Reprod 52:211-216, 1995
    
    91. LAMB DJ. Growth factors and testicular development. J Urol 150: 583-592, 1993
    
    92. CAUSSANEL V, TABONE E, HENDRICK JC, DACHEUX F, AND BENAHMED M. Cellular distribution of transforming growth factor βs 1,2, and 3 and their types I and II receptors during postnatal development and spermatogenesis in the boar testis. Biol Reprod 56: 357-367, 1997
    
    93. TEERDS KJ AND DORRINGTON JH. Localization of transforming growth factor β1 and β2 during testicular development in the rat. Biol Reprod 48: 40-45, 1993
    
    94. LUI WY, LEE WM, AND CHENG CY. Transforming growth factor-β3 perturbs the inter-Sertoli tight junction permeability barrier in vitro possibly mediated via its effects on occludin, zonula occludens-I, and claudin-11. Endocrinology 142: 1865-1877, 2001
    
    95. ANTONETTI DA, BARBER AJ, HOLLINGER LA, WOLPERT EB, AND GARDNER TW.Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occludens-1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 274: 23463-23467, 1999
    
    96. MANKERTZ J, TAVALALI S, SCHMITZ H, MANKERTZ A, RIECKEN EO, FROMM M,AND SCHULZKE JD. Expression from the human occludin promoter is affected by tumor necrosis factor a and interferon γ. J Cell Sci 113: 2085-2090, 2000
    
    97. KREUSEL KM, FROMM M, SCHULZKE JD, AND HEGEL U. Cl-secretion in epithelial monolayers of mucus-forming human colon cells (HT-29/ B6). Am J Physiol Cell Physiol 261:C574-C582, 1919
    98. OKANLAWON A AND DYM M. Effect of chloroquine on the formation of tight junctions in cultured immature rat Sertoli cells. J Androl 17: 249-255, 1996
    
    99. MRUK D, ZHU LJ, SILVESTRINI B, LEE WM, AND CHENG CY. Interactions of proteases and protease inhibitors in Sertoli-germ cell co-cultures preceding the formation of specialized Sertoli-germ cell junctions in vitro. J Androl 18: 612-622, 1997
    
    100. CHUNG NPY AND CHENG CY. Is cadmium chloride-induced inter- Sertoli tight junction permeability barrier disruption a suitable in vitro model to study the events of junction disassembly during spermatogenesis in the rat testis? Endocrinology 142: 1878-1888, 2001
    
    101.UHRIN P, DEWERCHIN M, HILPERT M, CHRENEK P, SCHOFER C, ZECHMEISTER-MACHHART M, KRONKE G, VALES A, CARMELIET P, BINDER BR, AND GEIGER M.Disruption of protein C inhibitor gene results in impaired spermatogenesis and male infertility. J Clin Invest 106: 1531-1539, 2000
    
    102. NARGOLWALLA C, MCCABE D, AND FRITZ IB. Modulation of levels of messenger RNA for tissue-type plasminogen activator in rat Sertoli cells and levels of messenger RNA for plasminogen activator inhibitor in testis peritubular cells. Mol Cell Endocrinol 70: 73-80, 1990
    
    103. DYM M. Basement membrane regulation of Sertoli cells. Endocr Rev 15: 102-115, 1994
    
    104. JAEGER MMM, KALINEC G, DODANE V, AND KACHAR B. A collagen substrate enhances the sealing capacity of tight junctions of A6 cell monolayers. J Membr Biol 159: 236-270, 1997
    
    105. SAVETTIERI G, LIEGRO ID, CATANIA C, LICATA L, PITARRESI GL, D'AGOSTINO S,SCHIERA G, CARO VD, GIANDALIA G, GIANNOLA LI, AND CESTELLI A. Neurons and ECM regulate occludin localization in brain endothelial cells. Neuroreports 11: 1081-1084, 2000
    
    106. JANECKI A, JAKUBOWIAK A, AND STEINBERGER A. Effect of cadmium chloride on transepithelial electrical resistance of Sertoli cell monolayer in two-compartment cultures: a new model for toxicological investigations of the "blood-testis" barrier in vitro. Toxicol Appl Phamacol 112:51-57, 1992
    
    107. ISHII K AND GREEN KJ. Cadherin function: breaking the barrier. Curr Biol 11: R569-R572,2001
    
    108. ANASTASIADIS PZ AND REYNOLDS AB. The p120 catenin family: complex roles in adhesion,signaling and cancer. J Cell Sci 113:1319- 1334, 2000
    
    109. SUZUKI ST. Structural and functional diversity of cadherin superfamily: are new members of the cadherin superfamily involved in signal transduction pathways? J Cell Biochem 61: 531-542, 1996
    
    110. TAKEICHI M. Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem 59:237-252, 1990
    
    111. KEMLER R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 9: 317-321, 1993
    
    112. SORKIN BC, HEMPERLY JJ, EDELMAN GM, AND CUNNINGHAM BA. Structure of the gene for the liver cell adhesion molecule, L-CAM. Proc Natl Acad Sci USA 85: 7617-7621, 1988
    
    113. GUMBINER BM. Regulation of cadherin adhesive activity. J Cell Biol 148: 399-403,2000
    
    114. RIMM DL, KOSLOV ER, KEBRIAEI P, CIANCI CD, AND MORROW JS. α1(E)-catenin is an actin-binding and bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc Natl Acad Sci USA 921: 8813-8817, 1995
    
    115. ADAMS CL AND NELSON WJ. Cytomechanics of cadherin-mediated cell-cell adhesion. Curr Opin Cell Biol 10: 572-577, 1998
    
    116. KAIBUCHI K, KURODA S, FUKATA M, AND NAKAGAWA M. Regulation of cadherin-mediated cell-cell adhesion by the Rho family GTPases. Curr Opin Cell Biol 11: 591-596,1999
    
    117. LICKERT H, BAUER A, KEMLER R, AND STAPPERT J. Casein kinase II phosphorylation of E-cadherin increases E-cadherin/β-catenin interaction and strengthens cell-cell adhesion. J Biol Chem 275: 5090-5095, 2000
    
    118. JOHNSON KJ AND BOEKELHEIDE K. Dynamic testicular adhesion junctions are immunologically unique. II. Localization of classic cadherins in rat testis. Biol Reprod 66:992-1000,2002.
    
    119. MCCREA P AND GUMBINER B. Purification of a 92-kDa cytoplasmic protein tightly associated with the cell-cell adhesion molecule Ecadherin (uvomorulin): characterization and extractability of the protein complex from the cell cytostructure. J Biol Chem 266: 4514-4520, 1991
    
    120.KOWALCZYK AP, BOMSLAEGER EA, NORVELL SM, PALKA HL, AND GREEN KJ.Desmosomes: intercellular adhesive junctions specialized for attachment of intermediate filaments.Int Rev Cytol 185: 237-302, 1999
    
    121. WINE RN AND CHAPIN RE. Adhesion and signaling proteins spatiotemporally associated with spermiation in the rat. J Androl 20: 198-213, 1999
    
    122. BOUCHARD MJ, DONG Y, MCDERMOTT BM JR, LAM DH, BROWN KR, SHELANSKI M,BELLVE AR, AND RACANIELLO VR. Defects in nuclear and cytoskeletal morphology and mitochondrial localization in spermatozoa of mice lacking nectin-2, a component of cell-cell adherens junctions. Mol Cell Biol 20: 2865-2873, 2000
    
    123. SATOH-HORIKAWA K, NAKANISHI H, TAKAHASHI K, MIYAHARA M, NISHIMURA M,TACHIBANA K, MIZOGUCHI A, AND TAKAI Y. Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows homophilic and heterophilic cell-cell adhesion activities. J Biol Chem 275: 10291-10299,2000
    
    124. REYMOND N, BORG JP, LECOCQ E, ADELAIDE J, CAMPADELLI-FIUME G, DUBREUIL P,AND LOPEZ M. Human nectin/PRR3: a novel member of the PVR/PRR/nectin family that interacts with afadin. Gene 255: 347-355, 2000
    
    125. OZAKI-KURODA K, NAKANISHI H, OHTA H, TANAKA H, KURIHARA H, MUELLER S,IRIE K, IKEDA W, SAKAI T, WIMMER E, NISHIMUNE Y, AND TAKAI Y. Nectin couples cell-cell adhesion and the actin scaffold at heterotypic testicular junctions. Curr Biol 12:1145-1150,2002
    
    126. WHEELOCK MJ, KNUDSEN KA, AND JOHNSON KR. Membrane-cytoskeleton interactions with cadherin cell adhesion proteins: roles of catenins as linker proteins. Curr Top Membr Biol 43:169-185, 1996
    
    127. IMAMURA Y, ITOH M, MAENO Y, TSUKITA S, AND NAGAFUCHI A. Functional domains of a-catenin required for the strong state of cadherin- based cell adhesion. J Cell Biol 144:1311-1322, 1999
    
    128. WEISS EE, KROEMKER M, RUDIGER AH, JOCKUSCH BM, AND RUDIGER M. Vinculin is part of the cadherin-catenin junctional complex: complex formation between -catenin and vinculin. J Cell Biol 141: 755-764, 1998
    129. VON KRIES JP, WINBECK G, ASBRAND C, SCHWARZ-ROMOND T, SOCHNIKOVA N,DELLORO A, BEHRENS J, AND BIRCHMEIER W. Hot spots in P-catenin for interactions with LEF-1, conductin and APC. Nature Struct Biol 7: 800-807, 2000
    
    130. FAGOTOO F, FUNAYAMA N, GLUCK U, AND GUMBINER BM. Binding to cadherins antagonizes the signaling activity of p-catenin during axis formation in Xenopus. J Cell Biol 132:1105-1114,1996
    
    131. PIEDRA J, MARTINEZ D, CASTANO J, MIRAVETE S, DUNACH M, AND HERREROS AG. Regulation of p-catenin structure and activity by tyrosine phosphorylation. J Biol Chem 276:20436-20443,2001
    
    132. GOTTARDI CJ AND GUMBINER BM. Adhesion signaling: how P-catenin interacts with its partners. Curr Biol 11: 792-794, 2001
    
    133. IKEDA W, NAKANISHI H, MIYOSHI J, MANDAI K, ISHIZAKI H, TANAKA M, TOGAWA A, TAKAHASHI K, NISHIOKA H, YOSHIDA H, MIZOGUCHI A, NISHIKAWA S, AND TAKAI Y. Afadin: a key molecule essential for structural organization of cell-cell junctions of polarized epithelia during embryogenesis. J Cell Biol 146: 1117-1132, 1999
    
    134.TACHIBANA K, NAKANISHI H, MANDAI K, OZAKI K, IKEDA W, YAMAMOTO Y,NAGAFUCHI A, TSUKITA S, AND TAKAI Y. Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domainassociated proteins. J Cell Biol 150:1161-1176,2000
    
    135.YOKOYAMA S, TACHIBANA K, NAKANISHI H, YAMAMOTO Y, IRIE K, MANDAI K,NAGAFUCHI A, MONDEN M, AND TAKAI Y. a-Catenin-independent recruitment of ZO-1 to nectin-based cell-cell adhesion sites through afadin. Mol Biol Cell 12: 1595-1609, 2001
    
    136. KIKYO M, MATOZAKI T, KODAMA A, KAWABE H, NAKANISHI H, AND TAKAI Y.Cell-cell adhesion-mediated tyrosine phosphorylation of nectin- 2, an immunoglobulin-like cell adhesion molecule at adherens junctions. Oncogene 19: 4022-4028, 2000
    
    137. GRIMA J, ZHU LJ, AND CHENG CY. Testin is tightly associated with testicular cell membrane upon its secretion by Sertoli cells whose steady-state mRNA level in the testis correlates with the turnover and integrity of inter-testicular cell junctions. J Biol Chem 272: 6499-6509, 1997
    
    138. ZONG SD, ZHU LJ, GRIMA J, ARAVINDAN R, BARDIN CW, AND CHENG CY. Cyclic and postnatal developmental changes of testin in the rat seminiferous epithelium: an immunohistochemical study. Biol Reprod 51: 843-851, 1994
    
    139. BRADY-KALNAY SM, RIMM DL, AND TONKS NK. Receptor protein tyrosine phosphatase PTP associated with cadherins and catenins in vivo. J Cell Biol 130: 977-986, 1995
    
    140. BROWN MT AND COOPER JA. Regulation, substrates and functions of Src. Biochim Biophys Acta 1287: 121-149, 1996
    
    141. HAMAGUCHI M, MATSUYOSHI N, OHNISHI Y, GOTOH B, TAKEICHI M, AND NAGAI Y.p60v-src causes tyrosine phosphorylation and inactivation of the N-cadherin-catenin cell adhesion system. EMBO J 12: 307-314, 1993
    
    142. KESHET E, ITIN A, FISCHMAN K, AND NIR U. The testis-specific transcript (ferT) of the tyrosine kinase FER is expressed during spermatogenesis in a stage-specific manner. Mol Cell Biol 10:5021-5025,1990
    
    143. CRAIG AWB, ZIRNGIBL R, WILLIAMS K, COLE LA, AND GREER PA. Mice devoid of Fer protein-tyrosine kinase activity are viable and fertile but display reduced cortactin phosphorylation.Mol Cell Biol 21: 603-613, 2001
    
    144. OZAWA M AND OHKUBO T. Tyrosine phosphorylation of p120~(ctn) in v-Src transfected L cells depends on its association with E-cadherin and reduces adhesion activity. J Cell Sci 114: 503-512,2000
    
    145. BLONDEAU F, LAPORTE J, BODIN S, SUPERTI-FURGA G, PAYRASTRE B, AND MANDEL JL. Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum Mol Genet 9:2223-2229, 2000
    
    146. MACHESKY LM AND HALL A. Rho: a connection between membrane receptor signalling and the cytoskeleton. Trends Cell Biol 6: 304- 310, 1996
    
    147. ZIGMOND SH. Signal transduction and actin filament organization. Curr Opin Cell Biol 8: 66-73,1996
    
    148. TAKAI Y, SASAKI T, AND MATOZAKI T. Small GTP-binding proteins. Physiol Rev 81:153-208,2001
    
    149. VAN AELST L AND D'SOUZA-SCHOREY C. Rho GTPases and signaling networks. Genes Dev 11:2295-2322,1997
    
    150. TAKAI Y, SASAKI T, TANAKA K, AND NAKANISHI H. Rho as a regulator of the cytoskeleton. Trends Biochem Sci 20: 227-231, 1995
    
    151. CHAPIN RE, WINE RN, HARRIS MW, BORCHERS CH, AND HASEMAN JK. Structure and control of a cell-cell adhesion complex associated with spermiation in rat seminiferous epithelium.J Androl 22: 1030- 1052, 2001
    
    152. NAKAMURA K, FUJITA A, MURATA T, WATANBE G, MORI C, FUJITA J, WATANABE N,ISHIZAKI T, YOSHIDA O, AND NARUMIYA S. Rhophilin, a small GTPase Rho-binding protein, is abundantly expressed in the mouse testis and localized in the principal piece of the sperm tail. FEBS Lett 445: 9-13, 1999
    
    153.TAKAHASHI H, KOSHIMIZU U, MIYAZAKI J, AND NAKAMURA T. Impaired spermatogenic ability of testicular germ cells in mice deficient in the LIM-kinase 2 gene. Dev Biol 241:259-272,2002.
    
    154. ALLEN WE, JONES GE, POLLARD JW, AND RIDLEY AJ. Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J Cell Sci 110: 707-720, 1997
    
    155. BRAGA VMM, MACHESKY LM, HALL A, AND HOTCHIN NA. The small GTPases Rho and Rac are required for the establishment of cadherin- dependent cell-cell contacts. J Cell Biol 137:1421-1431, 1997
    
    156. LE TL, YAP AS, AND STOW JL. Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J Cell Biol 146:219- 232, 1999
    
    157.SHIBAMOTO S, HAYAKAWA M, TAKEUCHI K, HORI T, OKU N, MIYAZAWA K,KITAMURA N, TAKEICHI M, AND ITO F. Tyrosine phosphorylation of β-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhesion Commun 1: 295-305, 1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700