用户名: 密码: 验证码:
激活TRPV1改善血管功能和预防高血压的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:高血压是临床常见病和多发病,其主要并发症有中风、心肌梗死及肾功能衰竭,严重危害人们的身心健康。原发性高血压发生机制目前尚不十分清楚,目前认为高血压病的病因为多因素,可分为遗传因素和环境因素两个方面,是遗传因素和环境因素相互作用的结果。原发性高血压发病率呈上升趋势,其防治具有重要意义。流行病学研究表明,多种饮食因素可影响血压,在过去的十余年中,通过减少钠盐的摄入、增加钾盐的摄入和增加以蔬菜和水果为基础的“清淡饮食”的摄入,可有效的降低血压。红辣椒的主要成分-辣椒素,常常作为一种食品添加剂,是短暂受体电位通道-香草醛亚型1(TRPV1)的高选择性激动剂。TRPV1主要分布在神经系统中,激活TRPV1可引起细胞内钙升高。研究发现,急性激活TRPV1可引起血管舒张,血压一过性下降;也有研究表明,急性激活TRPV1后,血管收缩,血压升高。而长期激活TRPV1后,对血管和血压的影响未见报道。我们既往还发现,辣椒素可激活脂肪细胞TRPV1导致细胞内钙增加,减少脂质在细胞内的堆积,辣椒素长期干预可预防高脂饮食诱导的肥胖。据报道,TRPV1在血管内皮细胞也有表达。我们推测,长期激活TRPV1可能有助于改善血管功能和预防高血压。eNOS和PKA是一氧化氮(NO)的合成和释放的关键信号转导蛋白,都受钙信号的调控。因此我们推测,激活TRPV1可能通过细胞内钙变化上调上述信号转导蛋白的表达,促进内皮细胞NO的合成和释放,从而改善血管功能和预防高血压。
     为了验证上述假设,本研究分为三部分进行。第一部分通过RT-PCR、蛋白免疫印迹和免疫荧光染色验证TRPV1在小鼠血管内皮细胞和小鼠及自发性高血压大鼠(SHR)肠系膜动脉中表达和分布情况。第二部分分题一通过应用辣椒素急性激活TRPV1后,观察其对小鼠肠系膜动脉舒张功能的影响。分题二通过长期辣椒素饮食干预C57/BL6J野生型小鼠和TRPV1基因敲除型小鼠,观察TRPV1激活后对血压正常者血管功能和血压的影响;分题三通过长期辣椒素饮食干预SHR大鼠,观察TRPV1激活后对高血压者的血管功能和血压的影响。分题四通过长期辣椒素干预,观察其对SHR内源性大麻素系统的影响。第三部分通过检测辣椒素刺激后血管内皮细胞内钙离子浓度([Ca2+]i)变化,明确内皮细胞上的TRPV1通道的功能变化。通过检测不同干预组内皮细胞及各组动物肠系膜动脉组织NO合成相关信号蛋白的表达,检测辣椒素刺激后血管和内皮细胞NO合成和释放的变化情况,明确TRPV1激活后对血管功能和血压作用的机制。
     材料与方法:整个研究由离体实验和在体实验两部分组成。离体实验以培养的小鼠胸主动脉内皮细胞以及肠系膜动脉为研究对象。在体试验采用了多种动物模型。首先以C57/BL6J野生型和TRPV1基因敲除(TRPV1-/-)小鼠及SHR为模型,分为辣椒素组(含辣椒素饲料喂养)和对照组(普通饲料喂养)。另外还以TRPV1过表达的转基因(TRPV1-tg)小鼠、TRPV1杂合子小鼠(TRPV1+/-)及其同窝野生型小鼠为动物模型,均以普通饲料喂养。
     1.分别用RT-PCR、蛋白免疫印迹检测TRPV1蛋白和mRNA在血管内皮细胞和肠系膜动脉中的表达;用免疫荧光染色法观察TRPV1在血管内皮细胞和肠系膜动脉中的分布。
     2.应用小血管张力测定技术检测辣椒素急性刺激后或长期干预后小鼠和SHR肠系膜动脉舒缩功能的变化。
     3.采用鼠尾测压方法测定小鼠及SHR鼠尾血压变化情况;颈动脉插管测定小鼠平均动脉压及急性静脉推注乙酰胆碱和硝酸甘油后的血压变化情况;应用无线遥测信号系统检测辣椒素干预后大鼠血压变化情况。
     4.比率荧光成像系统检测辣椒素刺激后血管内皮细胞[Ca2+]i的变化,观察TRPV1特异性拮抗剂辣椒卓平或TRPV1基因敲除后对钙信号变化的影响。
     5.蛋白免疫印迹法检测血管内皮细胞和肠系膜动脉组织NO合成相关信号蛋白(PKA、phospho-PKA、eNOS、phospho-eNOS)的表达。
     6.荧光显像技术检测辣椒素刺激对内皮细胞NO合成和释放的影响,及应用TRPV1受体拮抗剂、eNOS抑制剂和PKA抑制剂对内皮细胞NO生成的影响;比率荧光成像系统检测辣椒素刺激后小鼠肠系膜动脉NO的合成、释放情况,应用TRPV1受体拮抗剂、eNOS抑制剂对肠系膜动脉NO生成的影响及辣椒素刺激后不同基因型小鼠肠系膜动脉NO的生成情况。
     结果:
     1.TRPV1在血管内皮细胞和小鼠及SHR大鼠肠系膜动脉中均有表达。
     2.急性激活TRPV1后,呈浓度依赖性方式舒张苯肾上腺素预收缩的小鼠肠系膜动脉,TRPV1基因敲除后、去除内皮、应用eNOS抑制剂或PKA抑制剂明显减弱血管的舒张反应。长期激活TRPV1后可显著改善阻力血管-肠系膜动脉的内皮依赖性舒张功能,降低小鼠胸主动脉对血管紧张素Ⅱ诱导的收缩。
     3.长期激活TRPV1或TRPV1过表达后,可增强小鼠对乙酰胆碱诱导的降压反应。长期激活TRPV1后,可降低SHR的血压。
     4.辣椒素呈浓度依赖性诱导血管内皮细胞[Ca2+]i的升高, TRPV1基因敲除或辣椒卓平预处理可抑制[Ca2+]i的升高。
     5.辣椒素刺激可显著上调野生型小鼠血管内皮细胞phospho-PKA和phospho-eNOS蛋白的表达,PKA抑制剂可降低phospho-eNOS蛋白的表达;辣椒素刺激对TRPV1-/-小鼠血管内皮细胞phospho-PKA和phospho-eNOS蛋白的表达无明显影响。长期激活TRPV1后,野生型小鼠和SHR肠系膜动脉phospho-PKA和phospho-eNOS蛋白的表达增强,在TRPV1-/-小鼠中变化不明显。
     6.辣椒素刺激可增加血管内皮细胞NO的合成、释放,应用TRPV1受体拮抗剂、eNOS抑制剂和PKA抑制剂可降低内皮细胞NO的生成。辣椒素呈浓度依赖性方式增加小鼠肠系膜动脉NO的生成,应用TRPV1受体拮抗剂、eNOS抑制剂可减弱NO的合成、释放;辣椒素刺激后,TRPV1 tg小鼠肠系膜动脉NO生成最强,WT次之,TRPV1-/-最弱。
     结论:
     1.TRPV1在小鼠血管内皮细胞和小鼠及SHR肠系膜动脉中均有表达。
     2.急性或长期激活TRPV1后,能改善阻力血管的内皮依赖性舒张功能,降低SHR血压。
     3.激活TRPV1可引起[Ca2+]i的升高,上调phospho-PKA和phospho-eNOS蛋白的表达,促进血管内皮细胞和肠系膜动脉NO的生成。提示长期激活TRPV1后,通过cAMP/PKA-eNOS信号通路促进NO的合成、释放,是其改善血管功能、预防高血压的机制之一。
Background and Objectives: Hypertension is currently one of the most common diseases in the world. Its main complications include stroke, myocardial infarction and renal failure, which are associated with substantial morbidity and mortality. The pathogenesis of primary hypertension is due to both the genetic susceptibility and environmental factors. However, the detail underlying mechanism has not been clarified. Epidemiologic studies demonstrated that arterial blood pressure can be regulated by a number of dietary factors. Over the past decade, reduced salt diet, increased potassium intake and consumption of fruits and vegetables based on the“DASH diet”have emerged as effective strategies for lowering blood pressure. Capsaicin is a major pungent ingredient in red pepper and is used as a food additive. Capsaicin is a highly selective agonist for the transient receptor potential vanilloid receptor 1 (TRPV1). TRPV1 as a nonselective cation channel is expressed in sensory neurons and brain but is although present in various non-neuronal tissues including the vasculature. The effect of capsaicin on vascular tone and blood pressure is somewhat of a paradox. Acute, short-term administration of capsaicin either increases or lowers blood pressure transiently in human and rodents. However, the long-term effect of TRPV1 activation on blood pressure and vascular reactivity were unknown. Our previous study demonstrated that activation of TRPV1 with capsaicin can reduce the adipogenesis of 3T3-L1 preadipocytes and prevent high fat diet induced obesity in mouse through increasing calcium entry. Considering endothelial nitric oxide synthase and PKA implicated in the regulation of blood pressure is dependant on calcium signal, we hypothesized that long-term activation of TRPV1 would improve vascular reactivity and prevent hypertension through PKA/eNOS/NO pathway.
     To test the above hypothesis, the present study was divided into three parts. Part one: Protein and mRNA expression and the distribution of TRPV1 in vascular endothelial cells and mesenteric arteries from mice and spontaneous hypertensive rats were evaluated by immunoblotting, RT-PCR and immunofluorescence, respectively. Part two, section 1: The vasodilation response of mice mesenteric arteries to acute administration with capsaicin was detected. Part two, section 2: Arterial blood pressure and vascular reactivity in normotensive mice (TRPV1 null mice and wild type littermates) after long-term activation of TRPV1 by oral administration with capsaicin were evaluated. Part two, section 3: Arterial blood pressure and vascular reactivity in spontaneous hypertensive rats after long-term activation of TRPV1 by oral administration with capsaicin were identified. Part two, section 4: The effect of long-term TRPV1 activation by oral administration with capsaicin on the endocannabinoid system. Part three: Calcium image in vascular endothelial cells with capsaicin intervention was detected to confirm the functional expression of TRPV1 channel. Nitric oxide bioavailability, total and phospho-PKA/eNOS were evaluated to identify the underlying molecular mechanisms involved in the effects of TRPV1 on the regulation of arterial blood pressure and vascular reactivity.
     Material and methods: The whole research includes in vitro and in vivo experiments. In vitro tests were conducted on cultured vascular endothelial cells from mice thoracic aorta and mesenteric arteries. When investigating in vivo, TRPV1 transgenic mice, TRPV1 deficient mice and wild type littermates as well as spontaneous hypertensive rats were assigned into normal chow diet and chow plus capsaicin diet group.
     1. TRPV1 protein and mRNA expression in vascular endothelial cells and mesenteric arteries were detected using RT-PCR and immunoblotting, respectively. While the distributions of TRPV1 in vascular endothelial cells and mesenteric arteries were evaluated by immunofluorescence.
     2. Vascular reactivity of mesenteric artery from mice and rats after acute or long-term activation with capsaicin was identified using isotonic myograph.
     3. Arterial blood pressure was obtained using tail-cuff plethysmography every month; Invasive mean blood pressure from carotid artery response to intravenous acetylcholine and nitroglycerine was evaluated; Arterial blood pressure of rats after oral administration was detected by telemetry.
     4. Calcium image in vascular endothelial cells from TRPV1 deficient mice and wild type littermates with capsaicin intervention in the presence and absence of TRPV1 specific blocker capsazepine was detected by fluorescence.
     5. Protein expressions of PKA, phospho-PKA, eNOS and phospho-eNOS in vascular endothelial cells and mesenteric arteries were detected by immunoblotting.
     6. NO bioavailability in vascular endothelial cells and mesenteric arteries from TRPV1 deficient mice, TRPV1 transgenic mice and wild type littermates with capsaicin intervention in the presence or absence of TRPV1 specific blocker, eNOS inhibitor or PKA inhibitor was detected by fluorescence.
     Results:
     1. Protein and mRNA expressions of TRPV1 were detected in vascular endothelial cells and mesenteric arteries from mice and spontaneous hypertensive rats.
     2. Acute activation of TRPV1 caused concentration-dependent vasodilation in PE-induced precontraction of mice mesenteric arterial rings. TRPV1 gene knockout, endothelium denudation, eNOS inhibitor or PKA inhibitor significantly attenuated the vasodilation response induced by TRPV1 activation. Long-term activation of TRPV1 significantly improved endothelium-dependent vasodilation in mesenteric resistance artery, and markedly blunted angiotensin II-induced vasocontraction in mouse aorta.
     3. Long-term activation of TRPV1 or TRPV1 overexpression markedly enhanced acetylcholine-induced hypotensive response; moreover, long-term activation of TRPV1 can reduce the arterial blood pressure of spontaneous hypertensive rats.
     4. Capsaicin dose-dependently increased intracellular free calcium concentration in vascular endothelial cells, while this effect can be inhibited in TRPV1-deficient mice or in the presence of capsazepine.
     5. After intervention with capsaicin, the protein expression of phospho-PKA and phospho-eNOS were significantly upregulated in endothelial cells from wild type mice, but not from TRPV1 null mice. After long-term activation of TRPV1, the protein expression of phospho-PKA and phospho-eNOS were markedly upregulated in mesenteric arteries from wild type mice and spontaneous hypertensive rats, but not from TRPV1 mutant mice.
     6. Intervention with capsaicin significantly increased the NO bioavailability, while TRPV1 blocker, eNOS inhibitor or PKA inhibitor markedly attenuated these effects. Similarly, capsaicin markedly increased the NO production in a dose-dependent manner, while TRPV1 blocker or eNOS inhibitor significantly blunted these effects. Capsaicin induced highest amount of NO in mesenteric artery from TRPV1 transgenic mice, wild type mice took the second place, while TRPV1 null mice was the lowest one.
     Conclusion:
     1. TRPV1 was expressed in mice vascular endothelial cells and mesenteric arteries from mice and spontaneous hypertensive rats.
     2. Acute or long-term activation of TRPV1 would improve endothelium-dependent vasodilation in resistance arteries, and reduce arterial blood pressure of spontaneous hypertensive rats.
     3. Activation of TRPV1 can increase intracellular calcium concentration in vascular endothelial cells, upregulate the protein expression of phospho-PKA and phospho-eNOS, and increase the bioavailability of nitric oxide in vascular endothelial cells and mesenteric arteries. The present study suggest that long-term activation of TRPV1 induced nitric oxide increasing mediated by cAMP/PKA-eNOS signal pathway would be a underlying mechanism for improving vascular function and preventing hypertension.
引文
1. Rao MS. Pathogenesis and consequences of essential hypertension. J Indian Med Assoc 2003;101:251-253.
    2. Hajjar IM, Grim CE, George V, Kotchen TA. Impact of diet on blood pressure and age-related changes in blood pressure in the US population: analysis of NHANES III. Arch Intern Med 2001;161:589-593.
    3. Vollmer WM, Svetkey LP, Appel LJ, Obarzanek E, Reams P, Kennedy B, et al. Recruitment and retention of minority participants in the DASH controlled feeding trial. DASH Collaborative Research Group. Dietary Approaches to Stop Hypertension. Ethn Dis 1998;8:198-208.
    4. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med 1997;336:1117-1124.
    5. Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension 2006;47:296-308.
    6. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997;389:816-824.
    7. Flockerzi V. An introduction on TRP channels. Handb Exp Pharmacol 2007:1-19.
    8. Szallasi A, Blumberg PM. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 1999;51:159-212.
    9. Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, et al. Transient receptor potential channels in cardiovascular function and disease. Circ Res 2006;99:119-131.
    10. Yao X, Garland CJ. Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res 2005;97:853-863.
    11. Pacher P, Batkai S, Kunos G. Blood pressure regulation by endocannabinoids and their receptors. Neuropharmacology 2005;48:1130-1138.
    12. Wang Y, Kaminski NE, Wang DH. VR1-mediated depressor effects during high-saltintake: role of anandamide. Hypertension 2005;46:986-991.
    13. Li J, Wang DH. Differential mechanisms mediating depressor and diuretic effects of anandamide. J Hypertens 2006;24:2271-2276.
    14. Li J, Kaminski NE, Wang DH. Anandamide-induced depressor effect in spontaneously hypertensive rats: role of the vanilloid receptor. Hypertension 2003;41:757-762.
    15. Li J, Wang DH. Function and regulation of the vanilloid receptor in rats fed a high salt diet. J Hypertens 2003;21:1525-1530.
    16. Wang DH, Wu W, Lookingland KJ. Degeneration of capsaicin-sensitive sensory nerves leads to increased salt sensitivity through enhancement of sympathoexcitatory response. Hypertension 2001;37:440-443.
    17. Wang Y, Wang DH. A novel mechanism contributing to development of Dahl salt-sensitive hypertension: role of the transient receptor potential vanilloid type 1. Hypertension 2006;47:609-614.
    18. Kawasaki H. Regulation of vascular function by perivascular calcitonin gene-related peptide-containing nerves. Jpn J Pharmacol 2002;88:39-43.
    19. Staessen JA, Wang J, Bianchi G, Birkenhager WH. Essential hypertension. Lancet 2003;361:1629-1641.
    20. Bratz IN, Dick GM, Tune JD, Edwards JM, Neeb ZP, Dincer UD, et al. Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. Am J Physiol Heart Circ Physiol 2008;294:H2489-2496.
    21. Lo YC, Hsiao HC, Wu DC, Lin RJ, Liang JC, Yeh JL, et al. A novel capsaicin derivative VOA induced relaxation in rat mesenteric and aortic arteries: involvement of CGRP, NO, cGMP, and endothelium-dependent activities. J Cardiovasc Pharmacol 2003;42:511-520.
    22. Gupta S, Lozano Cuenca J, Villalon CM, de Vries R, Garrelds IM, Avezaat CJ, et al. Pharmacological characterisation of capsaicin-induced relaxations in human and porcine isolated arteries. Naunyn Schmiedebergs Arch Pharmacol 2007;375:29-38.
    23. Hachiya S, Kawabata F, Ohnuki K, Inoue N, Yoneda H, Yazawa S, et al. Effects of CH-19 Sweet, a non-pungent cultivar of red pepper, on sympathetic nervous activity, body temperature, heart rate, and blood pressure in humans. Biosci Biotechnol Biochem 2007;71:671-676.
    24. Kark T, Bagi Z, Lizanecz E, Pasztor ET, Erdei N, Czikora A, et al. Tissue-specificregulation of microvascular diameter: opposite functional roles of neuronal and smooth muscle located vanilloid receptor-1. Mol Pharmacol 2008;73:1405-1412.
    25. Keeble JE, Brain SD. Capsaicin-induced vasoconstriction in the mouse knee joint: a study using TRPV1 knockout mice. Neurosci Lett 2006;401:55-58.
    26. Porszasz R, Porkolab A, Ferencz A, Pataki T, Szilvassy Z, Szolcsanyi J. Capsaicin-induced nonneural vasoconstriction in canine mesenteric arteries. Eur J Pharmacol 2002;441:173-175.
    27. Chanda S, Mould A, Esmail A, Bley K. Toxicity studies with pure trans-capsaicin delivered to dogs via intravenous administration. Regul Toxicol Pharmacol 2005;43:66-75.
    28. Feelisch M, te Poel M, Zamora R, Deussen A, Moncada S. Understanding the controversy over the identity of EDRF. Nature 1994;368:62-65.
    29. Luscher TF, Tanner FC, Tschudi MR, Noll G. Endothelial dysfunction in coronary artery disease. Annu Rev Med 1993;44:395-418.
    30. Willoughby D, Cooper DM. Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 2007;87:965-1010.
    31. Michell BJ, Chen Z, Tiganis T, Stapleton D, Katsis F, Power DA, et al. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem 2001;276:17625-17628.
    32. Heijnen HF, Waaijenborg S, Crapo JD, Bowler RP, Akkerman JW, Slot JW. Colocalization of eNOS and the catalytic subunit of PKA in endothelial cell junctions: a clue for regulated NO production. J Histochem Cytochem 2004;52:1277-1285.
    33. Hashimoto A, Miyakoda G, Hirose Y, Mori T. Activation of endothelial nitric oxide synthase by cilostazol via a cAMP/protein kinase A- and phosphatidylinositol
    3-kinase/Akt-dependent mechanism. Atherosclerosis 2006;189:350-357.
    34. Bae SW, Kim HS, Cha YN, Park YS, Jo SA, Jo I. Rapid increase in endothelial nitric oxide production by bradykinin is mediated by protein kinase A signaling pathway. Biochem Biophys Res Commun 2003;306:981-987.
    35. Jain S, Ram H, Kumari S, Khullar M. Plasma homocysteine levels in Indian patients with essential hypertension and their siblings. Ren Fail 2003;25:195-201.
    36. Gunthorpe MJ, Szallasi A. Peripheral TRPV1 receptors as targets for drug development:new molecules and mechanisms. Curr Pharm Des 2008;14:32-41.
    37. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol 2006;68:619-647.
    38. Li J, Wang DH. High-salt-induced increase in blood pressure: role of capsaicin-sensitive sensory nerves. J Hypertens 2003;21:577-582.
    39. Wang Y, Wang DH. Neural control of blood pressure: focusing on capsaicin-sensitive sensory nerves. Cardiovasc Hematol Disord Drug Targets 2007;7:37-46.
    40. Wang DH. The vanilloid receptor and hypertension. Acta Pharmacol Sin 2005;26:286-294.
    41. Pagnin E, Giacon B, Zaghetto F, Vianello D, Bonfante L, Huber W, et al. Ipertensione arteriosa e stress ossidativo indotti dalla ciclosporina. Effetto del carvedilolo. [Arterial hypertension and oxidative stress induced by cyclosporin. Effect of carvedilol]. Ann Ital Med Int 2001;16:101-105.
    42. Shepherd JT, Katusic ZS. Endothelium-derived vasoactive factors: I. Endothelium- dependent relaxation. Hypertension 1991;18:Iii76-85.
    43. Firth AL, Remillard CV, Yuan JX. TRP channels in hypertension. Biochim Biophys Acta 2007;1772:895-906.
    44. Clapham DE. SnapShot: mammalian TRP channels. Cell 2007;129:220.
    45. Tousova K, Susankova K, Teisinger J, Vyklicky L, Vlachova V. Oxidizing reagent copper-o-phenanthroline is an open channel blocker of the vanilloid receptor TRPV1. Neuropharmacology 2004;47:273-285.
    46. Nilius B. TRP channels in disease. Biochim Biophys Acta 2007;1772:805-812.
    47. Nilius B, Voets T, Peters J. TRP channels in disease. Sci STKE 2005;2005:re8.
    48. Pandolfi A, Grilli A, Cilli C, Patruno A, Giaccari A, Di Silvestre S, et al. Phenotype modulation in cultures of vascular smooth muscle cells from diabetic rats: association with increased nitric oxide synthase expression and superoxide anion generation. J Cell Physiol 2003;196:378-385.
    49. Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, et al. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci U S A 2000;97:6155-6160.
    50. Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, et al.Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 1999;400:452-457.
    51. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998;21:531-543.
    52. Vetter I, Wyse BD, Roberts Thomson SJ, Monteith GR, Cabot PJ. Mechanisms involved in potentiation of transient receptor potential vanilloid 1 responses by ethanol. Eur J Pain 2008;12:441-454.
    53. Gazzieri D, Trevisani M, Tarantini F, Bechi P, Masotti G, Gensini GF, et al. Ethanol dilates coronary arteries and increases coronary flow via transient receptor potential vanilloid 1 and calcitonin gene-related peptide. Cardiovasc Res 2006;70:589-599.
    54. Lyall V, Heck GL, Phan TH, Mummalaneni S, Malik SA, Vinnikova AK, et al. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. II. Effect on chorda tympani salt responses. J Gen Physiol 2005;125:587-600.
    55. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2006;2:596-607.
    56. Xin H, Tanaka H, Yamaguchi M, Takemori S, Nakamura A, Kohama K. Vanilloid receptor expressed in the sarcoplasmic reticulum of rat skeletal muscle. Biochem Biophys Res Commun 2005;332:756-762.
    1. Flockerzi V. An introduction on TRP channels. Handb Exp Pharmacol 2007:1-19.
    2. Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, et al. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci U S A 2000;97:6155-6160.
    3. Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 1999;400:452-457.
    4. Ungvari Z, Sun D, Huang A, Kaley G, Koller A. Role of endothelial [Ca2+]i in activation of eNOS in pressurized arterioles by agonists and wall shear stress. Am J Physiol Heart Circ Physiol 2001;281:H606-612.
    5. Bratz IN, Dick GM, Tune JD, Edwards JM, Neeb ZP, Dincer UD, et al. Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. Am J Physiol Heart Circ Physiol 2008;294:H2489-2496.
    6. Lo YC, Hsiao HC, Wu DC, Lin RJ, Liang JC, Yeh JL, et al. A novel capsaicin derivative VOA induced relaxation in rat mesenteric and aortic arteries: involvement of CGRP, NO, cGMP, and endothelium-dependent activities. J Cardiovasc Pharmacol 2003;42:511-520.
    7. Gupta S, Lozano Cuenca J, Villalon CM, de Vries R, Garrelds IM, Avezaat CJ, et al. Pharmacological characterisation of capsaicin-induced relaxations in human and porcine isolated arteries. Naunyn Schmiedebergs Arch Pharmacol 2007;375:29-38.
    8. Staessen JA, Wang J, Bianchi G, Birkenhager WH. Essential hypertension. Lancet 2003;361:1629-1641.
    9. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol 2006;68:619-647.
    10. Mulderry PK, Ghatei MA, Rodrigo J, Allen JM, Rosenfeld MG, Polak JM, et al. Calcitonin gene-related peptide in cardiovascular tissues of the rat. Neuroscience 1985;14:947-954.
    11. Kawasaki H. Regulation of vascular function by perivascular calcitonin gene-related peptide-containing nerves. Jpn J Pharmacol 2002;88:39-43.
    12. Wang DH, Li J, Qiu J. Salt-sensitive hypertension induced by sensory denervation: introduction of a new model. Hypertension 1998;32:649-653.
    13. Wang DH, Wu W, Lookingland KJ. Degeneration of capsaicin-sensitive sensory nerves leads to increased salt sensitivity through enhancement of sympathoexcitatory response. Hypertension 2001;37:440-443.
    14. Song WZ, Chen AF, Wang DH. Increased salt sensitivity induced by sensory denervation: role of superoxide. Acta Pharmacol Sin 2004;25:1626-1632.
    15. Lei H, Venkatakrishnan A, Yu S, Kazlauskas A. Protein kinase A-dependent translocation of Hsp90 alpha impairs endothelial nitric-oxide synthase activity in high glucose and diabetes. J Biol Chem 2007;282:9364-9371.
    16. Michell BJ, Chen Z, Tiganis T, Stapleton D, Katsis F, Power DA, et al. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem 2001;276:17625-17628.
    17. Heijnen HF, Waaijenborg S, Crapo JD, Bowler RP, Akkerman JW, Slot JW. Colocalization of eNOS and the catalytic subunit of PKA in endothelial cell junctions: a clue for regulated NO production. J Histochem Cytochem 2004;52:1277-1285.
    18. Hashimoto A, Miyakoda G, Hirose Y, Mori T. Activation of endothelial nitric oxide synthase by cilostazol via a cAMP/protein kinase A- and phosphatidylinositol 3-kinase/Akt-dependent mechanism. Atherosclerosis 2006;189:350-357.
    19. Bae SW, Kim HS, Cha YN, Park YS, Jo SA, Jo I. Rapid increase in endothelial nitric oxide production by bradykinin is mediated by protein kinase A signaling pathway. Biochem Biophys Res Commun 2003;306:981-987.
    20. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997;389:816-824.
    21. Szallasi A, Blumberg PM. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 1999;51:159-212.
    22. Pacher P, Batkai S, Kunos G. Blood pressure regulation by endocannabinoids and their receptors. Neuropharmacology 2005;48:1130-1138.
    23. Wang Y, Kaminski NE, Wang DH. VR1-mediated depressor effects during high-salt intake: role of anandamide. Hypertension 2005;46:986-991.
    24. Li J, Wang DH. Differential mechanisms mediating depressor and diuretic effects of anandamide. J Hypertens 2006;24:2271-2276.
    25. Li J, Kaminski NE, Wang DH. Anandamide-induced depressor effect in spontaneously hypertensive rats: role of the vanilloid receptor. Hypertension 2003;41:757-762.
    26. Li J, Wang DH. Function and regulation of the vanilloid receptor in rats fed a high salt diet. J Hypertens 2003;21:1525-1530.
    27. Wang Y, Wang DH. A novel mechanism contributing to development of Dahl salt-sensitive hypertension: role of the transient receptor potential vanilloid type 1. Hypertension 2006;47:609-614.
    28. Giles TD, Sander GE. Comparative cardiovascular responses to intravenous capsaicin, phenyldiguanide, veratrum alkaloids and enkephalins in the conscious dog. J Auton Pharmacol 1986;6:1-7.
    29. Porszasz R, Porkolab A, Ferencz A, Pataki T, Szilvassy Z, Szolcsanyi J. Capsaicin-induced nonneural vasoconstriction in canine mesenteric arteries. Eur J Pharmacol 2002;441:173-175.
    30. Kark T, Bagi Z, Lizanecz E, Pasztor ET, Erdei N, Czikora A, et al. Tissue-specific regulation of microvascular diameter: opposite functional roles of neuronal and smooth muscle located vanilloid receptor-1. Mol Pharmacol 2008;73:1405-1412.
    31. Chanda S, Mould A, Esmail A, Bley K. Toxicity studies with pure trans-capsaicin delivered to dogs via intravenous administration. Regul Toxicol Pharmacol 2005;43:66-75.
    32. Nilius B. TRP channels in disease. Biochim Biophys Acta 2007;1772:805-812.
    33. Zhang LL, Yan Liu D, Ma LQ, Luo ZD, Cao TB, Zhong J, et al. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res 2007;100:1063-1070.
    34. Wang Y, Wang DH. Neural control of blood pressure: focusing on capsaicin-sensitive sensory nerves. Cardiovasc Hematol Disord Drug Targets 2007;7:37-46.
    35. Pandolfi A, Grilli A, Cilli C, Patruno A, Giaccari A, Di Silvestre S, et al. Phenotype modulation in cultures of vascular smooth muscle cells from diabetic rats: association with increased nitric oxide synthase expression and superoxide anion generation. J Cell Physiol 2003;196:378-385.
    36. Gunthorpe MJ, Szallasi A. Peripheral TRPV1 receptors as targets for drug development: new molecules and mechanisms. Curr Pharm Des 2008;14:32-41.
    37. Yang XR, Lin MJ, McIntosh LS, Sham JS. Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 2006;290:L1267-1276.
    38. Kawabata F, Inoue N, Yazawa S, Kawada T, Inoue K, Fushiki T. Effects of CH-19 sweet, a non-pungent cultivar of red pepper, in decreasing the body weight and suppressing body fat accumulation by sympathetic nerve activation in humans. Biosci Biotechnol Biochem 2006;70:2824-2835.
    39. Hachiya S, Kawabata F, Ohnuki K, Inoue N, Yoneda H, Yazawa S, et al. Effects of CH-19 Sweet, a non-pungent cultivar of red pepper, on sympathetic nervous activity, body temperature, heart rate, and blood pressure in humans. Biosci Biotechnol Biochem 2007;71:671-676.
    40. Hajjar IM, Grim CE, George V, Kotchen TA. Impact of diet on blood pressure and age-related changes in blood pressure in the US population: analysis of NHANES III. Arch Intern Med 2001;161:589-593.
    41. Keeble JE, Brain SD. Capsaicin-induced vasoconstriction in the mouse knee joint: a study using TRPV1 knockout mice. Neurosci Lett 2006;401:55-58.
    42. Rao MS. Pathogenesis and consequences of essential hypertension. J Indian Med Assoc 2003;101:251-253.
    43. Kirkutis A, Norkiene S, Griciene P, Gricius J, Yang S, Gintautas J. Prevalence of hypertension in Lithuanian mariners. Proc West Pharmacol Soc 2004;47:71-75.
    44. Miranda RD, Mion D, Jr., Rocha JC, Kohlmann O, Jr., Gomes MA, Saraiva JF, et al. An 18-week, prospective, randomized, double-blind, multicenter study of amlodipine/ramipril combination versus amlodipine monotherapy in the treatment of hypertension: the assessment of combination therapy of amlodipine/ramipril (ATAR) study. Clin Ther 2008;30:1618-1628.
    45. Khan NA, Hemmelgarn B, Herman RJ, Rabkin SW, McAlister FA, Bell CM, et al. The 2008 Canadian Hypertension Education Program recommendations for the management of hypertension: part 2 - therapy. Can J Cardiol 2008;24:465-475.
    46. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, et al.Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998;91:3527-3561.
    47. Mendes Ribeiro AC, Brunini TM, Ellory JC, Mann GE. Abnormalities in L-arginine transport and nitric oxide biosynthesis in chronic renal and heart failure. Cardiovasc Res 2001;49:697-712.
    48. Taddei S, Virdis A, Ghiadoni L, Sudano I, Salvetti A. Endothelial dysfunction in hypertension. J Cardiovasc Pharmacol 2001;38 Suppl 2:S11-14.
    49. Taddei S, Virdis A, Ghiadoni L, Sudano I, Salvetti A. Effects of antihypertensive drugs on endothelial dysfunction: clinical implications. Drugs 2002;62:265-284.
    50. Suter PM, Sierro C, Vetter W. Nutritional factors in the control of blood pressure and hypertension. Nutr Clin Care 2002;5:9-19.
    51. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med 1997;336:1117-1124.
    52. Vollmer WM, Svetkey LP, Appel LJ, Obarzanek E, Reams P, Kennedy B, et al. Recruitment and retention of minority participants in the DASH controlled feeding trial. DASH Collaborative Research Group. Dietary Approaches to Stop Hypertension. Ethn Dis 1998;8:198-208.
    53. Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension 2006;47:296-308.
    54. Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, Franch HA, et al. Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation 2006;114:82-96.
    55. Ohnuki K, Haramizu S, Oki K, Watanabe T, Yazawa S, Fushiki T. Administration of capsiate, a non-pungent capsaicin analog, promotes energy metabolism and suppresses body fat accumulation in mice. Biosci Biotechnol Biochem 2001;65:2735-2740.
    56. Ohnuki K, Moritani T, Ishihara K, Fushiki T. Capsaicin increases modulation of sympathetic nerve activity in rats: measurement using power spectral analysis of heart rate fluctuations. Biosci Biotechnol Biochem 2001;65:638-643.
    57. ominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, et al. Thecloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998; 21:531-543.
    58. Vennekens R, Owsianik G, Nilius B. Vanilloid transient receptor potential cation channels: an overview. Curr Pharm Des 2008;14:18-31.
    59. Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium 2005;38:233-252.
    60. Cannon DT, Wu Y. Topical capsaicin as an adjuvant analgesic for the treatment of traumatic amputee neurogenic residual limb pain. Arch Phys Med Rehabil 1998;79:591-593.
    61. Ayajiki K, Fujioka H, Shinozaki K, Okamura T. Effects of capsaicin and nitric oxide synthase inhibitor on increase in cerebral blood flow induced by sensory and parasympathetic nerve stimulation in the rat. J Appl Physiol 2005;98:1792-1798.
    62. Chahl LA, Lynch AM. The acute effects of capsaicin on the cardiovascular system. Acta Physiol Hung 1987;69:413-419.
    63. del Carmen Garcia M, Adler Graschinsky E, Celuch SM. Hypotensive effect of anandamide through the activation of CB1 and VR1 spinal receptors in urethane-anesthetized rats. Naunyn Schmiedebergs Arch Pharmacol 2003;368:270-276.
    64. Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 2003;4:873-884.
    65. Engeli S, Bohnke J, Feldpausch M, Gorzelniak K, Janke J, Batkai S, et al. Activation of the peripheral endocannabinoid system in human obesity. Diabetes 2005;54:2838-2843.
    66. Yan ZC, Liu DY, Zhang LL, Shen CY, Ma QL, Cao TB, et al. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta. Biochem Biophys Res Commun 2007;354:427-433.
    67. Despres JP, Golay A, Sjostrom L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 2005;353:2121-2134.
    68. Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 2005;365:1389-1397.
    69. Pi Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J. Effect of rimonabant, acannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 2006;295:761-775.
    70. Batkai S, Pacher P, Osei Hyiaman D, Radaeva S, Liu J, Harvey White J, et al. Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation 2004;110:1996-2002.
    71. Shoemaker JL, Ruckle MB, Mayeux PR, Prather PL. Agonist-directed trafficking of response by endocannabinoids acting at CB2 receptors. J Pharmacol Exp Ther 2005;315:828-838.
    72. Boyd ST, Fremming BA. Rimonabant--a selective CB1 antagonist. Ann Pharmacother 2005;39:684-690.
    73. Pegorini S, Zani A, Braida D, Guerini Rocco C, Sala M. Vanilloid VR1 receptor is involved in rimonabant-induced neuroprotection. Br J Pharmacol 2006;147:552-559.
    1. Wang Y, Wang DH. Neural control of blood pressure: focusing on capsaicin-sensitive sensory nerves. Cardiovasc Hematol Disord Drug Targets 2007;7:37-46.
    2. Wang Y, Kaminski NE, Wang DH. VR1-mediated depressor effects during high-salt intake: role of anandamide. Hypertension 2005;46:986-991.
    3. Li J, Kaminski NE, Wang DH. Anandamide-induced depressor effect in spontaneously hypertensive rats: role of the vanilloid receptor. Hypertension 2003;41:757-762.
    4. Zhang M, Vogel HJ. Characterization of the calmodulin-binding domain of rat cerebellar nitric oxide synthase. J Biol Chem 1994;269:981-985.
    5. Zhang M, Yuan T, Aramini JM, Vogel HJ. Interaction of calmodulin with its binding domain of rat cerebellar nitric oxide synthase. A multinuclear NMR study. J Biol Chem 1995;270:20901-20907.
    6. Feelisch M, te Poel M, Zamora R, Deussen A, Moncada S. Understanding the controversy over the identity of EDRF. Nature 1994;368:62-65.
    7. Michell BJ, Chen Z, Tiganis T, Stapleton D, Katsis F, Power DA, et al. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem 2001;276:17625-17628.
    8. Heijnen HF, Waaijenborg S, Crapo JD, Bowler RP, Akkerman JW, Slot JW. Colocalization of eNOS and the catalytic subunit of PKA in endothelial cell junctions: a clue for regulated NO production. J Histochem Cytochem 2004;52:1277-1285.
    9. Hashimoto A, Miyakoda G, Hirose Y, Mori T. Activation of endothelial nitric oxide synthase by cilostazol via a cAMP/protein kinase A- and phosphatidylinositol 3-kinase/Akt-dependent mechanism. Atherosclerosis 2006;189:350-357.
    10. Bae SW, Kim HS, Cha YN, Park YS, Jo SA, Jo I. Rapid increase in endothelial nitric oxide production by bradykinin is mediated by protein kinase A signaling pathway. Biochem Biophys Res Commun 2003;306:981-987.
    11. Willoughby D, Cooper DM. Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 2007;87:965-1010.
    12. Morgan KG. Role of calcium ion in maintenance of vascular smooth muscle tone. Am JCardiol 1987;59:24a-28a.
    13. Zucchi R, Ronca Testoni S. The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev 1997;49:1-51.
    14. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998;91:3527-3561.
    15. Cai H, Davis ME, Drummond GR, Harrison DG. Induction of endothelial NO synthase by hydrogen peroxide via a Ca(2+)/calmodulin-dependent protein kinase II/janus kinase 2-dependent pathway. Arterioscler Thromb Vasc Biol 2001;21:1571-1576.
    16. Taddei S, Virdis A, Ghiadoni L, Sudano I, Salvetti A. Endothelial dysfunction in hypertension. J Cardiovasc Pharmacol 2001;38 Suppl 2:S11-14.
    17. Pandolfi A, Grilli A, Cilli C, Patruno A, Giaccari A, Di Silvestre S, et al. Phenotype modulation in cultures of vascular smooth muscle cells from diabetic rats: association with increased nitric oxide synthase expression and superoxide anion generation. J Cell Physiol 2003;196:378-385.
    18. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373-376.
    19. Cherry PD, Furchgott RF, Zawadzki JV, Jothianandan D. Role of endothelial cells in relaxation of isolated arteries by bradykinin. Proc Natl Acad Sci U S A 1982;79:2106-2110.
    20. Furchgott RF. Introduction to EDRF research. J Cardiovasc Pharmacol 1993;22 Suppl 7:S1-2.
    21. Furchgott RF, Carvalho MH, Khan MT, Matsunaga K. Evidence for endothelium -dependent vasodilation of resistance vessels by acetylcholine. Blood Vessels 1987;24:145-149.
    22. Martin W, Furchgott RF, Villani GM, Jothianandan D. Depression of contractile responses in rat aorta by spontaneously released endothelium-derived relaxing factor. J Pharmacol Exp Ther 1986;237:529-538.
    23. Martin W, Villani GM, Jothianandan D, Furchgott RF. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and bymethylene blue in the rabbit aorta. J Pharmacol Exp Ther 1985;232:708-716.
    24. Martin W, Villani GM, Jothianandan D, Furchgott RF. Blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation of rabbit aorta by certain ferrous hemoproteins. J Pharmacol Exp Ther 1985;233:679-685.
    25. Matsunaga K, Furchgott RF. Interactions of light and sodium nitrite in producing relaxation of rabbit aorta. J Pharmacol Exp Ther 1989;248:687-695.
    26. Myers PR, Minor RL, Jr., Guerra R, Jr., Bates JN, Harrison DG. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature 1990;345:161-163.
    27. Aoyagi M, Arvai AS, Tainer JA, Getzoff ED. Structural basis for endothelial nitric oxide synthase binding to calmodulin. EMBO J 2003;22:766-775.
    28. O'Neil KT, DeGrado WF. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci 1990;15:59-64.
    29. Babu YS, Bugg CE, Cook WJ. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol 1988;204:191-204.
    30. Venema RC, Sayegh HS, Kent JD, Harrison DG. Identification, characterization, and comparison of the calmodulin-binding domains of the endothelial and inducible nitric oxide synthases. J Biol Chem 1996;271:6435-6440.
    31. Salerno JC, Harris DE, Irizarry K, Patel B, Morales AJ, Smith SM, et al. An autoinhibitory control element defines calcium-regulated isoforms of nitric oxide synthase. J Biol Chem 1997;272:29769-29777.
    32. Ungvari Z, Sun D, Huang A, Kaley G, Koller A. Role of endothelial [Ca2+]i in activation of eNOS in pressurized arterioles by agonists and wall shear stress. Am J Physiol Heart Circ Physiol 2001;281:H606-612.
    33. Haynes MP, Sinha D, Russell KS, Collinge M, Fulton D, Morales Ruiz M, et al. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ Res 2000;87:677-682.
    34. Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo : a specific vascular action of insulin. Circulation 2000;101:676-681.
    35. Simoncini T, Genazzani AR, Liao JK. Nongenomic mechanisms of endothelial nitricoxide synthase activation by the selective estrogen receptor modulator raloxifene. Circulation 2002;105:1368-1373.
    36. Gao F, Gao E, Yue TL, Ohlstein EH, Lopez BL, Christopher TA, et al. Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 2002;105:1497-1502.
    37. Thomas SR, Chen K, Keaney JF, Jr. Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway. J Biol Chem 2002;277:6017-6024.
    38. McCabe TJ, Fulton D, Roman LJ, Sessa WC. Enhanced electron flux and reduced calmodulin dissociation may explain "calcium-independent" eNOS activation by phosphorylation. J Biol Chem 2000;275:6123-6128.
    39. Ju H, Zou R, Venema VJ, Venema RC. Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 1997;272:18522-18525.
    40. Ghosh S, Gachhui R, Crooks C, Wu C, Lisanti MP, Stuehr DJ. Interaction between caveolin-1 and the reductase domain of endothelial nitric-oxide synthase. Consequences for catalysis. J Biol Chem 1998;273:22267-22271.
    41. Garcia Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem 1997;272:25437-25440.
    42. Feron O, Saldana F, Michel JB, Michel T. The endothelial nitric-oxide synthase-caveolin regulatory cycle. J Biol Chem 1998;273:3125-3128.
    43. Gratton JP, Fontana J, O'Connor DS, Garcia Cardena G, McCabe TJ, Sessa WC. Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. J Biol Chem 2000;275:22268-22272.
    44. Pritchard KA, Ackerman AW, Ou J, Curtis M, Smalley DM, Fontana JT, et al. Native low-density lipoprotein induces endothelial nitric oxide synthase dysfunction: role of heat shock protein 90 and caveolin-1. Free Radic Biol Med 2002;33:52-62.
    45. Venema RC. Post-translational mechanisms of endothelial nitric oxide synthaseregulation by bradykinin. Int Immunopharmacol 2002;2:1755-1762.
    46. Takahashi S, Mendelsohn ME. Synergistic activation of endothelial nitric-oxide synthase (eNOS) by HSP90 and Akt: calcium-independent eNOS activation involves formation of an HSP90-Akt-CaM-bound eNOS complex. J Biol Chem 2003;278:30821-30827.
    47. Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R. Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res 2001;88:E68-75.
    48. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999;399:601-605.
    49. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999;399:597-601.
    50. Boo YC, Sorescu G, Boyd N, Shiojima I, Walsh K, Du J, et al. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A. J Biol Chem 2002;277:3388-3396.
    51. Dixit M, Loot AE, Mohamed A, Fisslthaler B, Boulanger CM, Ceacareanu B, et al. Gab1, SHP2, and protein kinase A are crucial for the activation of the endothelial NO synthase by fluid shear stress. Circ Res 2005;97:1236-1244.
    52. Zou MH, Hou XY, Shi CM, Nagata D, Walsh K, Cohen RA. Modulation by peroxynitrite of Akt- and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase. J Biol Chem 2002;277:32552-32557.
    53. Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez Crespo I, Witters LA, et al. AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett 1999;443:285-289.
    54. Lane P, Gross SS. Disabling a C-terminal autoinhibitory control element in endothelial nitric-oxide synthase by phosphorylation provides a molecular explanation for activation of vascular NO synthesis by diverse physiological stimuli. J Biol Chem 2002;277:19087-19094.
    55. Ray CJ, Marshall JM. The cellular mechanisms by which adenosine evokes release of nitric oxide from rat aortic endothelium. J Physiol 2006;570:85-96.
    56. Graier WF, Groschner K, Schmidt K, Kukovetz WR. Increases in endothelial cyclic AMP levels amplify agonist-induced formation of endothelium-derived relaxing factor (EDRF). Biochem J 1992;288:345-349.
    57. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997;389:816-824.
    58. Luscher TF, Tanner FC, Tschudi MR, Noll G. Endothelial dysfunction in coronary artery disease. Annu Rev Med 1993;44:395-418.
    59. Francis SH, Corbin JD. Structure and function of cyclic nucleotide-dependent protein kinases. Annu Rev Physiol 1994;56:237-272.
    60. Garcia NH, Stoos BA, Carretero OA, Garvin JL. Mechanism of the nitric oxide-induced blockade of collecting duct water permeability. Hypertension 1996;27:679-683.
    61. Granger J, Novak J, Schnackenberg C, Williams S, Reinhart GA. Role of renal nerves in mediating the hypertensive effects of nitric oxide synthesis inhibition. Hypertension 1996;27:613-618.
    62. Lo YC, Hsiao HC, Wu DC, Lin RJ, Liang JC, Yeh JL, et al. A novel capsaicin derivative VOA induced relaxation in rat mesenteric and aortic arteries: involvement of CGRP, NO, cGMP, and endothelium-dependent activities. J Cardiovasc Pharmacol 2003;42:511-520.
    63. Poblete IM, Orliac ML, Briones R, Adler Graschinsky E, Huidobro Toro JP. Anandamide elicits an acute release of nitric oxide through endothelial TRPV1 receptor activation in the rat arterial mesenteric bed. J Physiol 2005;568:539-551.
    1. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol 2006;68:619-647.
    2. Nilius B, Voets T, Peters J. TRP channels in disease. Sci STKE 2005;2005:re8.
    3. Hoenderop JG, Nilius B, Bindels RJ. Calcium absorption across epithelia. Physiol Rev 2005;85:373-422.
    4. Hoenderop JG, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, et al. Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 2003;22:776-785.
    5. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997;389:816-824.
    6. Tousova K, Susankova K, Teisinger J, Vyklicky L, Vlachova V. Oxidizing reagent copper-o-phenanthroline is an open channel blocker of the vanilloid receptor TRPV1. Neuropharmacology 2004;47:273-285.
    7. Clapham DE. SnapShot: mammalian TRP channels. Cell 2007;129:220.
    8. Firth AL, Remillard CV, Yuan JX. TRP channels in hypertension. Biochim Biophys Acta 2007;1772:895-906.
    9. Pandolfi A, Grilli A, Cilli C, Patruno A, Giaccari A, Di Silvestre S, et al. Phenotype modulation in cultures of vascular smooth muscle cells from diabetic rats: association with increased nitric oxide synthase expression and superoxide anion generation. J Cell Physiol 2003;196:378-385.
    10. Gunthorpe MJ, Szallasi A. Peripheral TRPV1 receptors as targets for drug development: new molecules and mechanisms. Curr Pharm Des 2008;14:32-41.
    11. Yang XR, Lin MJ, McIntosh LS, Sham JS. Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 2006;290:L1267-1276.
    12. Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, et al. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances.Proc Natl Acad Sci U S A 2000;97:6155-6160.
    13. Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 1999;400:452-457.
    14. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998;21:531-543.
    15. Vetter I, Wyse BD, Roberts Thomson SJ, Monteith GR, Cabot PJ. Mechanisms involved in potentiation of transient receptor potential vanilloid 1 responses by ethanol. Eur J Pain 2008;12:441-454.
    16. Gazzieri D, Trevisani M, Tarantini F, Bechi P, Masotti G, Gensini GF, et al. Ethanol dilates coronary arteries and increases coronary flow via transient receptor potential vanilloid 1 and calcitonin gene-related peptide. Cardiovasc Res 2006;70:589-599.
    17. Lyall V, Heck GL, Phan TH, Mummalaneni S, Malik SA, Vinnikova AK, et al. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. II. Effect on chorda tympani salt responses. J Gen Physiol 2005;125:587-600.
    18. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2006;2:596-607.
    19. Planells Cases R, Garcia Sanz N, Morenilla Palao C, Ferrer Montiel A. Functional aspects and mechanisms of TRPV1 involvement in neurogenic inflammation that leads to thermal hyperalgesia. Pflugers Arch 2005;451:151-159.
    20. Cayouette S, Boulay G. Intracellular trafficking of TRP channels. Cell Calcium 2007;42:225-232.
    21. Stein AT, Ufret Vincenty CA, Hua L, Santana LF, Gordon SE. Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 2006;128:509-522.
    22. Goswami C, Schmidt H, Hucho F. TRPV1 at nerve endings regulates growth cone morphology and movement through cytoskeleton reorganization. FEBS J 2007;274:760-772.
    23. Xing J, Li J. TRPV1 receptor mediates glutamatergic synaptic input to dorsolateral periaqueductal gray (dl-PAG) neurons. J Neurophysiol 2007;97:503-511.
    24. Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RWt. cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 2002;35:721-731.
    25. Nilius B, Owsianik G, Voets T. Transient receptor potential channels meet phosphoinositides. EMBO J 2008;27:2809-2816.
    26. Vennekens R, Owsianik G, Nilius B. Vanilloid transient receptor potential cation channels: an overview. Curr Pharm Des 2008;14:18-31.
    27. Wang DH. Transient receptor potential vanilloid channels in hypertension, inflammation, and end organ damage: an imminent target of therapy for cardiovascular disease? Curr Opin Cardiol 2008;23:356-363.
    28. Mulderry PK, Ghatei MA, Rodrigo J, Allen JM, Rosenfeld MG, Polak JM, et al. Calcitonin gene-related peptide in cardiovascular tissues of the rat. Neuroscience 1985;14:947-954.
    29. Jancso N. Pharmakologische Analyse der Funktion und Rezeptorstruktur der Schmerznervenendigungen. [Pharmacological analysis of the function and receptor structure of the pain-sensitive nerve endings.]. Acta Physiol Hung 1957;11:11-14.
    30. Nagy JI, Hunt SP, Iversen LL, Emson PC. Biochemical and anatomical observations on the degeneration of peptide-containing primary afferent neurons after neonatal capsaicin. Neuroscience 1981;6:1923-1934.
    31. Wang DH, Li J, Qiu J. Salt-sensitive hypertension induced by sensory denervation: introduction of a new model. Hypertension 1998;32:649-653.
    32. Wang DH, Wu W, Lookingland KJ. Degeneration of capsaicin-sensitive sensory nerves leads to increased salt sensitivity through enhancement of sympathoexcitatory response. Hypertension 2001;37:440-443.
    33. Song WZ, Chen AF, Wang DH. Increased salt sensitivity induced by sensory denervation: role of superoxide. Acta Pharmacol Sin 2004;25:1626-1632.
    34. Wang Y, Wang DH. A novel mechanism contributing to development of Dahl salt-sensitive hypertension: role of the transient receptor potential vanilloid type 1. Hypertension 2006;47:609-614.
    35. Kawasaki H. Regulation of vascular function by perivascular calcitonin gene-related peptide-containing nerves. Jpn J Pharmacol 2002;88:39-43.
    36. Wang Y, Wang DH. Increased depressor response to N-arachidonoyl-dopamine during high salt intake: role of the TRPV1 receptor. J Hypertens 2007;25:2426-2433.
    37. Li J, Wang DH. Function and regulation of the vanilloid receptor in rats fed a high salt diet. J Hypertens 2003;21:1525-1530.
    38. Watson RE, Supowit SC, Zhao H, Katki KA, Dipette DJ. Role of sensory nervous system vasoactive peptides in hypertension. Braz J Med Biol Res 2002;35:1033-1045.
    39. Sann H, Jancso G, Ambrus A, Pierau FK. Capsaicin treatment induces selective sensory degeneration and increased sympathetic innervation in the rat ureter. Neuroscience 1995;67:953-966.
    40. DiBona GF, Jones SY, Kopp UC. Renal mechanoreceptor dysfunction: an intermediate phenotype in spontaneously hypertensive rats. Hypertension 1999;33:472-475.
    41. Vaishnava P, Wang DH. Capsaicin sensitive-sensory nerves and blood pressure regulation. Curr Med Chem Cardiovasc Hematol Agents 2003;1:177-188.
    42. Li J, Kaminski NE, Wang DH. Anandamide-induced depressor effect in spontaneously hypertensive rats: role of the vanilloid receptor. Hypertension 2003;41:757-762.
    43. Lo YC, Hsiao HC, Wu DC, Lin RJ, Liang JC, Yeh JL, et al. A novel capsaicin derivative VOA induced relaxation in rat mesenteric and aortic arteries: involvement of CGRP, NO, cGMP, and endothelium-dependent activities. J Cardiovasc Pharmacol 2003;42:511-520.
    44. del Carmen Garcia M, Adler Graschinsky E, Celuch SM. Hypotensive effect of anandamide through the activation of CB1 and VR1 spinal receptors in urethane-anesthetized rats. Naunyn Schmiedebergs Arch Pharmacol 2003;368:270-276.
    45. Chanda S, Mould A, Esmail A, Bley K. Toxicity studies with pure trans-capsaicin delivered to dogs via intravenous administration. Regul Toxicol Pharmacol 2005;43:66-75.
    46. Hachiya S, Kawabata F, Ohnuki K, Inoue N, Yoneda H, Yazawa S, et al. Effects of CH-19 Sweet, a non-pungent cultivar of red pepper, on sympathetic nervous activity, body temperature, heart rate, and blood pressure in humans. Biosci Biotechnol Biochem 2007;71:671-676.
    47. Bratz IN, Dick GM, Tune JD, Edwards JM, Neeb ZP, Dincer UD, et al. Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. Am J Physiol Heart Circ Physiol 2008;294:H2489-2496.
    48. Poblete IM, Orliac ML, Briones R, Adler Graschinsky E, Huidobro Toro JP. Anandamide elicits an acute release of nitric oxide through endothelial TRPV1 receptor activation in the rat arterial mesenteric bed. J Physiol 2005;568:539-551.
    49. Domenicali M, Ros J, Fernandez-Varo G, Cejudo-Martin P, Crespo M, Morales-Ruiz M, et al. Increased anandamide induced relaxation in mesenteric arteries of cirrhotic rats: role of cannabinoid and vanilloid receptors. Gut 2005;54:522-527.
    50. Golech SA, McCarron RM, Chen Y, Bembry J, Lenz F, Mechoulam R, et al. Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors. Brain Res Mol Brain Res 2004;132:87-92.
    51. Wang LH, Luo M, Wang Y, Galligan JJ, Wang DH. Impaired vasodilation in response to perivascular nerve stimulation in mesenteric arteries of TRPV1-null mutant mice. J Hypertens 2006;24:2399-2408.
    52. Gupta S, Lozano Cuenca J, Villalon CM, de Vries R, Garrelds IM, Avezaat CJ, et al. Pharmacological characterisation of capsaicin-induced relaxations in human and porcine isolated arteries. Naunyn Schmiedebergs Arch Pharmacol 2007;375:29-38.
    53. Kark T, Bagi Z, Lizanecz E, Pasztor ET, Erdei N, Czikora A, et al. Tissue-specific regulation of microvascular diameter: opposite functional roles of neuronal and smooth muscle located vanilloid receptor-1. Mol Pharmacol 2008;73:1405-1412.
    54. Keeble JE, Brain SD. Capsaicin-induced vasoconstriction in the mouse knee joint: a study using TRPV1 knockout mice. Neurosci Lett 2006;401:55-58.
    55. Scotland RS, Chauhan S, Davis C, De Felipe C, Hunt S, Kabir J, et al. Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation: a novel mechanism involved in myogenic constriction. Circ Res 2004;95:1027-1034.
    56. Zvara A, Bencsik P, Fodor G, Csont T, Hackler L, Jr., Dux M, et al. Capsaicin-sensitive sensory neurons regulate myocardial function and gene expression pattern of rat hearts: a DNA microarray study. FASEB J 2006;20:160-162.
    57. Csont T, Csonka C, Kovacs P, Jancso G, Ferdinandy P. Capsaicin-sensitive sensory neurons regulate myocardial nitric oxide and cGMP signaling. Eur J Pharmacol 2003;476:107-113.
    58. Pan HL, Chen SR. Sensing tissue ischemia: another new function for capsaicin receptors? Circulation 2004;110:1826-1831.
    59. Bolli R, Abdel Latif A. No pain, no gain: the useful function of angina. Circulation 2005;112:3541-3543.
    60. Zhong B, Wang DH. TRPV1 gene knockout impairs preconditioning protection against myocardial injury in isolated perfused hearts in mice. Am J Physiol Heart Circ Physiol 2007;293:H1791-1798.
    61. Wang L, Wang DH. TRPV1 gene knockout impairs postischemic recovery in isolated perfused heart in mice. Circulation 2005;112:3617-3623.
    62. Fragasso G, Palloshi A, Piatti PM, Monti L, Rossetti E, Setola E, et al. Nitric-oxide mediated effects of transdermal capsaicin patches on the ischemic threshold in patients with stable coronary disease. J Cardiovasc Pharmacol 2004;44:340-347.
    63. Reynolds PJ, Fan W, Andresen MC. Capsaicin-resistant arterial baroreceptors. J Negat Results Biomed 2006;5:6.
    64. Ohnuki K, Moritani T, Ishihara K, Fushiki T. Capsaicin increases modulation of sympathetic nerve activity in rats: measurement using power spectral analysis of heart rate fluctuations. Biosci Biotechnol Biochem 2001;65:638-643.
    65. Ahuja KD, Robertson IK, Geraghty DP, Ball MJ. The effect of 4-week chilli supplementation on metabolic and arterial function in humans. Eur J Clin Nutr 2007;61:326-333.
    66. Pacher P, Batkai S, Kunos G. Haemodynamic profile and responsiveness to anandamide of TRPV1 receptor knock-out mice. J Physiol 2004;558:647-657.
    67. Katona M, Boros K, Santha P, Ferdinandy P, Dux M, Jancso G. Selective sensory denervation by capsaicin aggravates adriamycin-induced cardiomyopathy in rats. Naunyn Schmiedebergs Arch Pharmacol 2004;370:436-443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700