用户名: 密码: 验证码:
施工缝的模型化及对RC框架结构抗震性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现浇钢筋混凝土(RC)结构在施工过程中无法实现混凝土的连续浇筑,当浇筑时间间隔超过混凝土的初凝时间,就会在先后浇筑的混凝土界面形成施工缝。已有试验研究表明施工缝处接缝混凝土存在抗拉和抗剪强度低于整浇混凝土的特点。在汶川地震中也发现一些典型的沿施工缝部位出现整齐的贯通裂缝、钢筋剪断、上下混凝土沿界面明显水平错动等震害现象。但是目前有关施工缝的研究仅限于少量静力试验,而关于施工缝对RC构件抗震性能的影响方面的试验研究极少。由于对施工缝在地震中对结构造成的影响缺乏较深的认识,存在施工缝是否会对结构构件的抗震性能造成不容忽视的影响、产生影响的条件如何界定、是否需要对结构抗震设计进行考虑等问题。为此,本文首先通过试验对施工缝的力学特性及其对RC构件抗震性能的影响进行了研究,在此基础上通过分析施工缝处的传力机制,基于试验数据和理论分析建立了施工缝数值模型,然后将其应用在RC框架结构的非线性分析中,研究施工缝对框架结构抗震性能的影响规律,界定需要考虑施工缝影响的范围,最后给出相应的设计建议。
     论文的主要研究工作如下:
     ①通过单轴抗压强度试验、单轴抗拉强度试验及矩形短梁直接剪切试验研究了施工缝处接缝混凝土的抗拉、抗压、抗剪等基本力学性能。通过理论分析研究穿过缝面钢筋对施工缝各项力学性能指标的贡献。综合分析施工缝的两个组成成分在切向力和法向力中各自承担的作用,明确施工缝的传力机制。
     ②对端部带施工缝的RC构件进行拟静力试验。通过与整浇构件的试验结果进行对比,从试件的破坏形态、顶点力-位移滞回曲线、承载力、变形、耗能能力、强度衰减、刚度退化、钢筋应变、柱底纵筋滑移、塑性铰区剪切变形与弯曲变形的变化规律等各个方面说明施工缝对RC构件抗震性能的影响。并结合试验数据与理论分析,给出带施工缝RC柱基于截面的剪切恢复力模型。
     ③总结试验结果并结合理论分析,进一步明确施工缝的受力特点及传力机制,推导建立了施工缝模型。并在此基础上进一步推导建立了可以用来模拟带缝柱的纤维杆元模型。最后通过OpenSees非线性分析软件平台验证了新建模型的正确性和有效性。该模型可以用来在钢筋混凝土结构非线性分析中模拟施工缝。
     ④对不同烈度区的规则RC框架结构建立“整浇框架”与“带缝框架”两种数值模型进行非线性分析,通过对比,研究施工缝对其各项抗震性能指标的影响。在对影响因素进行筛选分析的基础上,进一步考虑变化轴力对其抗震性能进行研究。然后,对同一烈度区不同高宽比的框架进行非线性数值分析,研究施工缝对其抗震性能的影响。总结施工缝对不同状态下的RC规则框架结构抗震性能的影响规律。
     ⑤界定需要考虑施工缝影响的RC规则框架的范围,对于应考虑施工缝不利影响的框架结构,从概念设计、计算分析方法及控制措施等方面提出简化的抗震设计建议。解决了在RC规则框架结构中考虑施工缝作用的问题。
Construction joint is inevitable in the cast-in-situ RC structure. Much tests have been done and found that the tensile strength of concrete across construction joint are much weaker than integral concrete, and it could barely resist shear stress if there were not special managements. Seismic damages around construction joints appeared in some RC components, especially columns of frame structure, which illuminates that construction joint may be a potential vulnerable point where a sliding failure developed. But the insufficiency is that most of the research is aimed at joints between existing and newly placed concrete, irrespective of dowelling action of the main reinforcement passing through the joint. And there are few of publication on mechanics or numerical model describing the seismic behavior of construction joint, which is necessary for a new nonlinear analysis method of RC structure taking joints into account. There is no criterion about how to consider the impact of construction joint in RC frame structure. The paper focuses on force transferring mechanics between joint through experimental research, the mechanical properties of construction joints and its affects on the seismic properties of RC component were studied, based on the experimental data and theoretical analysis,the numerical model of construction joint is established. Then apply the numerical model to the RC frame structure nonlinear analysis, the influence laws of construction joints on seismic performance of RC frame structures were studied,and the range of considering the effect of construction joints were defined, finally the corresponding design suggestions were given.
     The main contents of this paper as following:
     ①Through the uniaxial compressive strength test,uniaxial tensile strength test and direct shear test of short rectangular beam,the basic mechanical properties of construction joint were studied. The contribution of lengthways reinforcements passing through the joint to mechanical properties of construction joint is researched by theoretical analysis. Through comprehensive analysis of construction joint of two component and their commitment to the role of the tangential force and the normal force, the force transfer mechanism of construction joint is cleared.
     ②In order to study the influence of construction joint on seismic behavior of RC member, a serious of cantilever columns were tested under cyclic loading. The destruction of test specimen configuration, vertex load-displacement hysteretic curve, bearing capacity, deformation, energy dissipation capacity, strength reduction, stiffness degradation, reinforcement strain, a column bottom longitudinal slip, plastic hinge zone, shear deformation and bending deformation were analyzed based on the experimental study. Combined with the experimental data and theoretical analysis, the hysteretic shear model of RC member with construction joint were proposed.
     ③By test results and theoretical analysis, the stress characteristics and transmission mechanism of construction joint are further clarified, then the model of construction joints is established. On this basis, a fiber line element model is derived which can be used to simulate the columns with construction joint. Finally, the new model is verified correctness through the OpenSees software. The model can be used in nonlinear analysis of reinforced concrete structure simulation of construction joint.
     ④The influence of construction joint to seismic behavior of RC frame structures in different earthquake intensity regions was analyzed. Furthermore, analysis was continued in-depth considering the varying axial force. Then nonlinear numerical analyses of RC frame structures are done on the same intensity in different aspect ratio. The influencing factors were screened,and the influence laws of construction joints on seismic performance of regular RC frame structures were concluded.
     ⑤Defining the scope of considering the effects of construction joints in the seismic design of regular RC frame structure. Then the simplified seismic design suggestions are putted forward from aspects of concept design, analysis method and control measures.
引文
[1]李英民,刘立平.汶川地震建筑震害与思考[M].重庆:重庆大学出版社,2008.
    [2]李英民,于婧,刘建伟.现浇钢筋混凝土结构中施工缝的模型化研究初探[J].西安建筑科技大学学报(自然科学版),2010, 42(2): 196-200.
    [3] Waters T. A study of the tensile strength of concrete across construction joints [J]. Magazine of Concrete Research, 1954, 6(18):151-153.
    [4] Monks W L. Treatment of construction joints [J]. Concrete, 1974, 8(2):28-30.
    [5]魏春明,宋玉普,刘健.现浇钢筋混凝土框架柱施工缝抗震性能试验研究[J].大连理工大学学报,2006, 45(4):527-532.
    [6]陈远峰,王振波,杨春和.考虑施工缝影响的框架结构抗震性能试验研究[J].工业建筑,2006, 36(2): 28-30.
    [7]混凝土结构工程施工质量验收规范(GB50204-2002) [S].北京:中国建筑工业出版社,2001.
    [8] Domingo J C, Chu K H. The Moment-curvature relationship of concrete members [J]. ACI Structural Journal, 1986, 84(2): 191-198.
    [9] Priestley M J N, Park R. Strength and ductility of concrete bridge columns under seismic loading [J]. ACI Structural Journal, 1987, 84(8): 61-76.
    [10] Esmaeily G A, Xiao Yan. Seismic behavior of bridge columns subjected to various loading patterns [R]. University of California, Berkeley, PEER Report 2002/15.
    [11] López-Bátiz O. Behavior of reinforced concrete frame structures with construction joints under lateral loads [J]. Magazine of Concrete Research, 1998, 50 (2):133-145.
    [12] Shao-Yeh M M. Experimental and analytical studies on hysteretic behavior of reinforced concrete rectangular and T-beams [R]. UCB/EERC-76/2, University of California.
    [13]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社, 2003.
    [14] Whitney C S. Discussion on VP Jensen’s paper [J]. ACI, Nov 1943.
    [15] Sargin M. Stress-strain relationships for concrete and the analysis of structural concrete sections [M]. Canada, 1971.
    [16] Neville A M.李国泮等译.混凝土的性能[M].北京:中国建筑工业出版社,1983.
    [17]混凝土基本力学性能研究组.混凝土的几个基本力学指标[C].钢筋混凝土结构研究报告选集,北京:中国建筑工业出版社,1977.
    [18] Wang R T et al. Stress-strain curves of normal and lightweight concrete in compression [J].ACI, Nov 1978.
    [19]过镇海,张秀琴等.混凝土应力-应变全曲线的试验研究[J].建筑结构学报,1982, 3(1):1-12.
    [20] Hognestad E. Concrete stress distribution in ultimate strength design [J]. ACI, Dec 1955: 455-479.
    [21] Park R, Paulay T. Reinforced concrete structures [M]. New York: John Wiley&Sons, 1975.
    [22] Popvics S. A review of stress-strain relationships of concrete [J]. ACI, March 1970.
    [23] Liu T C Y et al. Stress-strain response and fracture of concrete in uniaxial and biaxial compression [J]. ACI, May 1972:291-295.
    [24]过镇海,张秀琴.单调荷载下的混凝土应力-应变全曲线试验研究[R].清华大学抗震抗爆工程研究室科学研究报告集,北京:清华大学出版社,1981: 1-18.
    [25] Hughes B P, Chapman G P. The complete stress-strain curve for concrete in direct tension [R]. Rilem Bulletin (Paris), new series No.30, March 1966:95-97.
    [26] Evans R H, Marathe M S. Microcracking and stress-strain curves for concrete in tension [J]. Materials and Structures, Research and Testing, 1968, 1(1): 61-64.
    [27] Gopalaratnam V S, Shah S P. Softening response of plain concrete in direct tension [J]. ACI, 1985, 82(3):310-323.
    [28]过镇海,张秀琴.混凝土受拉应力-变形全曲线的试验研究[J].建筑结构学报, 1988(4):45-53.
    [29]姚武,吴科如.混凝土拉伸应力-应变全曲线实验测定的条件[J].同济大学学报, 1996, 24(2):142-145.
    [30]霍洪媛,车黎明,梁正平.混凝土轴向拉伸全曲线试验及装置[J].河海大学学报, 1995, 23(5):26-31.
    [31] Mattock H. Shear transfer in reinforced concrete [J]. ACI, Feb, 1969: 52-57.
    [32] Iosipescu N, Nehoita A. A new method for determining the pure shearing strength of concrete [J]. Journal of concrete society, 1969, 3(1):63-68.
    [33]张琦,过镇海.混凝土抗剪强度和剪切变形的研究[J].建筑结构学报,1992, 13(5): 17-24.
    [34]王传志,滕智明.钢筋混凝土结构理论[M].北京:中国建筑工业出版社,1985.
    [35] Bresler B, Prister K S. Strength of concrete under combined stresses [J]. ACI, Sept 1958: 321-346.
    [36]尚仁杰,赵国藩,黄承逵.低周循环荷载作用下混凝土轴向拉伸全曲线的试验研究[J].水利学报, 1996(7):82-87.
    [37] David Z, Yankelersky et al. Response of plain concrete to cyclic tension [J]. ACI Material Journal, Sept, 1987:365-373.
    [38]管大庆,陈章洪,石韫珠.界面处理对新老混凝土粘结性能的影响[J].混凝土与水泥制品,1994 (3):23-25.
    [39]田稳苓,赵国藩.新旧混凝土的粘结机理初探[J].河北理工学院学报, 1998, 20(2):78-81.
    [40] Paul M, Glasser F P. Impact of prolonged warm (85℃) moist cure on Portland cement paste [J]. Cement and Concrete Research, 2000, 30(12):1869-1877.
    [41]高剑平,霍静思,王雨光.不同界面剂对新旧混凝土粘结强度的实验研究[J].哈尔滨建筑大学学报, 2001, 34(5):25-29.
    [42]王少波,郭进军,张雷顺等.界面剂对新老混凝土粘结的剪切性能的影响[J].工业建筑,2001,31(11):35-38.
    [43]彭小琴,刘艳萌,林力勋.界面剂对界面劈拉强度的影响[J].沈阳建筑大学学报(自然科学版),2006,22(4): 596-599.
    [44]郭进军,王少波,张雷顺等.新老混凝土粘结的剪切性能试验研究[J].建筑结构, 2002, 32(8): 43-46.
    [45]宋玉普,魏春明.混凝土施工缝接缝面劈拉强度试验研究[J].混凝土, 2006(6):22-25.
    [46]刘健.新老混凝土粘结的力学性能研究[D].大连:大连理工大学博士学位论文,2000.
    [47]赵志方.新老混凝土粘结机理和测试方法[D].大连:大连理工大学博士学位论文,1998.
    [48]陈士纯,王文安.混凝土拉伸应力与应变全曲线的试验研究[J].长江科学院院报,2001, 18(6): 26-28.
    [49]徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究[D].清华大学博士论文,1990.
    [50] Robert G, Mathey, David Watstein. Investigation of bond in beam and pull-out speciments with high-yield-strength deformed bars [J]. Journal of the American Concrete Institute.1961, 32(9):1071-1090.
    [51]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社, 1993.
    [52] John H W. Investigation of bond slip between concrete and steel reinforcement under dynamic loading conditions [D]. Thesis, Louisiana State University, 2003.
    [53]徐有邻,沈文都,汪洪.钢筋混凝土粘结锚固性能的试验研究[J].建筑结构学报.1994, 15(3).
    [54]滕智明,张合贵.钢筋混凝土梁中劈裂粘结破坏及钢筋延伸长度的试验研究[J].土木工程学报.1989, 22(2).
    [55]赵人达,Elighausen.不同变形钢筋的粘结性能试验研究[J].工程力学增刊,2000年.
    [56]胡铁明,黄承逵,陈小锋.构造钢筋影响下新老混凝土结合面抗剪试验研究[J].混凝土,2009(3):26-28.
    [57]姚谦峰,陈平.土木工程结构试验[M].北京:中国建筑工业出版社,2001.
    [58]金伟良等.不同构造措施混凝土空心小型砌块墙体的抗侧力性能试验研究[J].建筑结构学报,2001 (12): 64-72.
    [59] Isao Ujike, Noriyoshi Yoshida, Shigekazu Morishita. Evaluation of mechanical properties of construction joint between new and old concrete under combined tensile and shear stresses [J].Journal of the Society of Materials Science, Japan, 1998, 47 (1): 73-88.
    [60] Mattock, Alan H. Cyclic shear transfer and type of interface [J]. Journal of the Structural Division, ASCE, 1981, 107(10): 1945- 1964.
    [61] Tohma J. Hwang H. Hysteretic model for reinforced concrete containment [C]. Transactions of the 9 th International SMIRT Conference, Lousanne, Switzerland, August17-22, 1987, Vol. 1. p. 25-256.
    [62] Ozcebe G, Saatcioglu M. Hysteretic shear model for reinforced concrete members [J]. Journal of Structural Engineering, ASCE, 1989, 115(1), 132–148.
    [63] Ambrisi A D, Fillippou F C. Modeling of Cyclic Shear Behavior in RC Members [J]. Journal of Structural Engineering, 1999, 125(10):1143-1149.
    [64] Shao-yeh M M. Experimental and analytical studies on hysteretic behavior of reinforced concrete rectangular and T-beams [R]. UCB/EERC-76/2, University of California, Berkeley, Calif. Earthquake Engrg. Res. Ctr., 1976.
    [65] Celebi M, and Penzien J. Experimental investigation into the seismic behavior of the critical regions of reinforced concrete components as influenced by moment and shear [R]. UCB/EERC-73/4, University of California, Berkeley, Calif. Earthquake Engrg. Res. Ctr., 1973.
    [66] Atalay M, and Penzien J. Behavior of critical regions of reinforced concrete components as influenced by moment, shear, and axial force [R]. UCB/EERC-75/19, University of California, Berkeley, Calif. Earthquake Engrg. Res. Ctr., 1975.
    [67] Banon H, Irvine H M, and Biggs J M. Seismic damage in reinforced concrete frames [J]. Struct. Engrg., ASCE, 1981, 107(9), 1713–1729.
    [68] Vecchio F J, Collins M P. The modified compression field theory for reinforced concrete elements subjected to shear [J]. ACI Structure Journal, 1986, 83 (2):219-231.
    [69]张卫东,王振波,朱方之.施工缝位置对框架结构抗震性能的影响[J].低温建筑技术, 2007,(4):46-48.
    [70]李通林,王艳辉.结构面非线性剪切模型的探讨[J].重庆大学学报, 1990, 13(3):54-59.
    [71]段云岭,刘华北.材料非线性接缝模型[J].清华大学学报(自然科学版), 2000, 40(8): 98-101.
    [72]张冬霁,卢廷浩.一种土与结构面接触面模型的建立及其应用[J].岩土工程学报, 1998, 20(6): 62-66.
    [73]孙吉主,施戈亮.循环荷载作用下接触面的边界面模型研究[J].岩土力学, 2007, 28(2):311-314.
    [74] Clough G W, Duncan J M. Finite element analysis of retainingwall behavior [J]. Journ Soil Mech&Found Engrg Div, ASCE, 1971, 97(12):1657~1674.
    [75] Brandt J R T. Behavior of soil-concrete interfaces [D]. Canada: The University of Alberta, 1985.
    [76]陈慧远.摩擦接触面单元及其分析方法[J].水利学报,1985, (4): 44~50.
    [77]钱家欢,詹美礼.接触面剪切流变特性实验及分析[J].岩土与水工建筑物相互作用研究成果汇编,南京:河海大学, 1990,:228~234.
    [78]殷宗泽,朱泓,许国华.土与结构材料接触面的变形及数学模拟[J].岩土工程学报, 1994, 16(3):14~22.
    [79] Desai C S, Drumm E C, Zaman M M. Cyclic testing and modeling of interfaces [J]. Journal of Geotechnical Engineering, 1985, 111(6): 793-815.
    [80] Desai C S, Ma Youzhi. Modeling of joints and interface using the disturbed state concept [J]. Journal for Numerical and Analysis Methods in Geomechanics, 1992,16:623-653.
    [81] Boulon M, Nova R. Modeling of soil structure interface behavior: a comparison between elastoplastic and rate-type laws [J].Computers and Geotechnics, 1990, 17(9):21-46.
    [82] Li K N. Multi-Spring model for 3-dimensional analyis of RC members [J]. Structural Engineering and Mechanics, 1993,1(1):17-30
    [83] Spacone E, Fillippou F C, Taucer F. Fiber Beam-Column Model for Non-liner Analysis of R /C Frames I. Formulation [R]. International Journal of Earthquake Engineering and Structural Dynamics, 1996.
    [84] Spacone E, Fillippou F C, Taucer F. Fiber Beam-Column Model for Non-liner Analysis of R /C Frames II. Application [R]. International Journal of Earthquake Engineering and Structural Dynamics, 1996.
    [85] Ambrisia D, Filippou F. Modeling of cyclic shear behavior in RC members [J]. Journal of Structure Engineering, 1999, 125 (10):1143-1149.
    [86] Li Kangning. 3-D analysis of RC frame-wall building damaged in the 1995 Hyogoken-nanbu earthquake [A]. Proc of the 12th Word Conference on Earthquake Engineering (CD-ROM) [C]. Auckland: [s n.], 2000.
    [87]聂利英,李建中,范立础.弹塑性纤维梁柱单元及其单元参数分析[J].工程力学, 2004, 27(1): 15-20.
    [88]伍永飞,周德源.纤维模型在平面框架非线性静力分析中的应用[J].东南大学学报(自然科学版), 2005, 35(增1): 129-132.
    [89]吕西林,卢文生.纤维杆元模型在框架结构非线性分析中的应用[J].力学季刊, 2006,21(1): 14-22.
    [90]陆新征,张炎圣,江见鲸.基于纤维模型的钢筋混凝土框架结构爆破倒塌破坏模拟[J].爆破, 2007, 24(2): 1-6.
    [91]张强,周德源,伍永飞等.钢筋混凝土框架结构非线性分析纤维模型研究[J].结构工程师, 2008, 24(1):15-21.
    [92]张强,周德源等.基于纤维模型RC框架结构非线性全过程分析[J].四川建筑科学研究, 2009, 35(3): 6-9.
    [93]杨红,徐海英,王志军.考虑柱底纵筋滑移的纤维模型及框架地震反应分析[J].建筑结构学报, 2009, 30(4): 130-137.
    [94] Powell G H. DRAIN-2DX Version1.10: Element Description and User Guide for Element Type01, Type02, Type04, Type06, Type09 andType15[R]. Structural Engineering Mechanics and Materials, Report No. UCB/SEMM-93/18. University of California at Berkeley, 1993.
    [95] Mari A, Scordies A. Nonlinear geometric material and time dependent analysis of three dimension reinforcedand prestressed concrete frames [R]. SESM, 1984, 82-12.
    [96] Mahasuveradcha M. Inelastic analysis of piping and bular structures [R]. EERC 82-27,1982.
    [97] Fabio F T, Enrico S. Fiber beam-column model for seismic response analysis of reinforced concrete tructures [R]. EERC, 1991, 91-17.
    [98] Zeris C A, Mahin S A. Analysis of reinforced concrete beam-columns under uniaxial excitation [J]. Journal of Structure Engrgineering, ASCE, 1988, 114(4): 804-820.
    [99] Zeris C A, Mahin S A. Behavior of reinforced concretestructures subjected to biaxial excitation [J]. Journal of Structure Engrgineering, ASCE, 1991, 117(9):2657-2673.
    [100] Taucer F F, Spacone E, Filippou F C. A fiber beam-column element for seismic response analysis of reinforced concrete structures [R]. EERC Report 91/17, Earthquake Engineering Research Center, University of California, Berkeley, CA, 1991.
    [101] Spacone E, Ciampi V, Filippou F C. Mixed formulation of nonlinear beam finite element [J]. Comput.Structure, 1996, 58(1):71-83.
    [102]陈滔,黄宗明.钢筋混凝土框架非弹性地震反应分析模型研究进展[J].世界地震工程, 2002, 18(1):91-97.
    [103]黄宗明,陈滔.基于有限单元柔度法和刚度法的非线性梁柱单元比较研究[J].工程力学, 2003,20(5):24-31.
    [104] MariniA, Spacone E. Analysis of reinforced concrete elements including shear effects [J]. ACI, Structural Journal, 2006, 103(5): 645-655.
    [105] Ramin M V, Matamoros A B. Shear strength of reinforced concrete members subjected to monotonic loads [J]. ACI, Structural Journal, 2006, 103(1): 83-92.
    [106] Choi K K, Park H G, Wight J K. Unified shear strengthmodel for reinforced concrete beams-partⅠ: development [J]. ACI, Structural Journal, 2007, 104(2): 142-152.
    [107]张强,周德源,朱梦阳等.考虑剪切变形的RC结构梁柱单元模型[J].江苏大学学报(自然科学版), 2009, 30(3): 313-316.
    [108]陈滔.基于有限单元柔度法的钢筋混凝土框架三维非弹性地震反应分析[D].重庆:重庆大学: 2003.
    [109]梁兴文,王社良,李晓文.混凝土结构设计原理[M].北京:科学出版社, 2003.
    [110] GB50010-2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [111] GB50011-2001建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.
    [112]魏春明.现浇钢筋混凝土框架结构施工缝抗震性能[D].大连:大连理工大学,2006.
    [113]韩军.建筑结构扭转地震反应分析及抗扭设计方法研究[D].重庆:重庆大学,2009.
    [114]王荫长,刘铮,周文群等.结构力学[M].北京:冶金工业出版社,1998.
    [115]温瑞鑑.结构矩阵分析与程序设计[M].北京:冶金工业出版社,1998.
    [116] RoyR C J著,常岭等译.结构动力学[M].北京:建筑工业出版社,2000.
    [117] Lin Y K, Shih T Y. Vertical seismic load effect on building response [J]. Journal of Engineering Mechanics Division, 1982, 108: 331-343.
    [118] Bozorgnia Y, Niazi M. Distance scaling of vertical and horizontal response spectra of the Loma Prieta earthquake [J]. Journal of Earthquake Engineering and Structural Dynamics, 1993, 22: 695-707.
    [119] Elnashai A S, Papazoglou A J. Procedure and spectra for analysis of RC structures subjected to strong vertical earthquake loads [J]. Journal of Earthquake Engineering, 1997, 1(1): 121-155.
    [120] Alfredo R S, Achintya H. Structure response considering the vertical component of earthquake [J]. Computer and structure, 2000, 74: 131-145.
    [121]李应斌,张国军,吴涛.第12界世界地震工程会议论文综述[J].工程抗震, 2002, 3.
    [122] Ahmed E, Liangcai H. Vertical earthquake ground motion records: an overview [J]. Journal of Earthquake Engineering, 2004, 8.
    [123] Daniel R, Alberto S. Response of large span steel frames subjected to horizontal and vertical seismic motions [A]. 13th World Conference on Earthquake Engineering [C]. 2004, No. 1404.
    [124]张之颖,吕西林,张景绘.竖向地面运动对结构剪切破坏的作用分析[A].中国博士后学术大会论文集[C],2000, p356-360.
    [125]江近仁,孙景江,丁世文等.轴向循环荷载下钢筋混凝土柱的试验研究[J].世界地震工程, 1998, 14(4): 12-17.
    [126]杨红,白绍良.基于结构弹塑性地震反应的柱变轴力加载方法研究[J].世界地震工程, 2002, 18(2): 80-84.
    [127]杨红,白绍良.基于变轴力和定轴力试验对比的钢筋混凝土柱恢复力滞回特性研究[J].工程力学, 2003, 20(6): 58-64.
    [128]康洪震,江见鲸.不同加载路径下钢筋混凝土框架柱抗震性能的试验研究[J].土木工程学报, 2003, 36(5): 71-75.
    [129]麻剑栎.竖向及水平地震作用下钢筋混凝土框架柱子结构拟动力试验研究[D].重庆:重庆大学硕士论文,1997.
    [130]艾庆华,王东升,李宏男等.基于塑性铰模型的钢筋混凝土桥墩地震损伤评价[J].工程力学, 2009, 26(4): 158-166.
    [131]钮忠华.考虑变化轴力的钢筋混凝土截面非线性分析[D].重庆:重庆大学硕士学位论文, 2004.
    [132]罗佳.变轴力作用下钢筋混凝土L形柱抗震性能研究[D].重庆:重庆大学硕士学位论文, 2006.
    [133]钱培风.结构抗震分析[M].北京:地震出版社, 1983.
    [134]钱培风.竖向地震力和抗震砌块建筑[M].北京:中国大地出版社, 1997.
    [135]陈念英.再谈竖向地震作用的重要性[A].全国第五届现代结构技术交流会论文集[C], 1996.
    [136]陈念英.从日本阪神地震再谈竖向地震作用的重要性[J].成都大学学报(自然科学版), 1996, 15(1): 56-59.
    [137]刘季等.高耸结构与高层建筑的竖向地震作用[J].建筑结构学报, 1988, 2.
    [138]杨春田等.烟囱在竖向地震作用下计算方法探讨[J].特种结构, 1989, 2.
    [139]唐山地震调查总结资料选编[M].北京:中国建筑工业出版社, 1977.
    [140]日本阪神大地震考察[M].北京:地震出版社, 1996.
    [141]丰定国,王社良.抗震结构设计[M].武汉:武汉工业大学出版社, 2001.
    [142]刘大海,杨翠如,钟锡根.高层建筑抗震设计[M].北京:中国建筑工业出版社, 1993.
    [143]余师萍.竖向地震反应谱[J].哈尔滨建工学院学报, 1982, 2.
    [144]陆兢,张铜生.高层建筑结构在竖向地震作用下弹塑性时程分析[J].工程力学,1999(增2): 786-791.
    [145]白绍良.钢筋混凝土结构抗震设计[M].重庆大学土木工程学院研究生教材, 2008.
    [146]白绍良,廉晓飞等.钢筋混凝土结构及砖石结构[M].北京:中央广播电视大学出版社, 1992.
    [147]杨溥,李英民,王亚勇等.结构静力弹塑性分析(push-over)方法的改进[J].建筑结构学报,2002, 21(1): 44-51.
    [148] Chopra A K, Goel R K. A model pushover analysis procedure for estimating seismic demands for building [J]. Earthquake engineering and Structural Dynamics, 2002, 31(3): 561-582.
    [149]杨溥,李英民,熊振勇等.能力曲线折线简化方法对比研究[J].重庆建筑大学学报, 2005, 27(4): 59-63.
    [150] Peter F. Simple push-over analysis of buildings structures [A]. 11th World Conference on Earthquake Engineering [C], Acapulco, Mexico, 1996.
    [151] Chopra A K, Goel R K. Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures: SDF systems [R]. University of California, Berkeley, California, US, PEER, 1999, Feb, 1-60.
    [152]杨成.结构弹塑性地震反应分析的改进能力-需求曲线方法研究[D].重庆:重庆大学,2003.
    [153]魏巍,冯启民.几种push-over分析方法对比研究[J].地震工程与工程振动, 2002, 22(4): 66-73.
    [154] Saiidi M, Sozen M A. Simple non-linear seismic analysis of RC structures [J]. Journal of Structural Division, ASCE, 1981, 107(ST5): 937-951.
    [155] Lawson R S, Vance V, Krawinkler H. Nonlinear static pushover analysis-why, when and how? [C] //Proceedings of the 5th U. S. National Conference on Earthquake Engineering, Vol·1. Chicago, IL, USA: EERI, 1994: 283-292.
    [156]钱镓茹,罗文斌.静力弹塑性分析-基于性能/位移抗震设计的分析工具[J].建筑结构, 2000, 30(6): 23-26.
    [157]杨红,骆文进,王志军. Pushover侧向力模式对框架地震反应的控制能力[J].浙江大学学报(工学版), 2008, 42(9): 1256-1261.
    [158]刘海成,郭全全.考虑高阶振型影响的简化PUSHOVER分析方法[J].哈尔滨工业大学学报, 2009, 41(10): 188-192.
    [159]马千里,叶列平,陆新征等.采用逐步增量弹塑性时程方法对RC框架结构推覆分析侧力模式的研究[J].建筑结构学报, 2008, 29(2): 132-140.
    [160] FEMA 273, FEMA 274, FEMA 356 NEHRP guidelines for the seismic rehabilitation of buildings [S]. Washington DC: Federal Emergency Management Agency, 1996.
    [161] ATC40 Seismic evaluation and retrofit of concrete buildings [S]. Applied Technology Council, 1996.
    [162]李英民,杨成,赖明.结构非线性地震反应分析的改进能力-需求曲线方法[J],世界地震工程, 2003, 19(4):28-33.
    [163] Bracci J M, Kunnath S K, Reinhorn A M. Seismic performance and retrofit evaluation of reinforced concrete structures [J]. Journal of Structural Engineering, 1997, 123(1): 3-10.
    [164] Mazzoni S, Kenna F M, Scott M H, Fenves G L. Opensees Users Manual [R]. PEER, University of California, Berkeley, 2006.
    [165] Elwood K J. Shake table tests and analytical studies on the gravity load collapse of RC frames [D]. ph. D, Thesis, Department of Civil and Environmental Engineering, University of California, Berkeley, 2002.
    [166] Mackie R J.Object-oriented programming of the finite element method [J].International Journal for Numerical Methods in Engineering, 1992, 35(2): 425-436.
    [167] Frank M K.Object-oriented finite element programming [D].Ph.D.Thesis.Department of Civil and Environmental Engineering, University of California, Berkeley, 1997.
    [168] Frank M K, Gregory L F. Introducing a new element to OpenSees [R]. PEER, University of California, Berkeley, 2000.
    [169] Michael H S, Gregory L F. Introducing a new material to OpenSees [R]. PEER, University of California, Berkeley, 2001.
    [170] Robert L T.FEAP (A Finite Element Analysis Program)-Version 7.4 User Manual [R]. University of California, Berkeley, 2002.
    [171] Scott D B, Park R, Priestley M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates [J]. ACI Journal, 1982, 79: 13-27.
    [172] Taucer F F, Spacone E, Filippou F C. A fiber beam-column element for seismic response analysis of reinforced concrete structure [R]. Earthquake Engineering Research Center, University of California, Berkeley, CA, 1991/17.
    [173] Menegotto M, Pinto P E.Method of analysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined norma force and bending [J].Lisbon.1973.
    [174] Zhao J, Sritharan S, F. Modeling of strain penetration effects in bar-based analysis of reinforced concrete structures [J]. ACI Structural Journal, 2006.
    [175] Park Y J, A.H-S., Ang. Mechanistic seismic damage model for reinforced concrete [J]. ASCE, Journal of Structure Engrgineering, April, 1985, 111(4).
    [176]施岚青,喻永言等.钢筋混凝土构件斜截面抗剪强度计算.钢筋混凝土设计与构造[M].中国建筑科学研究院编,1985:112-139.
    [177]美国钢筋混凝土房屋建筑规范(ACI 1992年公制修订版) [S].中国建筑科学研究院结构所,1993:54-55.
    [178] Building Code Requirements for Structural Concrete (ACI318-95) and Commentary (ACI318R-95) [S]. American Concrete Institute. 1995.
    [179]混凝土结构工程施工及验收规范(GB50204—92)[S].北京:辽宁科学技术出版社,1992.
    [180]陈福厚.混凝土原材料与施工缝处理[J].中国三峡建设,2003(3): 14-15,18.
    [181] Clark L A, Gill B S. Shear strength of smooth unreinforced construction joints [J]. Magazineof Concrete Research, 1985(131): 95-100.
    [182] Jensen B C. Lines of discontinuity for displacements in the theory of plasticity of plain and reinforced concrete [J]. Magazine of Concrete Research, 1975(92): 143-150.
    [183]胡庆昌,孙金樨,郑琪.建筑结构抗震减震与连续倒塌控制[M].中国建筑工业出版社,2007.
    [184] B. S 114, British Standard Code of Practice [S]. British Standards Institution, 1948.
    [185]沈蒲生,王济川,韩建炎.施工缝预留方法的试验研究[J].建筑技术, 1990, 17(11): 25-27, 22.
    [186]叶列平,陆新征,赵世春等.框架结构抗地震倒塌能力的研究[J].建筑结构学报, 2009, 30(6): 67-76.
    [187]陆新征,叶列平.基于IDA分析的结构抗地震倒塌能力研究[J].工程抗震与加固改造, 2010, 32(1): 13-18.
    [188]杨成,潘毅,赵世春等.烈度函数对IDA曲线离散型的影响[J].工程力学, 2010, 27(增1): 68-72.
    [189]杨成,赵世春,赵人达等.地震作用特征对结构IDA曲线的影响分析[J].四川大学学报(工程科学版), 2010, 42(2): 93-99.
    [190]张国军.大型火力发电厂高强混凝土框架柱的抗震性能研究[D].西安建筑科技大学博士学位论文,2003.
    [191]梁兴文,王社良,李晓文.混凝土结构设计原理[M].北京:科学出版社, 2003.
    [192]陆新征,马玉虎,陈浩宇等. 7度区典型框架教学楼抗震加强措施效果对比[J],地震工程与工程振动,2011, 31(1): 124-129.
    [193]唐代远,陆新征,叶列平.柱轴压比对我国RC框架结构抗地震倒塌能力的影响[J].工程抗震与加固改造,2010, 32(5): 26-35.
    [194]叶列平,程光煜,陆新征等.论结构抗震的鲁棒性[J].建筑结构, 2008, 38(6): 11-15.
    [195]叶列平.基于系统概念的建筑结构地震破坏机制和破坏过程的控制[J].工程抗震与加固改造, 2009, 31(5):1-7.
    [196]混凝土结构构造手册[S].北京:中国建筑工业出版社,1997.
    [197]混凝土结构耐久性与施工指南(CCES01-2004)[S].中国土木工程学会标准,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700