用户名: 密码: 验证码:
功能化改性无机除磷吸附剂的制备及吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是水体生物所必须的营养物质之一,然而当水中磷含量过多时会导致水体富营养化,从而严重危害水体生态系统。废水除磷是延缓水体富营养化的有效手段,也是目前环境领域的研究热点。除磷的方法有多种,其中吸附法具有操作简单、方便、不产生有毒物质等无可比拟的优势。目前所研究报道的除磷吸附剂有很多种,然而普遍存在吸附容量低、吸附速率慢或价格昂贵等不足,因此设计和开发新型高效的吸附剂仍然是研究者不断努力的方向。本论文开展了以下四方面的研究:1)功能化介孔吸附剂的制备和除磷性能研究;2)功能化大孔-介孔吸附剂的制备和除磷性能研究;3)功能化多孔层次结构吸附剂的制备和除磷性能研究;4)功能化改性粘土吸附剂的制备和除磷性能研究。
     对于功能化介孔吸附剂的制备和除磷性能研究,本文采用一步法合成了乙二胺功能化的介孔MCM-41和SBA-15两种吸附剂。其中在功能化SBA-15的合成上,首次采用NH4F辅助缩聚法合成了不同乙二胺负载量的功能化介孔SBA-15吸附剂。研究发现,随着合成过程中乙二胺官能团含量的增加,吸附剂的吸附量增大,其中当乙二胺官能团和二氧化硅摩尔比在0.5:1时,所合成的吸附剂吸附容量最大,高达20.7mg P/g。吸附数据的拟合显示,Langmuir方程比Freundlich方程拟合后的相关性系数更高,说明吸附过程为单分子层吸附;并且二级动力学方程的相关性系数为0.999,远高于一级动力学,说明吸附过程为化学吸附。此外,溶液的初始pH对吸附效果的影响较大,在pH为3.0-6.0之间时,吸附效果较好;共存离子Cl~-和NO_3~-对吸附剂的吸附性能影响较小,而HCO_3~-和SO_4~(2-)的影响较大。在脱附实验中,90%以上所吸附的磷离子可以在0.010M NaOH溶液中脱附,说明该吸附剂具有可再生性能。
     对于功能化大孔-介孔层次结构吸附剂的制备和除磷性能研究方面,本文采用双模板(P123和PS球)法合成了大孔-介孔层次结构SBA-15,并采用后嫁接法在其表面接枝了乙二胺官能团,然后与Fe(III)和Al(III)配位制备了Fe(III)-乙二胺功能化介孔吸附剂和Al(III)-乙二胺功能化介孔吸附剂。静态除磷吸附实验发现,Fe(III)-乙二胺功能化介孔吸附剂的Langmuir最大吸附量为12.7mg P/g,吸附进行1min后,初始溶液中92.5%的磷酸根可以被吸附去除。Al(III)-乙二胺功能化介孔吸附剂的最大吸附量可达23.59mg P/g,吸附进行1min后,初始溶液中95%的磷可被去除,而相同条件下所合成的介孔吸附剂,其1min的去除率则只有79%。此外,当溶液的pH值在3.0-6.0之间有利于吸附;干扰离子如F-等对吸附剂的吸附性能影响较大。
     在功能化多孔层次结构吸附剂的制备和除磷性能研究上,本文首次合成了La_2O_3负载的介孔空心微球吸附剂用于除磷研究。通过乙醇蒸发法在所合成的二氧化硅介孔空心微球表面负载了一系列不同含量的La_2O_3。采用静态吸附法系统地研究了所合成吸附剂的除磷性能,研究发现La_2O_3负载可有效提高吸附剂的吸附容量(无负载的空心介孔微球吸附剂基本上不能吸附除磷)。其中,当La的加入量和Si的摩尔比为1:5时,所合成的功能化空心微球介孔吸附剂的吸附容量最大,拟合后的Langmuir最大吸附量为47.89mg P/g。动力学研究发现,吸附过程符合二级动力学模型,说明该吸附为化学吸附。溶液pH值范围在3.0-8.0之间时,该吸附剂的吸附效果较好;并且0.01M的其他共存离子(如:F~-, Cl~-, NO_3~-, SO_4~(2-)和CO_3~(2-))对吸附效果几乎没有影响。采用一步法首次合成了具有不规则层次介孔的La(OH)_3吸附剂,并研究了其除磷性能。各项分析结果显示,所合成吸附剂的形貌近似球形,直径大小约为200nm,内部存在很多大小和形状不规则的层次介孔,其平均介孔孔径为8.74nm。吸附剂的吸附过程为化学吸附,并且Langmuir最大吸附量为57.65mg P/g。
     在功能化改性粘土吸附剂的制备和除磷性能研究方面,本文成功合成了两种不同金属氢氧化物功能化改性的粘土吸附剂,并且系统地研究了这两种吸附剂的吸附性能。ⅰ)首次合成了一系列La(OH)_3改性的膨胀蛭石(EV),并研究了初始溶度、吸附时间、温度、pH值和共存离子等各项因素对吸附的影响。当La/EV为5.00mmol/g时,所合成的吸附剂具有较高的吸附容量,其Langmuir最大吸附量高达79.6mg P/g,而未改性EV的吸附量只有约2mg P/g。当pH为3.0-7.0时,吸附剂的吸附量较大;共存离子F~-, Cl~-, NO_3~-,和SO_4~(2-)对吸附量几乎没有影响。吸附-再生循环研究发现,该吸附剂具有一定的再生循环利用的价值。ⅱ)合成了一系列β-FeOOH改性的红土吸附剂,并研究了其吸附性能。所合成吸附剂的去除率可高达90.12%,比未改性的吸附剂高37.47%。结合XRD、BET、SEM等各项表征证实,改性后吸附剂的比表面和孔容增大,并且在红土表面生成β-FeOOH颗粒,这是吸附量增大的主要原因。系统研究了吸附时间、初始磷溶液的浓度、温度、pH值和共存离子等对吸附性能的影响,并对其吸附机理进行了探讨。该吸附剂在经历四次吸附-再生循环后,吸附量没有明显的降低,说明该吸附剂具有潜在的实际应用价值。
Phosphorus is the key nutrients in the growth of organisms in ecosystems. However, the excessivepresence of phosphorous in aquatic environment contributes to eutrophication, in which one of examples isalgal bloom, a serious world-wide environmental problem. Various methods have been widely studied toremoval phosphate from aqueous solution, among which the adsorption-based process is considered as one ofthe most efficient routes to remove phosphate, due to its simplicity, high level of efficiency and fast removalrate, especially at low phosphate concentrations. However, many adsorbents reported are far more thansatisfied, adsorbents with a high adsorption capacity and fast adsorption rate for phosphate are highly neededin the fields of water treatment and purification. Considering the above demands, the thesis is conducted basedon the following three areas:1) preparation of functionalized mesoporous adsorbents and study of theiradsorption capacities;2) preparation of functionalized macroporous-mesoporous adsorbents and study of theiradsorption capacities;3) fabrication of hierarchical adsorbents and investigation of their adsorption capacities;4) synthesis of modified clays and study of their adsorption capacities.
     Firstly, two functionalized mesoporous adsorbents, i.e. Fe(Ш)-coordinated mesoporous silica adsorbentsMCM-41and SBA-15were successfully synthesized and used for phosphate removal study. TheFe(Ш)-coordinated mesoporous SBA-15adsorbents were prepared by a new NH4F-assisted co-condensationmethod and impregnation of Fe~(3+)cations. In the batch adsorption tests, the functionalized absorbents withincreasing loadings of diamino groups possessed markedly enhanced adsorption capacities, although there wasa gradual loss of ordered mesostructures accompanied. In particular, for the resulting absorbent prepared with0.5:1molar ratio of AAPTS and TEOS, the maximum phosphate capture capacity calculated from Langmuirmodel is20.7mg P/g. The phosphate adsorption efficiency of prepared absorbent was highly pH-dependentand the high removal of phosphate was achieved within the pH between3.0and6.0. The presence of Cl~-andNO_3~-exhibited small impacts on the phosphate adsorption by using our synthesized absorbent; whereas, therewere significantly negative effects from HCO_3~-and SO_4~(2-) on the phosphate removal. In0.010M NaOH, morethan90%of the absorbed phosphate anions on the spent adsorbent could be desorbed, suggesting the absorbentwith a capacity of regeneration.
     Secondly, two macroporous–mesoporous SBA-15phosphate adsorbent was synthesized via adual-templating approach, followed by diamino-functionalization, Fe(III) and Al(III) impregnation, i.e.Fe(III)-coordinated diamino-functionalized macroporous-mesoporous adsorbent and Al(III)-coordinated diamino-functionalized macroporous-mesoporous adsorbent. The resulting Fe(III)-coordinateddiamino-functionalized macroporous-mesoporous adsorbent possessed a maximum adsorption capacity of12.7mg P/g, and92.5%of the final adsorption capacity reached in the first1min. While Al(III)-coordinateddiamino-functionalized macroporous-mesoporous adsorbent had a maximum adsorption capacity of23.59mgP/g. In the kinetic study, over95%of its final adsorption capacity reached in the first1min. Besides, pHranging from3.0to6.0favored the high phosphate adsorption of hierarchically porous adsorbent; however, thecoexistence of other anions, especially F~-, retarded the adsorption.
     Thirdly, hollow silica microspheres with ordered mesoporous shell (HMS) were impregnated withdifferent loadings of Lanthanum as novel adsorbents for phosphate removal. In batch adsorption tests, theHMS-x adsorbents possessed markedly enhanced adsorption capacities with increasing La amounts, ascompared to HMS which can hardly adsorbed any phosphate in solution. In particular, HMS-1/5possesses amaximum phosphate capture capacity of47.89mg P/g. In the kinetic study, the phosphate adsorption followedpseudo-second-order equation well. High adsorption capacities were achieved by HMS-1/5within the pHbetween3.0and8.0, and high selectivity to phosphate was also observed with the coexisting of0.01M otheranions (e.g. F~-, Cl~-, NO_3~-, SO_4~(2-) and CO_3~(2-)). Besides, Hierachical mesoporous La(OH)_3adsorbent wassynthesized by one-pot method and its application in phosphate removal was reported for the first time. Thesynthesized P-La(OH)_3sample exhibited a particle diameter of approximately200nm and possessed irregularmesopores with a pore diameter of8.74nm. In the phosphate adsorption test, the adsorbent had a maximumphosphate adsorption capacity of57.65mg P/g, showing a great potential for use in the practical removal ofphosphate.
     Finally, two kinds of clays modified by metal hydroxides were successfully synthesized and theirphosphate removal performance are summariezed as following:
     ⅰ) La(OH)_3-modified exfoliated vermiculites were fabricated, characterized, and investigated for phosphateremoval in batch tests for the first time. The BET surface area of the adsorbent, which was synthesized in thesolution consisting of5.00mmol/g La/exfoliated vermiculite (EV), was significantly increased, accompaniedwith a larger pore diameter and greater total pore volume, as compared with the unmodified EV. Effects ofinitial phosphate concentration, contact time, temperature, pH, and co-existing ions on the adsorption capacitywere investigated in detail. The experimental equilibrium data were fitted better by using the Langmuir model(maximum adsorption capacity of79.6mg P/g). The adsorbent exhibited a high adsorption capacity in the pHrange of3.0-7.0. The addition of F, Cl, NO3, and SO42-had neglectable effects on its phosphate removal capacities. The spent adsorbent could be regenerated and reused in phosphate adsorption; that could removemore than70%phosphate in the3rd adsorption-desorption cycle.
     ⅱ) The phosphate removal performances of a series of ferric-modified laterites (ML) were tested andcompared with raw laterite (RL) in this study. After the modification with0.5MFeCl_3solution, the resultingadsorbent ML-C exhibited90.12%of phosphate removal, which was37.47%higher than that of RL underthe same experimental condition. This may be attributed to the significant increase of BET surface area andtotal pore volume for ML-C, arising from the formation of akaganeite. The effects of contact time, initialphosphate concentration, temperature, pH, and co-existing ions on the adsorption capacity of ML-C wereinvestigated in detail. In the reusability study, the adsorbent showed no significant loss in their adsorptionperformance after four adsorption-desorption cycles, indicating that ML-C was able to be utilized as a potentialcost-effective phosphate adsorbent for practical applications.
引文
[1]毛文永,王明.环境影响评价技术方法[M].国家环境保护总局环评中心,2006,2:171-173.
    [2] Haider S., Naithani V., Viswanathan P. N., et al. Cyanobaeterial toxins:a growing environmental coneern[J].Chemosphere,2003,52(l):1-21.
    [3]黄道孝,肖军华,裴承新等.鱼腥藻毒素(Anatoxins)研究进展[J].中国海洋药物,2004,23(23):47-52.
    [4]徐海滨,严卫星.淡水湖泊微囊藻毒素的污染和毒理学研究[J].卫生研究,2002,31(6):477-480.
    [5]宋立荣,李林,陈伟等.水体异味及其藻源次生代谢产物研究进展[J].水生生物学报,2004,28(4):434-439.
    [6]韩博平,李铁,林旭钿,等.广东省大中型水库富营养化现状与防治对策研究[M].北京市科学出版社,2003.
    [7]顾启华.富营养化水体中藻类水华成因分析与研究[D].天津大学,2006:3.
    [8]周怀东,彭文启.水污染与水环境修复[M].北京:化学工业出版社,2005;
    [9] Amuda O. S., Amoo I. A. Coagulation/flocculation processand sludge conditioning in beverage industrialwastewatertreatment[J]. J. Hazard. Mater.2007,114:778-783.
    [10]尹军,王建辉,王雪峰等.污水生物除磷若干影响因素分析[J].环境工程学报,2007,1(4):6-11.
    [11] Xiong J.B., Mahmood Q., Adsorptive removal of phosphate from aqueous media by peat[J]. Desalination,2010,259:59-64.
    [12] Bodalo-Santoyo A., Gomez-Carrasco J.L., Gomez-Gomez E., et al., Spiral-woundmembrane reverseosmosis and the treatment of industrial effluents [J].Desalination,2004,160:151-158.
    [13]段金明,张亚平,方宏达等.转炉渣诱导磷酸钙结晶法去除和回收废水中磷的研究[J].环境工程学报,2010,7(4):1576-1580
    [14] Zhao D., Sengupta A., Ultimate removal of phosphate from wastewater using a new class of polymeric ionexchangers[J]. Water Res.1998,34(5):1613-1625.
    [15]邱维,张智.城市污水化学除磷的探讨[J].重庆环境科学,2002,24(2):81-84
    [16] Donnert D., Salecker M., Elimination of phosphorus from municipal and industrial wastewater [J]. WaterSci.Technol.1999,40(4-5):195-202
    [17] Donnert D., Salecker M., Elimination of phosphorus from waste water by crystallization [J]. Environ.Technol.1999a,20:735-742.
    [18] Donnert D., Salecker M., Elimination of phosphorus from municipal and industrial waste [J]. WaterSci.Technol.1999b,40:195-202.
    [19] Marani D., Di Pinto A.C., Ramadori R. et al., Phosphate removal from municipal wastewater with lowlimedosage[J]. Environ. Technol.1997,18:225-230.
    [20]吴飞飞.污水污泥吸附剂除磷及其效能研究与应用[D].哈尔滨工业大学,2009.
    [21] Galarneau E., Gehr R. Phosphorus removal fromwastewaters: experimental and theoretical supportforalternative mechanisms [J]. Water Res.1997,31:328-338.
    [22]项学敏,刘颖,周集体.水合氧化铁对废水中磷酸根的吸附-解吸性能研究[J].环境科学,2008,11(29):3059-3063.
    [23] Wu Q., Bishop P.L., Keener T.C. et al.Sludge digestion enhancement and nutrient removal fromanaerobicsupernatant by Mg(OH)2application[J]. Water Sci.Technol.2001,44:161-166.
    [24] Shin H.S., Lee S.M., Removal of nutrients in wastewaterby using magnesium salts [J]. Environ. Technol.1998,19:283-290.
    [25]施汉昌,柯细勇,徐丽婕.用化学法强化生物除磷的优化控制[J].中国给水排水,2002,18(7):35-38
    [26]顾夏声.废水生物处理数学模式[M].北京:清华大学出版社.1993
    [27]张颖,邓良伟.废水中磷的去除研究进展[J].中国沼气,2005,23(3):11-15
    [28]吴燕,安树林.废水除磷方法的现状与展望[J].天津工业大学学报,2001,20(1):74-78
    [29]潘杨,黄勇,沈耀良.废水中磷酸盐的去除与回用[J].污染防治技术,2004,17(1):92-94
    [30]荣宏伟,吕炳南,贾名准.序批式生物膜反应器脱氮除磷技术[J].哈尔滨商业大学学报(自然科学版),2002,18(5):534-536
    [31] Fytianos K., Voudrias E., Raikos N., Modelling of phosphorus removal fromaqueous and wastewatersamples using ferric iron [J]. Environ. Pollut.,1998,101:123-130
    [32]丁文明,黄霞.废水吸附法除磷的研究进展[J].环境污染治理技术与设备,2002,3(10):23-27.
    [33]田锋,尹连庆.含磷废水处理的研究现状[J].工业安全与环保,2005,31(7):6-8.
    [34]愈栋,谢有奎,方振东,等.污水除磷技术的现状与发展[J].重庆市工业高等专科学校学报,2004,19(1):9-12.
    [35]孙家寿,刘羽,袁朝晖,等.天然沸石复合吸附剂的研制与性能[J].矿产保护与利用报, l996,(l):23-25.
    [36]孙家寿.吸附法处理模拟含磷废水吸附处理含磷废水[J].上海环境科学学报,1993,12(3):12-17.
    [37]冯惠敏,贺霞等. JDF蒙脱石粘土凝胶制备及其在化妆品中的应用[J].非金属矿报,1991(2):32-34.
    [38]孙家寿.膨润土对铬、磷的吸附性能研究[J].非金属矿报,1992,4(3):33-35.
    [39]孙家寿,刘羽,鲍世聪,等.交联粘土矿物的吸附特性研究Ⅱ[J].武汉化工学院报,1997,19(l):34-37.
    [40]谢维民,邱菲.凹凸棒石粘土吸附剂除磷酸盐的研究[J].矿产综合利用杂志,1995,(5):26-30.
    [41] Ye H.P., Chen F.Z., Sheng Y.Q.,et al. Adsorption of phosphate from aqueous solution onto modifiedpalygorskites[J]. Sep. Purif. Technol.,2006,5(3):283-290.
    [42] Genz A., Kornmuller A., Jekel M., Advanced phosphorus removal from membrane filtrates by adsorption onactivated aluminium oxide andgranulated ferric hydroxide[J]. J. Water Res.,2004,38:3523-3530.
    [43] Donnert D. Elimination of phosphorus from municipal and industrial wastewater r[J]. Water Sci.Technol.,1999,40(4-5):195-202.
    [44] Chitrakar R., Tezuka S., Sonaoda A., et al.Selective adsorption of phosphate fromseawater and wasterwaterby amorphous zirconium hydroxide[J]. J. Colloid Interf. Sci.,2006,297(2):426-433.
    [45]董树军,何风鸣,尹连庆,等.粉煤灰吸附水中磷的研究[J].粉煤灰综合利用杂志,1996,(3):60-62.
    [46]许可,刘军坛,彭伟功,等.改性粉煤灰处理含磷废水的研究[J].化工时代杂志,2008,12(1):33-36.
    [47]张杰,相会强,张玉华,等.改性粉煤灰去除抗生素废水中的磷和色度[J].中国给水排水,2002,18(10):49-51.
    [48]Lena Johanson, Jon Petter Gustfsson. Phosphorus removal using furnaceslags and Opoka-mechanisms [J].Water Res.,2000,34(1):259-265.
    [49]邓雁希,许虹,黄玲,等.钢渣对废水中磷的去除[J].金属矿山杂志,2003,(5):49-51.
    [50] Hiansshi Y., Mitsu K., Kazuo S., et al. A fundmental research on phosphorus removal by using slag [J].Water Res.,1986,20(5):547-557.
    [51] Atkin R., Craig V. S., Wanless E. J., et al., Mechanism of cationic surfactant adsorption at the solid-aqueousinterface [J]. Adv. Colloid Interf. Sci.,2003.103(3):219-304.
    [52] Hough D.B., Rendall H.M., Adsorption from Solutions at the Solid–Liquid Interface [J]. Adsorption of ionicsurfactants1983, London:Academic Press.
    [53] Liu X., Sun H., Chen Y., et al. Preparation of spherical large-particle MCM-41with a broad particle-sizedistribution by a modified pseudomorphic transformation[J]. Micropor. Mesopor. Mater.,2009,121(1-3):73-78.
    [54] Abdullah A.Z., Sulaiman N.S., Kamaruddin Luan A.H., et al. Biocatalytic esterification of citronellol withlauric acid by immobilized lipase on aminopropyl-grafted mesoporous SBA-15[J]. Biochem. Eng. J.,2009,44(2-3):263-270.
    [55] Fryxell G.E., Mattigod S.V., Lin Y., et. al. Design and synthesis of self-assembled monolayers onmesoporous supports (SAMMS): The importance of ligand posture in functional nanomaterials[J]. J. Mater.Chem.2007,17(28):2863–2874.
    [56] Lin Y., Fryxell G.E., Wu H., et. al. Selective sorption of cesium using self-assembled monolayers onmesoporous supports[J]. Environ. Sci. Technol.2001,35(19):3962–3966.
    [57] Fryxell G. E., Liu J., Hauser T. A., et. al. Design and synthesis of selective mesoporous anion traps[J]. Chem.Mater.1999,11(8):2148–2154.
    [58] Yantasee W., Fryxell G.E., Addleman R.S., et. al. Selective removal of lanthanides from natural waters,acidic streams and dialysate[J]. J. Hazard. Mater.2009,168(2-3):1233-1238.
    [59] Lin Y., Fiskum S. K., Yantasee W., et. al. Incorporation of hydroxypyridinone ligands into self-assembledmonolayers on mesoporous supports for selective actinide sequestration[J]. Environ. Sci. Technol.2005,39(5):1332–1337.
    [60] Yokoi T., Tatsumi T., Yoshitake H., Fe3+coordinated to aminofunctionalized MCM-41: an adsorbent for thetoxic oxyanions with high capacity, resistibility to inhibiting anions, and reusability after a simple treatment[J].J. Colloid Interface Sci.2004,274(2):451–457.
    [61] Williawan C., Robert J.W., Kanda P., et al. Phosphate removal by anion binding on functionalizednanoporous sorbents [J]. Environ. Sci. Technol.2010,44:3073–3078
    [62] Rabih S, Khaled B, Safia H., Adsorption of phosphate and nitrate anions on ammonium-functionalizedMCM-48: Effects of experimental conditions [J]. J. Colloid. Interf. Sci.,2007,311(2):375-381.
    [1] Butt H.J., Graf K., Kappl M., Physicsl and chemistry of interfaces[M], Wiley-VCH Verlag GmbH&Co.KGaA, Weinheim, Germany,2004.
    [2] Langmuir I., The constitution and fundamental properties of solids and liquids. Part I. Solids[J]. J. Am.Chem. Soc.,1916,38:2221-2295.
    [3] Freundlich H.M.F., über die adsorption in l sungen[J]. Z. Phys. Chem-Frankfurt,1906,57A:385-470.
    [4] Dubinin M.M., The potential theory of adsorption of gases and vapors for adsorbents with energeticallynon-uniform surfaces[J]. Chem. Rev.,1960,60:235-266.
    [5] Ho Y.S., McKay G., Sorption of dye from aqueous solution by peat[J]. Chem. Eng. J.,1998,70:115-124.
    [6] Lagergren S.Y., Zur theorie der sogenannten adsorption gel ster stoffe [J]. Kungliga SvenskaVetenskapsakademiens, Handlingar,1898,24:1-39.
    [7] Ho Y.S., Citation review of Lagergren kinetic rate equation on adsorption reactions[J]. Scientometrics,2004,59:171-177.
    [8] Ho Y.S., McKay G., Pseudo-second order model for sorption processes[J]. Process Biochem.,1999,34:451-465.
    [9] Ho Y.S., Review of second-order models for adsorption systems[J]. J. Hazard. Mater.,2006,136:681-689.
    [10] Weber W.J., Moriss J.C., Kinetics of adsorption on carbon from solution[J]. J. Sanitary Eng.,Div. Am.Soc. Civ. Eng.,1963,89:31-59.
    [1]. Sellner K.G., Doucette G.J., Kirkpatrick G.J. Harmful algal blooms: causes, impacts and detection [J]. J.Ind. Microbiol. Biotechnol,2003,30:383–406.
    [2] Morse G.K., Brett S.W., Guy J.A., et al., Review: Phosphorus removal and recovery technologies[J]. Sci.Total Environ.,1998,212:69–81.
    [3] Zhang G., Liu H., Liu R., et al., Removal of phosphate from water by a Fe-Mn binary oxide adsorbent[J].J. Colloid Interface Sci.,2009,335:168–174.
    [4] Ning P., Bart H.J., Li B., et al., Phosphate removal from wastewater by model-La(III) zeolite adsorbents[J].J. Environ. Sci.,2008,20:670–674.
    [5] Hongshao Z., Stanforth R., Competitive adsorption of phosphate and arsenate on goethite[J]. Environ. Sci.Technol.,2001,35:4753–4757.
    [6] Gan F., Zhou J., Wang H., et al., Removal of phosphate from aqueous solution by thermally treated naturalpalygorskite[J]. Water Res.,2009,43:2907–2915.
    [7] Li H., Ru J., Yin W, et al, Removal of phosphate from polluted water by lanthanum doped vesuvianite[J]. J.Hazard. Mater.,2009,168:326–330.
    [8] Zeng L., Li X., Liu J., Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings[J].Water Res.,2004,38:1318–1326
    [9] Das J., Patra B.S., Baliarsingh N., et al, Adsorption of phosphate by layered double hydroxides in aqueoussolutions[J].Appl. Clay Sci.,2006,32:252–260.
    [10] Karageorgiou K., Paschalis M., Anastassakis G.N., Removal of phosphate species from solution byadsorption onto calcite used as natural adsorbent[J]. J. Hazard. Mater.,2007,139:447–452.
    [11] Onyango M.S., Kuchar D., Kubota M., et al., Adsorptive removal of phosphate ions from aqueoussolution using synthetic zeolite[J]. Ind. Eng. Chem. Res.,2007,46:894–900.
    [12] Tian S., Jiang P., Ning P., et al., Enhanced adsorption removal of phosphate from water by mixedlanthanum/aluminum pillared montmorillonite[J]. Chem. Eng. J.,2009,151:141–148
    [13] Huang W., Wang S., Zhu Z., et al., Phosphate removal from wastewater using red mud[J]. J. Hazard.Mater.,2008,158:35–42.
    [14] Ugurlu A., Salman B., Phosphorus removal by fly ash[J]. Environ. Int.,1998,24:911–918.
    [15] Kostura B., Kulveitova H., Lesko J., Blast furnace slags as sorbents of phosphate from water solutions[J].Water Res.,2005,39:1795–1802.
    [16] Liao X.P., Ding Y., Wang B., et al., Adsorption behavior of phosphate on metalions-loaded collagenfiber[J]. Ind. Eng. Chem. Res.,2006,45:3896–3901.
    [17] Biswas B.K., Inoue K., Ghimire K.N., et al., Removal and recovery of phosphorus from water by meansof adsorption onto orange waste gel loaded with zirconium [J]. Bioresour. Technol.,2008,99:8685–8690.
    [18] Feng X., Fryxell G.E., Wang L.Q., et al., Functionalized momolayers on ordered mesoporous supports[J],Science,1997,276:923–926.
    [19] Puanngam M., Unob F., Preparation and use of chemically modified MCM-41and silica gel as selectiveadsorbents for Hg(II) ions[J]. J. Hazard. Mater.,2008,154:578–587.
    [20] Yoshitake H., Yokoi T., Tatsumi T., Adsorption behavior of arsenate at transition metal cations captured byamino-functionalized mesoporous silicas[J]. Chem. Mater.,2003,15:1713–1721.
    [21] Tang Y., Zong E., Wan H., et al., Zirconia functionalized SBA-15as effective adsorbent for phosphateremoval[J]. Micropor. Mesopor. Mater.,2012,155:192–200.
    [22] Janssen A.H., Van Der Voort P., Koster A.J., et al., Mercury(II) Ion adsorption behavior inthiol-functionalized mesoporous silica microspheres[J]. Chem. Commun.,2002:1632–1633.
    [23] Fan J., Lei J., Wang L., et al., Rapid and high-capacity immobilization of enzymes based on mesoporoussilicas with controlled morphologies[J]. Chem. Commun.,2003,17:2140–2141.
    [24] Wang X., Lin K.S.K., Chan J.C.C., et al., Direct synthesis and catalytic applications of ordered large poreaminopropyl-functionalized sba-15mesoporous materials[J]. J. Phys. Chem. B,2005,109:1763–1769.
    [25] Mori Y., Pinnavaia T.J., Optimizing organic functionality in mesostructured silica: direct assembly ofmercaptopropyl groups in wormhole framework structures[J]. Chem. Mater.,2001,13:2173–2178.
    [26] Beaudet L., Hossain K.Z., Mercier L., Direct synthesis of hybrid organic inorganic nanoporous silicamicrospheres.1. effect of temperature and organosilane loading on the nano-and micro-structure ofmercaptopropyl-functionalized MSU silica[J]. Chem. Mater.,2003,15:327–334.
    [27] Zhu Y., Li H., Zheng Q., et al., Amine-functionalized SBA-15with uniform morphology and well-definedmesostructure for highly sensitive chemosensors to detect formaldehyde vapor[J]. Langmuir,2012,28:7843–7850
    [28] Chouyyok W., Wiacek R.J., Pattamakomsan K., et al., Phosphate removal by anion binding onfunctionalized nanoporous sorbents [J]. Environ. Sci. Technol.,2010,44:3073–3078.
    [29] Zhang J., Shen Z., Shan W., et al., Adsorption behavior of phosphate on lanthanum(III)-coordinateddiamino-functionalized3D hybrid mesoporous silicates material [J]. J. Hazard. Mater.186(2011)76–83.
    [30] Zhang J., Shen Z., Mei Z., et al., Removal of phosphate by Fe-coordinated amino-functionalized3Dmesoporous silicates hybrid materials [J]. J. Environ. Sci.,2011,23:199–205.
    [31] Long Y., Yang J, Chen B, et al., Phosphorus Removal Performance of Meso-porous Silica Anchored withCationic Metal-chelate Complexes[J]. Environ. Sci. Technol.,2012,35:15-18(in Chinese)
    [32] Huang W., Yang J., Zhang Y., One-pot synthesis of mesoporous MCM-41with different functionalizationlevels and their adsorption abilities to phosphate[J].Advanced Materials Research.,2012,476-478:1969-1973
    [33] Cassiers K., Linssen T., Mathieu M., et al., A detailed study of thermal, hydrothermal, and mechanicalstabilities of a wide range of surfactant assembled mesoporous silicas [J]. Chem. Mater.,2002,14:2317–2324.
    [34] Yokoi T., Yoshitake H., Tatsumi T., Synthesis of amino-functionalized MCM-41via directco-condensation and post-synthesis grafting methods using mono-, di-and triamino-organoalkoxysilanes[J].J. Mater. Chem.,2004,14:951–957.
    [35] Richer R., Mercier L., Direct synthesis of functionalized mesoporous silica by non-ionicalkylpolyethyleneoxide surfactant assembly [J]. Chem. Commun.,1998:1775–1776.
    [36] Margolese D., Melero J.A., Christiansen S.C., et al., Direct syntheses of ordered sba-15mesoporous silicacontaining sulfonic acid groups [J]. Chem. Mater.,2000,12:2448–2459.
    [37] Chong A.S.M., Zhao X.S., Functionalization of SBA-15with APTES and characterization offunctionalized materials[J]. J. Phys. Chem. B,2003,107:12650–12657.
    [38] Choi D.G., Yang S.M., Effect of two step sol-gel reaction on the mesoporous silica structure[J]. J. ColloidInterface Sci.,2003,261:127–132.
    [39] Hao S., Chang H., Xiao Q., et al., One-Pot Synthesis and CO2Adsorption Properties of OrderedMesoporous SBA-15Materials Functionalized with APTMS [J]. J. Phys. Chem. C,2011,115:12873–12882.
    [40]郝仕油,肖强,钟依均,等.氨基功能化SBA-15的直接合成及其对CO2的吸附性能研究[J].无机化学学报,2010,26:982-988
    [41] Pengthamkeerati P., Satapanajaru T., Clularuengoaksorn P., Chemical modification of coal fly ash for theremoval of phosphate from aqueous solution[J]. Fuel,2008,87:2469–2476.
    [42] Ho Y.S., McKay G., The kinetics of sorption of divalent metal ions onto sphagnum moss peat [J]. WaterRes.,2000,34:735–742.
    [43] Ho Y.S., Mckay G., Pseudo-Second. Order model for sorption processe [J]. Process Biochem.,1999,34:451–465.
    [44] Gaslain F.O.M., Delac te C., Walcarius A., et al., One-step preparation of thiol-modified mesoporoussilica spheres with various functionalization levels and different pore structures [J]. J. Sol-Gel Sci. Technol.,2009,49:112–124.
    [45] Walcarius A., Etienne M., Lebeau B., Rate of access to the binding sites in organically modified silicates.2. ordered mesoporous silicas grafted with amine or thiol groups[J]. Chem. Mater.,2003,15:2161–2173.
    [46] Zhao D., Feng J., Huo Q., et al., Triblock copolymer syntheses of mesoporous silica with periodic50to300angstrom pores[J]. Science,1998,279:548–552.
    [47] Wang X.G., Lin K.S.K., Chan J.C.C., et al., Direct synthesis and catalytic applications of ordered largepore aminopropyl-functionalized sba-15mesoporous materials [J]. J. Phys. Chem. B,2005,109:1763–1769.
    [46] Shao Y.F., Wang L.Z., Zhang J.L., et al., Novel synthesis of high hydrothermal stability and long-rangeorder MCM-48with a convenient method [J]. Micropor. Mesopor. Mater.,2005,86:314–322.
    [48] Zhao D.Y., Huo Q.S., Feng J.L., et al., Nonionic triblock and star diblock copolymer and oligomericsurfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J. Am. Chem.Soc.,1998,120:6024–6036.
    [50] Scott R.P.W., Silica Gel&Bonded Phases, Their Production, Properties&Use in LC, Wiley Science,New York,1993.
    [51] White L.D., Tripp C.P.J., Reaction of (3-Aminopropyl) dimethylethoxysilane with amine catalysts onsilica surfaces [J]. Colloid Interface Sci.,2000,232:400–407.
    [52] Zhao D.Y., Huo Q.S., Feng J.L., et al., Novel mesoporous silicates with two-dimensional mesostructuredirection using rigid bolaform surfactants[J]. Chem. Mater.1999,11:2668-2672.
    [53] Garg S, Soni K, Kumaran GM, et al. Acidity and catalytic activities of sulfated zirconia inside SBA-15[J].Catal Today2009,141:125-129.
    [54] Kruk M., Jaroniec M., Sayari A., Adsorption study of surface and structural properties of MCM-41materials of different pore sizes[J]. J. Phys. Chem. B,1997,101:583–589.
    [55] Yang P.D., Deng T., Zhao D.Y., et al., Hierarchically ordered oxides[J]. Science,1998,282:2244-2246
    [56] Hsu Y.C., Hsu Y.T., Hsu H.Y., et al., Facile synthesis of mesoporous silica sba-15with additionalintra-particle porosities[J]. Chem. Mater.,2007,19:1120–1126.
    [57] Mercier L., Pinnavaia T. J., Direct synthesis of hybrid organic-inorganic nanoporous silica by a neutralamine assembly route: structure-function control by stoichiometric incorporation of organosiloxanemolecules[J]. Chem. Mater.,2000,12:188–196.
    [58] Walcarius A., Delac te C., Rate of access to the binding sites in organically modified silicates [J]. Chem.Mater.,2003,15:4181-4192
    [59] Shin E.W., Han J.S., Jang M., et al., Phosphate adsorption on aluminum-impregnated mesoporous silicates:surface structure and behavior of adsorbents [J]. Environ. Sci. Technol.,2004,38:912–917.
    [60] Ou E., Zhou J., Mao S., et al., Highly efficient removal of phosphate by lanthanum-doped mesoporousSiO2[J]. Colloids Surf.A,2007,308:47–53.
    [61] Perrin D.D., Dempsey B., Buffers for pH and metal ions control [M], Chapman&Hall, London,1974
    [62] Hamoudi S., Saad R., Belkacemi K., Adsorptive removal of phosphate and nitrate anions from aqueoussolutions using ammonium-functionalized mesoporous silica[J]. Ind. Eng. Chem. Res.,2007,46:8806–8812.
    [63] Mattigod S.V., Fryxell G.E., Parker K.E., Anion binding in self-assembled monolayers in mesoporoussupports (SAMMS)[J]. Inorg. Chem. Commum.,2007,10:646–648.
    [64] Fryxell G.E., Liu J., Hauser T.A., et al., Design and synthesis of selective mesoporous anion traps [J].Chem. Mater.,1999,11:2148–2154
    [1] Morse G.K., Brett S.W., Guy J.A., et al., Review: Phosphorus removal and recovery technologies[J]. Sci TotalEnviron.,1998,212(1):69-81.
    [2] Feng X., Fryxell G.E., Wang L.Q., et al., Functionalized monolayers on ordered mesoporous supports[J].Science,1997,276:923-6.
    [3] Chouyyok W., Wiacek R.J., Pattamakomsan K., et al., Phosphate removal by anion binding on functionalizednanoporous sorbents[J]. Environ. Sci. Technol.,2010,44(8):3073-8.
    [4] Yuan Z.Y., Su B.L., Insights into hierarchically meso-macroporous structured materials[J]. J. Mater. Chem.,2006,16(7):663-7.
    [5] Garg S., Soni K., Kumaran G.M., et al., Acidity and catalytic activities of sulfated zirconia inside SBA-15[J].Catal. Today,2009,141:125-9.
    [6] Ma X., Li L., Yang L., et al., Adsorption of heavy metal ions using hierarchical CaCO3–maltosemeso/macroporous hybrid materials: Adsorption isotherms and kinetic studies[J]. J. Hazard. Mater.,2012,209:467-77.
    [7] Dhainaut J., Dacquin J., Lee A.F., et al., Hierarchical macroporous-mesoporous SBA-15sulfonic acid catalystsfor biodiesel synthesis[J]. Green Chem.,2010,12(2):296-303.
    [8] Zhao D.Y., Feng J.L., Huo Q.S., et al., Triblock copolymer syntheses of mesoporous silica with periodic50to300angstrom pores[J]. Science,1998,279:548-52.
    [9] Chong A.S.M., Zhao X.S., Functionalization of SBA-15with APTES and characterization of functionalizedmaterials[J]. J. Phys. Chem. B,2003,107(46):12650-7.
    [10] Kruk M., Jaroniec M., Sayari A., Application of large pore MCM-41molecular sieves to improve pore sizeanalysis using nitrogen adsorption measurements[J]. Langmuir,1997,13(23):6267-73.
    [11] Perrin D.D., Dempsey B., Buffers for pH and metal ion control [M]. New York: John Wiley&Sons;1979.
    [12] Zhang J., Shen Z., Shan W., et al., Adsorption behavior of phosphate on lanthanum(III)-coordinateddiamino-functionalized3D hybrid mesoporous silicates material[J]. J. Hazard. Mater.201,186(1):76-83.
    [1] Liu B. and Zeng H.C., Mesoscale organization of cuo nanoribbons: formation of “Dandelions”[J]. J. Am.Chem. Soc.,2004.126(26):8124-8125.
    [2] Lou X.W., Wang Y., Yuan C., et al., Template-Free synthesis of SnO2hollow nanostructures with highlithium storage capacity [J]. Adv. Mater.,2006.18(17):2325-2329.
    [3] Lin G., Zheng J., Xu R., Template-Free synthesis of uniform CdS hollow nanospheres and theirphotocatalytic activities [J]. J. Phys. Chem. C,2008.112(19):7363-7370.
    [4] Kresge C.T., Leonowicz M. E., Roth W. J., et al., Ordered mesoporous molecular sieves synthesized by aliquid-crystal template mechanism [J]. Nature,1992.359(6397):710-712.
    [5] Zhao D.Y., Feng J., Huo Q., et al., Triblock copolymer syntheses of mesoporous silica with periodic50to300angstrom pores [J]. Science,1998.279(5350):548-552.
    [6] Yuan Z. Y., Su B.L., Insights into hierarchically meso-macroporous structured materials [J]. J. Mater.Chem.,2006.16(7):663-677.
    [7] Ma X., Li L., Yang L., et al., Adsorption of heavy metal ions using hierarchical CaCO3–maltosemeso/macroporous hybrid materials: Adsorption isotherms and kinetic studies [J]. J. Hazard. Mater.,2012.209–210(0):467-477.
    [8] Dhainaut J, Dacquin J, Lee AF, et al., Hierarchical macroporous-mesoporous SBA-15sulfonic acidcatalysts for biodiesel synthesis[J]. Green Chem2010,12(2):296-303.
    [9] Jiao Y., Guo J., Shen S., et al., Synthesis of discrete and dispersible hollow mesoporous silica nanoparticleswith tailored shell thickness for controlled drug release [J]. J. Mater. Chem.,2012.22(34):17636-17643.
    [10] Chen T., Fu J., pH-responsive nanovalves based on hollow mesoporous silica spheres for controlledrelease of corrosion inhibitor [J]. Nanotechnology,2012.23:23.
    [11] Fang X., Zhao X., Fang W., et al., Self-templating synthesis of hollow mesoporous silica and theirapplications in catalysis and drug delivery[J]. Nanoscale,2013.5(6):2205-2218.
    [12] Li J., Xu Y., Wu D., et al., Hollow mesoporous silica sphere supported cobalt catalysts for F–Tsynthesis[J]. Catal. Today,2009.148(1–2):148-152.
    [13] Zhu Y., Shi J., Chen H., et al., A facile method to synthesize novel hollow mesoporous silica spheres andadvanced storage property [J]. Micropor. Mesopor. Mater.,2005.84(1–3):218-222.
    [14] Sellner K.G., Doucette G.J., Kirkpatrick G.J., Harmful algal blooms: causes, impacts and detection[J]. J.Ind. Microbiol. Biotech.,2003.30(7):383-406.
    [15] Morse G.K., Brett S.W., Guy J.A., et al., Review: Phosphorus removal and recovery technologies [J]. Sci.Total Environ.,1998.212(1):69-81.
    [16] Kang, S.K., Choo K.H., Lim K.H., Use of iron oxide particles as adsorbents to enhance phosphorusremoval from secondary wastewater effluent [J]. Sep. Sci. Technol.,2003.38(15):3853-3874.
    [17] Gan F., Zhou J., Wang H., et al., Removal of phosphate from aqueous solution by thermally treated naturalpalygorskite [J]. Water Res.,2009.43(11):2907-2915.
    [18] Li H., Ru J., Yin W., et al., Removal of phosphate from polluted water by lanthanum doped vesuvianite [J].J. Hazard. Mater.,2009.168(1):326-330.
    [19].Yoshitake H., Functionalization of periodic mesoporous silica and its application to the adsorption oftoxic anions [M], in Environmental applications of nanomaterials, G.C. Glen E Fryxell, Editor2007, ImperialCollege Press: London. p.241-274.
    [20].Karageorgiou K., Paschalis M., Anastassakis G.N., Removal of phosphate species from solution byadsorption onto calcite used as natural adsorbent [J]. J. Hazard. Mater.,2007.139(3):447-452.
    [21].Hongshao Z., Stanforth R., Competitive adsorption of phosphate and arsenate on goethite [J]. Environ.Sci. Technol.,2001.35(24):4753-4757.
    [22].Pradhan, J., Das J., asobanta, Das S., et al., Adsorption of phosphate from aqueous solution usingactivated red mud [J]. J. Colloid Interf. Sci.,1998.204(1):169-172.
    [23].Huang W., Wang S., Zhu Z., et al., Phosphate removal from wastewater using red mud [J]. J. Hazard.Mater.,2008.158(1):35-42.
    [24].Ugurlu A., Salman B., Phosphorus removal by fly ash [J]. Environ. Int.,1998.24(8):911-918.
    [25].Pengthamkeerati P., Satapanajaru T., Chularuengoaksorn P., Chemical modification of coal fly ash for theremoval of phosphate from aqueous solution [J]. Fuel,2008.87(12):2469-2476.
    [26].Biswas B.K., Inoue K., Ghimire K.N., et al., Removal and recovery of phosphorus from water by meansof adsorption onto orange waste gel loaded with zirconium [J]. Bioresour. Technol.,2008.99(18):8685-8690.
    [27].Zeng L., Li X.M., Liu J. D., Adsorptive removal of phosphate from aqueous solutions using iron oxidetailings [J]. Water Res.,2004.38(5):1318-1326.
    [28].Kostura B., Kulveitova H., Lesko J., Blast furnace slags as sorbents of phosphate from water solutions [J].Water Res.,2005.39(9):1795-1802.
    [29].Onyango M.S., Kuchar D., Kubota M., et al., Adsorptive removal of phosphate ions from aqueoussolution using synthetic zeolite [J]. Ind.Eng. Chem. Res.,2007.46(3): p.894-900.
    [30].Ning P., Bart H.J., Li B., et al., Phosphate removal from wastewater by model-La(III) zeolite adsorbents[J]. J. Environ. Sci.(China),2008.20(6):670-674.
    [31].Liao X.P., Ding Y., Wang B., et al., Adsorption behavior of phosphate on metal-ions-loaded collagen fiber[J]. Ind.Eng. Chem. Res.,2006.45(11): p.3896-3901.
    [32].Shin E.W., Han J.S.., Phosphate adsorption on aluminum-impregnated mesoporous silicates: surfacestructure and behavior of adsorbents [J]. Environ. Sci. Technol.,2003.38(3):912-917.
    [33].Mandel K., Drenkova-Tuhtan A., Hutter F.., et al., Layered double hydroxide ion exchangers onsuperparamagnetic microparticles for recovery of phosphate from waste water [J]. J. Mater. Chem. A,2013.1(5):1840-1848.
    [34].Wu Z., Zhao D., Ordered mesoporous materials as adsorbents [J]. Chem. Commun.,2011.47(12):3332-3338.
    [35].Meiser F., Cortez C., Caruso F., Biofunctionalization of fluorescent rare-earth-doped lanthanumphosphate colloidal nanoparticles [J].Angew. Chem. Int. Edit.,2004.43(44):5954-5957.
    [36].Yang J., Yuan P., Chen H.Y., et al., Rationally designed functional macroporous materials as newadsorbents for efficient phosphorus removal [J]. J. Mater. Chem.,2012,22:9983-9990.
    [37].Shin E.W., Karthikeyan K.G., Tshabalala M.A., Orthophosphate sorption onto lanthanum-treatedlignocellulosic sorbents [J]. Environ. Sci. Technol.,2005.39(16):6273-6279.
    [38].Ou E., Zhou J., Mao S., et al., Highly efficient removal of phosphate by lanthanum-doped mesoporousSiO2[J]. Colloids Surf.A,2007,308:47–53.
    [39].Zhang J., Shen Z., Shan W., et al., Adsorption behavior of phosphate on Lanthanum(III) dopedmesoporous silicates material[J]. J. Environ. Sci.(Beijing, China),2010.22:507-511.
    [40].Delaney P., McManamon C., Hanrahan J. P., et al., Development of chemically engineered porous metaloxides for phosphate remov al[J]. J Hazard Mater,2011.185:382-91.
    [41].Choi J. W., Lee S.Y., Chung S.G., et al., Removal of Phosphate from Aqueous Solution by FunctionalizedMesoporous Materials[J]. WaterAir Soil Pollut.,2011.222:243-254.
    [42].Tang Y., Zong E., Wan H., et al., Zirconia functionalized SBA-15as effective adsorbent for phosphateremoval[J]. Microporous Mesoporous Mater.,2012.155:192-200.
    [43].Choi J.W., Lee S.Y., Chung S.G., et al., Adsorption of phosphate by amino-functionalized andCo-condensed SBA-15[J]. Water,Air, Soil Pollut.,2012.223:2551-2562.
    [44].Hamoudi S., Saad R., Belkacemi K., Adsorptive Removal of phosphate and nitrate anions from aqueoussolutions using ammonium-functionalized mesoporous silica[J]. Ind. Eng. Chem. Res.,2007.46:8806-8812.
    [45]. Yuan X.Z., Pan G., Chen H., et al., Phosphorus fixation in lake sediments using LaCl3-modified clays [J].Ecol. Eng.,2009,35:1599-1602.
    [46].Yang, J., Zhou L., Zhao L., et al., A designed nanoporous material for phosphate removal with highefficiency [J]. J. Mater. Chem.,2011.21(8):2489-2494.
    [47].Vaudreuil S., Bousmina M., Kaliaguine S., et al., Synthesis of macrostructured silica bysedimentation-aggregation [J].Adv. Mater.,2001.13(17):1310-1312.
    [48].Qi G., Wang Y., Estevez L., et al., Facile and scalable synthesis of monodispersed spherical capsules witha mesoporous shell [J]. Chem. Mater.,2010.22(9):2693-2695.
    [49].Yang J., Yuan P., Chen H.Y., et al., Rationally designed functional macroporous materials as newadsorbents for efficient phosphorus removal [J]. J. Mater. Chem.,2012,22:9983-9990.
    [50]. Beck J.S., Vartuli J. C., Roth W. J., et al., A New family of mesoporous molecular sieves prepared withliquid crystal templates [J]. J.Am. Chem. Soc.,1992.114:10834–10843.
    [1] Liu Y., Li H., Tan G.Q., Zhu X.H., Fe2+-modified vermiculite for the removal of chromium (VI) fromaqueous solution[J]. Sep. Sci. Technol.,2011,46:290-299.
    [2] Skipper N.T., Soper A.K., McConnell J.D.C., The structure of interlayer water in vermiculite [J]. J. Chem.Phys.,1991,94:5751-5760.
    [3] Gordeeva L.G., Moroz E.N., Rudina N.A., et al., Formation of porous vermiculite structure in the course ofswelling [J]. Russ. J.Appl. Chem,2002,75:357-361.
    [4] Aristov Y.I., Restuccia G., Tokarev M.M., et al., Selective water sorbents for multiple applications.11.CaCl2confined to expanded vermiculite[J]. React. Kinet. Catal. Lett.,2000,71:377-384.
    [5] Sen Gupta S., Bhattacharyya K.G., Kinetics of adsorption of metal ions on inorganic materials: A review[J].Adv. Colloid Interface Sci.,2011,162:39-58.
    [6] Crini G., Non-conventional low-cost adsorbents for dye removal: A review[J]. Bioresour. Technol.,2006,97:1061-1085.
    [7] Wu Z., Zhao D., Ordered mesoporous materials as adsorbents[J]. Chem. Commun.,2011,47:3332-3338.
    [8] Huang W.Y., Li D., Yang J., et al., One-pot synthesis of Fe(III)-coordinated diamino-functionalizedmesoporous silica: Effect of functionalization degrees on structures and phosphate adsorption[J]. Micropor.Mesopor. Mater.,2013,170:200-210.
    [9] Li H., Ru J., Yin W., et al., Removal of phosphate from polluted water by lanthanum doped vesuvianite[J].J. Hazard. Mater.,2009,168:326-330.
    [10] Yuan X.Z., Pan G., Chen H., et al., Phosphorus fixation in lake sediments using LaCl3-modified clays[J].Ecol. Eng.,2009,35:1599-1602.
    [11] Yang J., Yuan P., Chen H.Y., et al., Rationally designed functional macroporous materials as newadsorbents for efficient phosphorus removal [J]. J. Mater. Chem.,2012,22:9983-9990.
    [12] Shin E.W., Karthikeyan K.G., Tshabalala M.A., Orthophosphate sorption onto lanthanum-treatedlignocellulosic sorbents[J]. Environ. Sci. Technol.,2005,39:6273-6279.
    [13] Haghseresht F., Wang S., Do D.D., A novel lanthanum-modified bentonite, Phoslock, for phosphateremoval from wastewaters[J].Appl. Clay Sci.,2009,46:369-375.
    [14] Long Y., Yang J., Li X., et al., Combustion synthesis and stability of nanocrystalline La2O3viaethanolamine-nitrate process[J]. J. Rare Earth.,2012,30:48-52.
    [15] Fleming P., Farrell R.A., Holmes J.D., et al., The rapid formation of La(OH)3from La2O3Powders onexposureto water vapor[J]. J.Am. Ceram. Soc.,2010,93:1187-1194.
    [16] Vithanage M., Jayarathna L., Rajapaksha A.U., et al., Modeling sorption of fluoride on to iron richlaterite[J]. Colloid Surf. A-Physicochem. Eng. Asp.,2012,398:69-75.
    [17] Tardy Y., Balkema A.A., Petrology of laterites and tropical Soils,1st ed., Taylor&Francis1997.
    [18] Yu X., Wei C., Ke L., et al., Development of organovermiculite-based adsorbent for removing anionic dyefrom aqueous solution[J]. J. Hazard. Mater.,2010,180:499-507.
    [19] Chen Q., Wu P., Dang Z., et al., Iron pillared vermiculite as a heterogeneous photo-Fenton catalyst forphotocatalytic degradation of azo dye reactive brilliant orange X-GN[J]. Sep. Purif. Technol.,2010,71:315-323.
    [20] Huo X., Wu L., Liao L., et al., The effect of interlayer cations on the expansion of vermiculite[J]. PowderTechnol.,2012,224:241-246.
    [21] Olivera Pastor P., Rodriguez-Castellon E., Rodriguez Garcia A., Uptake of lanthanides by vermiculite[J].Clays Clay Miner.,1988,36:68-72.
    [22] Kim J., Li W., Philips B.L., et al., Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH),akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): a31P NMR Study[J]. Energ.Environ.Sci.,2011,4:4298-4305.
    [23] Chitrakar R., Tezuka S., Sonoda A., et al., Phosphate adsorption on synthetic goethite and akaganeite[J]. J.Colloid Interface Sci.,2006,298:602-608.
    [24] Chitrakar R., Makita Y., Hirotsu T., et al., Selective uptake by akaganeite (β-FeOOH) of phosphite fromhypophosphite and phosphite solutions[J]. Ind. Eng. Chem. Res.,2011,51:972-977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700