用户名: 密码: 验证码:
面向设计的铁道车辆动力学建模与灵敏度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产品的设计过程是一个设计-分析-优化-设计的动态闭环过程,现有的CAD和CAE由于追求的目标不同,产品的设计与分析相对独立。同时,产品在不同的工程应用领域中,其分析模型也是各不相同,即使在相同的领域,由于分析的粒度和复杂度不同,对分析模型的要求也不同,这使得设计模型不能较好地适应后续分析模型的需求。同时,对分析模型仿真求解,获得结果,如何将分析结果存在的问题反馈到设计模型的这一过程中,缺乏统一的模型描述语言去显示、表达这个过程,影响了设计进程朝着设计目标推进。本论文结合工程分析集成、基于特征的集成和基于产品描述标准的集成,提出了一个完整的产品设计分析集成框架和集成策略。对框架中,面向设计的复杂产品动力学分析子系统层进行了详细研究,其主要研究工作和研究成果如下:
     (1)对现有设计分析集成进行研究,提出了一个完整的产品设计分析模型HPDA (Holistic Product Design and Analysis model)。该模型由四个视图组成,即系统层、子系统层、部件层和组件层,分别描述了不同设计阶段的设计过程和设计信息,符合自顶向下的设计过程,支持模块定义和重用。重点对子系统层进行了研究,引用了Peak的研究成果MRA表达框架,并在此基础上提出添加面向设计的动力学求解模型、灵敏度分析模型和优化模型,扩展MRA表达框架,使其成为满足复杂多体系统产品设计-分析-再设计的广义集成框架GMRA (Generalized MRA)。
     (2)定义了GMRA基于STEP标准的描述方法,采用面向对象的EXPRESS和EXPRESS-G语言,对复杂多体系统进行建模分析。提出了基于特征的语义集成表示方法,以复杂铁道车辆为研究对象,通过将其进行基于多体系统特征和轮轨接触特征的分解,获得车辆模型的基元分析特征,从而为铁道车辆设计模型到分析模型,分析模型到求解方法,再到设计模型循环设计的一体化描述奠定了基础。
     (3)将多体系统理论与轮轨接触理论相结合,把铁道车辆分解为由车体、转向架、轮对、悬挂力元、铰约束、轨道等组成的多体系统。对多体系统理论进行研究,在已有的研究成果上,采用基于欧拉四元数的笛卡尔坐标法描述多体系统动力学模型,并对典型铰约束进行了建模,采用第一类拉格朗日方程建立铁道车辆的动力学方程,采用违约稳定增广法对所建立的动力学方程进行数值求解。为了真实地反映轮轨接触状态,采用Hertz非线性弹性接触理论计算轮轨法向力,采用迹线法求解轮轨空间接触几何参数。对轮轨蠕滑力的求解,先采用Kalker线性理论进行初步计算,然后采用沈氏定理进行修正。车辆的激励主要由轨道的不平顺性产生,介绍了常见轨道功率谱密度表示的轨道不平顺。为了分析、评价铁道车辆的动力学品质,对车辆动力学性能指标进行了分析。
     (4)基于多体系统理论与轮轨接触理论,采用面向对象方法,开发了铁道车辆动力学计算包GVDS,并用ADAMS、NUCARS、SIMPACK等商业软件初步验证了GVDS的准确性和可靠性,实现了GMRA构架中求解方法(SMM)模型的数值计算工作。
     (5)基于第一类拉格朗日方程建模方法,建立了多体系统灵敏度分析模型,推导了一阶灵敏度分析的直接微分公式和伴随变量公式,并对多体系统约束、质量、广义力进行基元特征灵敏度建模,通过求解这些基元灵敏度特征模型,并映射到直接微分法和伴随变量法中,实现了GMRA构架中一般多体系统灵敏度分析模型的数值计算工作。
     (6)将轮轨力用典型的弹簧阻尼力进行描述。通过对弹簧-阻尼力进行基于基元灵敏度分析特征建模,获得轮轨力的灵敏度分析模型,实现了GMRA构架中灵敏度分析(SAM)模型的数值计算工作,为实现铁道车辆的动力学性能优化奠定基础。
     通过开展上述研究得出,任何复杂机械产品本质上都可以看作是多体系统。通过分析建立了动力学领域描述分析对象拓扑构型的基元特征模型,建立了基于多体理论的灵敏度分析基元特征模型,建立了铁道车辆独有的轮轨基元特征、轮轨接触特征模型。这些基元特征,是构建复杂机械产品的最小要素。同时,这些基元特征也是设计模型向分析模型映射的主要要素。因此,理论上可以通过组合这些基元分析特征实现对任意复杂机械产品面向动力学设计的描述。
Product design is a circulate redesign process from the design-analysis-optimization and redesign. CAD and CAE play an important role in the design process of the products and they are relatively independent. Because of the different application fields of product, many different analysis works, such as dynamics analysis, FEA and so on, have to be done. The product design model needs to be transformed different analysis models according to the different analysis purposes. And due to the different analysis complexity, the analysis models are different even in the same analysis field. The design model, therefore, is unable to meet the follow-up demands of the analysis models well. Meanwhile, how to feedback the existing problems of the analysis result to the design model lacks the unified model language to describe this course of expression. It influences the automated design process. Based on analyses, features and describing standard of product integrations, a HPDA (Holistic Product Design and Analysis model) is proposed to define design and analysis at different levels, to enhance engineering design and analysis interoperability and to integrate the design methods and tools across multiple engineering domains. The main research work and study results are as follows in this dissertation:
     (1) HPDA is constructed with four levels (system, subsystem, machine and component), which is well supported by Top-Down design method. At each level, design and analysis models are integrated under a GMRA (Generalized Multi-Representation Rrchitecture) which supports design, analysis and optimization appropriately. The subsystem level is mainly researched. Design oriented SMM (Solution Method Model), SAM (Sensitivity Analysis Model) and optimization Technology are added in the GMRA. According to this model, the dynamics performance of the product can be designed and verified.
     (2) GMRA is defined based on describe method of STEP standard, and an object-oriented language EXPRESS and EXPRESS-G are used for modelling and analysis of complicated multibody system. The description of the features based semantics integration is proposed to describe the complicated multibody system. Regard complicated railway vehicle as the research object, decompose the vehicle model to the smallest analyzable element to obtain the smallest analyzable feature. These can be foundations to implement the circulate redesign process, which is from design model to analysis model and then from analysis model to solution method model and more to redesign model.
     (3) Railway vehicle systems consist of a large number of bodies that include carbodies, bogies, wheelsets, suspension elements, and other components. These bodies are interconnected by mechanical joints. Therefore, the multibody system dynamics and wheel-rail contact theory are combined to model and analyze the railway vehicle dynamics. The railway vehicle can be divided into carbody, bogie, suspension force element, constraints, track and so on. Cartesian coordinates with Euler parameters are used to describe the multibody system model. The railway vehicle system dynamics equations are built by the first kind Lagrange Equation. The constraint violation stabilization and augmented approaches are used to solve the differential-algebraic equations. In order to describe the contact feature of wheel and rail, nonlinear Hertz elasticity contact theory is adopted to compute the normal force of wheel and rail. The trace-line method is applied for contact geometry parameters. For the creep force of wheel and rail, the Kalker's linear theory is used to solve initially and then the Shen's Theory is used to revise them. The excitation of the vehicle is mainly produced by track irregularity. And the track irregularity can be expressed by power spectrum density of the track. The frequent characteristic of the power spectrum density must be transformed into time characteristics which is sutable for solving the track irregularity by Inverse Fourier Transform. In order to evaluate the railway vehicle dynamics capacity, the performance index has been researched.
     (4) Based on the multibody system theory and wheel-rail contact theory, the railway vehicle compute package named GVDS is developed by object oriented method, and the accuracy and the reliability of GVDS have been verified by commercial software, such as ADAMS, NUCARS, SIMPACK, etc. And the model of SMM in GMRA has been implemented.
     (5) Differential-algebraic equations of the multibody system, which include the design variable, are constructed based on The First Kind Lagrange Equation. The direct differentiation and adjoint variable methods are applied for the design sensitivity analysis of multibody system, and the sensitivity analysis of constraint, mass and generalized force are modeled. Some case studies have been done and the accuracy has been demonstrated. So, the sensitivity analysis model (SAM) in the GMRA is carried out.
     (6) Because the nonlinear Hertz elasticity theory is applied for the wheel-rail force calculation, the wheel-rail force can be described by spring-damper force and the sensitivity analysis of the spring damper force can be modeled. The sensitivity model of wheel-rail force can be achieved for performance optimization of the railway vehicle.
     According to the research, any complicated mechanical product can be regarded as multibody systems essentially. So, the smallest element feature model of multibody system has been built and the smallest sensitivity analysis feature and the specific wheel-rail smallest analysis feature are achieved. These smallest analyzable features are the smallest elements of analysis of mechanical product. And they are also the smallest elements for design model map into analysis model. So, any complicated mechanical product can be presented by composing the smallest analyzable element in theory.
引文
[1]Haug,E.J.Choi,K.K.,et al. Virtual Prototyping Simulation for Design of Mechanical Systems[J]. Journal of Mechanical Design, Transactions of the ASME,1995,117B(6): 63-70
    [2]Bohu Li, Xudong Chai, Wenhai Zhu, et al. The Recent Research on Virtual Prototyping Engineering for Complex Products[C]. The 8th International Conference on Computer Supported Cooperative Work in Design Proceedings,2003:18-25
    [3]G. Gary Wang. Definition and Review of Virtual Prototyping[J]. Transactions of the ASME, Journal of Computing and Information Science in Engineering,2002,2(3): 232-236
    [4]熊光楞,李伯虎,柴旭东.虚拟样机技术[J].系统仿真学报,2003,13(1):114-117
    [5]刘延柱,洪嘉振,杨海兴.多刚体系统动力学[M].北京:高等教育出版社,1989.
    [6]洪嘉振,计算多体系统动力学[M].北京:高等教育出版社,1999.
    [7]周昊,汪玉春.灵敏度分析在储运优化设计中的应用综述[J].天然气与石油,2004,22(4):1-3
    [8]MiChael J. Pratt. Virtual Prototyping and product Models in Mechanical Engineering. Gaithersburg:National Institute of Standards and Technology,1995
    [9]熊光楞,李伯虎,柴旭东.虚拟样机技术[J].系统仿真学报,2001,13(1):114-117
    [10]李思昆,郭阳.协作虚拟样机协同设计方法[J].系统仿真学报,2001(1):124-127
    [11]张进平,马若丁编著.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002
    [12]MSCSoftwareCorportation. AD AMS&DynamicDesignerProducts[EB/OL].http://www. adams.com
    [13]http://www.simpack.de/websitp.htmll[EB/OL].
    [14]http://www.lmsintl.com/[EB/OL].
    [15]王行仁.面向二十一世纪,发展系统仿真技术[J].系统仿真学报,1999,10(2):73-82
    [16]Lehner V D, Defanti T A. Projects in VP:Distributed Virtual Reality:Supporting Remote Collabration in Vehicle Design. IEEE Computer Graphics and Applications, 1997,17(2):13-17
    [17]刘贤喜.机械系统虚拟样机仿真软件的实用化研究[D].北京,中国农业大学博士论文,2001
    [18]张卫华.机车车辆动态模拟[M].北京:中国铁道出版社,2006
    [19]阎开印.基于多体系统意义下的机车车辆虚拟样机研究[D].成都:西南交通大学博 士学位论文,2006
    [20]丁国富,邹益胜,张卫华,高照学.基于虚拟原型的机械多体系统建模可视化研究[J].计算机辅助设计与图形学学报,2006 18(6):793-799
    [21]丁国富,何邕,邹益胜,王珏,张卫华.基于虚拟样机的产品设计进程反馈模型[J].西南交通大学学报,2008,43(3):367-372
    [22]何邕,贾美薇,李萍奎,甘立恒,何文波,丁国富等.基于虚拟样机的铲运机工作装置仿真及优化[J].系统仿真学报,2011,23(4):702-706
    [23]梁健瑶,贾美薇,何文波,丁国富.基于刚柔多体动力学的铲运机偏载工况举升臂强度分析[J].矿山机械,2010,(5):35-39
    [24]朱绍维,贾美薇,杨承军,何文波,丁国富.基于虚拟样机的地下铲运机驾驶室人机分析[J].机械设计与研究,2010,26(3):85-88
    [25]王政.基于交互驱动的虚拟样机动力学建模技术研究与应用[D].杭州:浙江大学博士论文,2005
    [26]夏鸿建.机械系统虚拟样机平台建模技术与动力学求解研究[D].武汉:华中科技大学博士学位论文,2008
    [27]Arabshahi S, Barton D C, Shaw N K. Steps towards CAD-FEA integration[J]. Engineering with Computers,1993,9(1):17-26.
    [28]Hamri O, Leon J C, Giannini F, Falcidieno Bianca. Software environment for CAD/CAE integration[J]. Advances in Engineering Software,2010,41:1211-1222
    [29]Thakur A, Banerjee A G, Gupta S K. A survey of CAD model simplification techniques for physics-based simulation applications[J]. Computer-Aided Design, 2009,41:65-80.
    [30]Kai CC, Jacob GGK, Mei T. Interface between CAD and rapid prototyping systems:1. A study of existing interfaces [J]. International Journal of Advanced Manufacturing Technology,1997,13(8):566-570
    [31]Initial Graphics Exchange Specification, Version 1.0, NIST, Gaithersburg, Maryland, January 1980
    [32]Industrial Automation Systems and Integration-Product Data Representation and Exchange-Part I:Overview and Fundamental Principles, ISO 10303-1:1994(E), ISO, Geneva,1994
    [33]Pang A, Joneja A, Lam DCC,et al. A CAD/CAM system for process planning and optimization in LOM (Laminated Object Manufacturing)[J]. HE Transactions,2001, 33 (4):345-355
    [34]Lin Rong-Shine, Lin Ie-Lian. Data processing for CAD/CAM/RP systems [J].Journal of the Chinese Society of Mechanical Engineers,2000,21(3):247-256
    [35]Szilvasi-Nagy M, Matyasi G. Analysis of STL files[J]. Mathematical and Computer Modelling,2003,38(7/9):945-960
    [36]E.J. Haug, Design sensitivity analysis of dynamic systems, in:C.A. Mota Soare(Ed.). NATO ASI Series F 27, Springer, Berlin, Heidelberg,1987, pp.705-755
    [37JISO10303-11.Industrial automation systems and integration Product representation and exchange-Part11:Description methods:The express language reference manual[S].
    [38]Chung, T. T.,Lee, C. C., Fan, K. C. Optimum design of a 1x2 mechanical optical switch[J]. Struct Multidisc Optim,2006,31,229-240.
    [39]Edke, M. S., Chang, K. H. Shape optimization of heavy load carrying components for structural performance and manufacturing cost[J]. Struct Multidisc Optim,2006,31, 334-354.
    [40]Su DZ, Qin DT. Integration of numberical analysis, virtual simulation and finite element analysis for the optimum design of worm gearing[J]. Journal of Materials Processing Technology,2003,138:429-435.
    [41]Yang, D. Y., Ahn, D. G., Lee, C. H., Park, C. H., Kim, T. J. Integration of CAD/CAM/CAE/RP for development of metal forming process[J] Journal of Materials Processing Technology,2002,26-34.
    [42]Kao, Y. C., Cheng, H. Y, She, C. H. Development of an integrated CAD/CAE/CAM system o taper-tipped thread-rolling die-plates[J]. Journal of Materials Processing Technology,2006,177,98-103.
    [43]J.W.Murdock.An Information Modeling Framework to Support Design Database and Repositories[C]. Proceedings of DETC'97 ASME Design Engineering Technical Conferences September 14-17,1997,Sacramento, California.
    [44]王威信,吴延江,张凤军.以STL为接口的CAD/CAE集成应用[J],计算机辅助设计与图形学学报,2005,17(8):1878-1882
    [45]付相君,李善平,郭鸣.产品数据模型的本体知识表达[J].计算机辅助设计与图形学学报,2005,17(3):570-577
    [46]谢鹏寿,康永平.基于STEP的三维CAD和PDM系统集成方法研究[J].计算机工程与设计,2007,28(3):671-673
    [47]杨义,涂海宁,夏芳臣,刘建胜,李霞.基于STEP和XML技术的接口研究[J].南昌大学学报,2003,25(3):34-37
    [48]Lee S. H (2005) A CAD-CAE integration approach using feature-based multi-resolution and multi-abstraction modeling techniques[J]. Computer-Aided Design 37(9):941-955.
    [49]Martina D T, Falcidieno B, Habinger S.Design and Engineering Process Integration Through a Multiple View Intermediate Modeler in a Distributed Object-oriented System Environment[J].Computer Aided Design,1998,30:437-452
    [50]Sypkens S M, Bronsvoort W F. Integration of design and analysis models[J]. Computer-aided design and application,2009,6(6):795-808.
    [51]John S.Gero.Design prototypes:A Knowledge Representation schema for Design[J]. AI Mag,1990,11(4):26-36
    [52]Wynne Hsu,Jerry Y H Fuh, Yunfeng Zhang. Synthesis of Design Concepts from a Design for Assembly Perspective[J].Computer Integrated Manufacturing Systems,1998, 11(1-2):1-13
    [53]季炳伟,潘双夏,冯培恩.面向CAD/CAE集成的虚拟样机建模方法[J].农业机械学报,2006,37(3):95-99
    [54]关振群,顾元宪,张洪武,等.三维CAD/CAE一体化的参数化动态有限元建模[J].计算机集成制造系统,2003,9(12):1112-1119
    [55]王开云.翟婉明.蔡成标.机车车辆横向动力学性能仿真[J].西南交通大学学报,2003,38(1):17-21
    [56]陈明,邓矢斧,朱睿,周来水.基于CATIA平台的CAD/CAE集成[J].计算机辅助设计与图形学学报,2006,18(7):1078-1082
    [57]Simon Szykman, Jocelyn Senfaute, Ram D.Sriram. The Use of XML Describing Functions and Taxonlmies In Computer-Based Design[C].Proceeding of the 1999 ASME Design Engineering Techical Conferences September 12-15,1999, Las Vegas, Nevada.
    [58]Gerard Jounghyun Kim,Simon Szykman. Combing Interactive Exploration and Optimization for Assembly Design[J]. ASME Journal of Mechanical Design, Vol,120,NO.1,pp 24-31.
    [59]Gerard Jounghyun Kim,Simon Szykman. Combining Interactive Exploration and Optimization for Assembly Design[C].Proceedings of The 1996 ASME Design Engineering Technical Conference and Computers in Engineering Conference August 18-22,1996,Irvine,California.
    [60]R. S. Peak, R. E. Fulton, A. Chandrasekhar, S. Cimtalay, M. A. Hale, D. Koo, L. Ma, A. J. Scholand,D.R.Tamburini, M.W.Wilson (Feb.2,1999b) Design-Analysis Associativity Technology for PSI, Phase IReport:Pilot Demonstration of STEP-based Stress Templates Georgia Tech Project E15-647, The Boeing Company Contract W309702.
    [61]Peak, R. S. Product Model-Based Analytical Models (PBAMs):A New Representation of Engineering Analysis Models. Doctoral Thesis, Georgia Institute of Technology, Atlanta,1993
    [62]Peak R S, Fulton R E, Ichirou Nishigaki, Noriaki Okamoto. Integrating Engineering Design and Analysis Using a Multi Representation Approach[J]. Engineering with Computers,1998,14:93-114
    [63]Diego Romano Tamburini. The Analyzable Product Model Representation to Support Design-Analysis Integration[R]. A Thesis presented to Academic Faculty, Georgia Institute of Technology, May 1999.
    [64]Lyons K., Hart P., Shooter S.,Keirouz W.. The Open Assembly Design Environment Project:An Architecture for Design Agent Interoperability[C]. Proceedings of the 1999 ASME Design Engineering Technical Conferences, Las Vegas, NV,1999:628-635
    [65]Shooter S.B., Keirouz W., Szykman S., Fenves S.J..A Model for the Flow of Design Informatino[C]. Proceedings of the 2000 ASME Design Engineering Technical Conferences, Baltimore,MD,2000:878-890
    [66]Charles M Eastman. Managing Integrity in Design Information Flows[J]. Computer-Aided Design,1996,28(6/7):551-565.
    [67]丁国富,阎开印,张卫华等.面向虚拟样机设计的产品属性提取研究[J].计算机集成制造系统,2006,12(1):14-20
    [68]Haug, E.J.,058:254 Lecture Notes on Mechanical Design in Dynamics, College of Engineering, The University of Iowa, Iowa City, IA 52242, Spring 2001.
    [69]周鸿伟,王维平等.虚拟样机中的异构产品模型研究[J].计算机仿真,2002,19(4):100-103.
    [70]赵雯,王维平.虚拟样机一体化建模方法研究[J].系统仿真学报,2002,14(1):100-103.
    [71]赵雯.协同虚拟样机研究与实现[D].长沙:国防科技大学博士论文,2000.
    [72]王颧.面向CAD设计模型的计算多体力学虚拟原型[D].成都:西南交通大学博士论文,2006
    [73]周杨,蓝朝桢,徐青.空间目标几何与行为一体化建模方法[J].计算机仿真,2006,23(9):11-14
    [74]张帅.复合功能产品概念设计建模理论及自动化求解方法研究[D].浙江大学博士论文,2005
    [75]Eberhard P, Schiehlen W. Hierarchical modeling in multibody dynamics[J].Archive of Applied Mechanics,1998,(68):237-246.
    [76]Duan S,Anderson K.S.Parallel implementation of a low order algorithm for dynamics of multibody systems on a distributed memory computing system[J]. Engingeering with Computers,2000,(16):96-108.
    [77]Aviles R,Vallejo,Ajuria G etl. Second-order methods for the optimum synthesis of multibody systems[J].Struct Multidisc Optim,2000,19:92-203
    [78]刘延柱.完全笛卡尔坐标描述的多体系统动力学[J].力学学报,1997,29(1):84-94.
    [79]王琪,黄克累,陆启韶.树形多体系统非线性动力学的数值分析方法[J].固体力学学报,1999,12(4):363-367.
    [80]豪格著,刘兴详等译.机械系统的计算机辅助运动学和动力学:.第一卷基本方法[M].北京:高等教育出版社,1996
    [81]张雄,王天舒编著.计算动力学[M].北京:清华大学出版社,2007
    [82]刘延柱.刚体动力学理论与应用[M].上海:上海交通大学出版社,2006
    [83]He Y, Ding G F, Zou Y S, Jia M W, Xu M H. Object-oriented modeling and simulation of railway vehicle systems. Applied Mechanics and Materials,2010,26-28:900-904.
    [84]袁士杰,吕哲勤.多刚体系统动力学[M].北京:北京理工大学出版社,1992
    [85]Fletcher H J, Rongved L, Yu E Y. Dynamics Analysis of a Two-body Gravitationally Oriented Satellite. Bell System Tech.,J42,5,1963
    [86]Hooker W W, Margulies G. the Dynamical Attitude Equations for an n-Body Satellite.J. Astronautical Scienes.12,1965
    [87]Andrews G C, Kesavan H K. Simulation of Multibody Systems Using the Vector-Network Model. Dynamics of Multibody Systems, Symposium Munich/Germany,1977
    [88]Wittenburg J. Dynamics of Systems of Rigid Bodies B.G.Teubner, Stuttgart,1977
    [89]Schiehlen WO, Kreuzer, E J. Symbolic Computerized Derivation of Equations of Motion. Dynamics of Multibody Systems, Symposium Munich/Germany,1977
    [90]Schiehlen W O. Computer Generation of Equations of Motin, NATO ASI Series, vol. F9, Computer Aided Analysis and Optimization of Mechanical System Dynamics. Springer-Verlag Berlin Heidelberg,1984
    [91]Schwertassek R, Roberson R E. A State-Space dynamical Representation for Multibody Mechanical Systems Part I:Systems with tree Configuration. Acta Mechanica,50,1984,141-161; Part II:Systems with Closed Loops. Acta Mechanica, 51,1984,15-29
    [92]Kane T R, Wang C F. On the Derivation of Equations of Motion. J.Soc.Ind.App.Math.,1969,13
    [93]Kane T R,Levinson D.A. Dynamics:Theory and Applications. McGraw-Hill,New York,1985
    [94]陈宾.关于Kane方法[J].力学学报,1984,3:311-315
    [95]Likins P W.Point-Connected Rigid Body in a Topological Tree[J]. Celestial Mechanics,1975,11:301-317
    [96]Huston R L,Passerello C E,Harlow M W.On Human Body Dynamics[J]. Ann. Biomed. Egnrg,1976,4:25-43
    [97]Huston R L,Passerello C E,Harlow M W. Dynamics of Multi-Rigis-Body Systems[J]. J. Appl. Mech.,1978,4:889-894
    [98]Huston R L,Passerello C E. On Multi-Rigis-Body Systems Dynamics[J].Computers and Structures,1979,10:439-446
    [99]Huston R L,Passerello C E. MultiBody Dynamics Including Translation between the Bodies[J].Computers and Structures,1980,11:713-720
    [100]Chace M A. Methods and Experience in Computer Aided Design of Large-Displacement Mechanical Systems, NATO ASI Series, Vol. F9, Computer Aided Analysis and Optimization of Mechanical System Dynamics. Springer-Verlag Berlin Heidelberg,1984
    [101]Orlandea N, Chace M A, Calahan D A. A Sparsity-Oriented Approach to the Dynamics Analysis and Design of Mechanical Systems. ASME, J.Engineering for Industry, Vol.99, August,1977
    [102]Haug E J. Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Massachusetts,1989
    [103]Nikravesh P E, Haug E J. Generalized Coordinate Partitioning for Analysis of Mechanical Systems with Nonholonomic Constraints ASME Journal of Mechanisms Transmissions, and Automation in Design,voll05,Sep.1983;
    [104]Mani N K, Haug E J, Atkinson K E. Application of Singular Value Decomposition for Analysis of Mechanical System Dynamics. ASME, Journal of Mechanisms, Transmissions, and Automation in Design, Vol.107,Mar.1985
    [105]刘延柱.高等动力学[M].北京:高等教育出版社,2001
    [106]洪嘉振.多体系统动力学:理论、计算方法和应用[M].上海:上海交通大学出版社,1992;
    [107]刘延柱,洪嘉振,杨海兴.多刚体系统动力学[M].北京:高等教育出版社,1989
    [108]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1998
    [109]休斯敦,刘又午.多体系统动力学上册[M].天津:天津大学出版社,1987
    [110]休斯敦,刘又午.多体系统动力学下册[M].天津:天津大学出版社,1991
    [111]洪嘉振,梁敏.多刚体系统内碰撞数学模型和计算程序[J].力学学报,1989,21(4):509-512
    [112]梁敏,洪嘉振,刘延柱.多刚体系统碰撞动力学方程及可解性判别准则[J].应用力学学报,1991,8(1):56-62
    [113]刘锦阳,洪嘉振.柔性机械臂接触问题的研究[J].机械科学与技术,1997,16(1):100-104
    [114]刘锦阳,洪嘉振.空间伸展机构接触碰撞的动力学分析[J].宇航学 报,1997,18(3):14-19
    [115]王奋飞.变结构多刚体系统的动力学问题[J].力学学报,1990,22(4):506-572
    [116]洪嘉振,倪纯双.变拓扑多体系统的全局仿真[J].力学学报,1996,28(5):633-637
    [117]蔡成标.高速铁路列车—线路—桥梁耦合振动理论及应用研究[D].成都:西南交通大学博士学位论文,2004:107-111
    [118]柳江.基于虚拟样机技术悬架系统性能分析和优化设计[D].上海:上海交通大学博士论文,2007
    [119]杨忠炯.地下铲运机多体系统虚拟样机建模与系统动态特性仿真研究[D].中南大学博士论文,2007
    [120]邬平波.机车车辆多刚体系统动力学分析及系统动态仿真研究[D].成都:西南交通大学博士论文,1997
    [121]吴洪涛,熊有伦.机械工程中的多体系统动力学问题[J].中国机械工程,2000,11(6):608-611
    [122]翟婉明.车辆-轨道耦合动力学(第三版)[M].北京:科学出版社,2007
    [123]王开云,丁国富,翟婉明.机车车辆-轨道空间耦合动力学性能仿真系统[J].系统仿真学报,2004,16(12):2737-2740
    [124]王开云,翟婉明.车辆-轨道耦合动力学仿真软件TTISIM及其试验验证[J].中国铁道科学,2004,25(6):48-53
    [125]邬平波,曾京.机车车辆系统动态仿真综合软件的研究[J].铁道学报,1998,20(A04):118-123
    [126]http://www.tplswjtu.com/index.php/home/read/61
    [127]王珏,李治.机车蛇行运动的动力学仿真报告[J].铁道机车车辆,2003,23(6):24-27
    [128]王珏,李治.绝对空间中的铁道车辆非线性动力学仿真[J].铁道学报,2004,26(6):25-29
    [129]Ahmed A. Shabana, Khaled E. Zaazaa, Hiroyuki Sugiyama. Railroad vehicle dynamics a computational approach.CRC press, Taylor&Francis Group, London New York,2008
    [130]Marcello Berzeri.Absolute nodal coordinate formulation:elastic forces and application to wheel/rail interaction[D]. PhD Thesis, University of Illinois at Chicago,2000
    [131]Khaled E. Zaazaa.Elastic force model for wheel/rail contact in multibody railroad vehicle systems[D].PhD Thesis, University of Illinois at Chicago,2003
    [132]Mahmoud M. Tobaa. Effect of the wheel/rail kinematic variables and geometry on the dynamics of railroad vehicles[D]. PhD Thesis, University of Illinois at Chicago,2005
    [133]Graham G Sanborn.Development of high and low fidelity models for multibody railroad vehicle systems[D]. PhD Thesis, University of Illinois at Chicago,2008
    [134]Cheta Rathod. A finite element flexible track formulation for multibody railroad vehicle applications[D]. PhD Thesis, University of Illinois at Chicago,2009
    [135]Rudranarayan M. Mukherjee, Kishor D. Bhalerao, Kurt S. Anderson. A divide-and-conquer direct differentiation approach for multibody system sensitivity analysis[J]. Struct Multidisc Optim,2008,35:413-429
    [136]Huag,E.J.,Choi,K.K.,Komkov,V.. Design Sensitiviy Analysis of Structural Sysetms[M].Academic Perss,New York,1986
    [137]Wang S, Sun Y,Gallagher R H.Sensitiviy analysis in shape optimization of continuum structures[J].Comput..&Struct.,1985,20(5):855-867
    [138]Badrinarayanan S,Zabaras N. Sensitivity analysis for the optimal design of metal-forming processes[J].Computer Mehtods in Applied Mechanics and Engineering,1996,129(4):319-348
    [139]Peetr S Z, Ahmed K N. A hybrid numerical/neurocomputing strategy of sensitivity analysis of nonlinear structures[J]. Computers&Structures,1997,65(6):869-880
    [140]Rojc T,Tok B. About finite element sensitivity analysis of elastoplastic systems at large strainis[J].Computers&Structures,2003,81 (18-19):1795-1809
    [141]梁利华.用于设计灵敏度分析的一致切线算子弹粘塑性边界元方法[D].杭州:浙江大学博士论文,2006
    [142]Jun Dong. Design sensitivity analysis and optimization of high frequency structural-acoustic problems using energy finite element method and energy boundary element method[D]. PhD Thesis, The University of Iowa,2004
    [143]Haug,E.J,Arora,J.S.. Applied optimal design:mechanical and structural systems[M].New York:John Wiley&Sons,Inc.,1979.
    [144]Haug,E.J,Mani,N.K.,Krishnasawami,P..Design Sensitivity Analysis and Optimization of Dynamically Driven Systems [A]. In:Computer Aided Analysis and Optimization of Mechanical System Dynamics.Berlin:Springer-verlag,1984:555-636。
    [145]Haug,E.J.,Sohoni,V. N.. Design sensitivity analysis and optimization of kinematically driven systems[A].In:Computer Aided Analysis and Optimization of Mechanical System Dynamics. Berlin:springer-verlag,1984:499-554
    [146]Etman,L.F.P..Optimization of Multibody Systems Using Approximation Concepts[D], PhD Thesis,Technique University of Eindhoven,1997
    [147]Bestle,D..Analyse und Optimierung Von Mekrrpersystemen. Berlin:Springer,1994
    [148]Bestle,D.,Eberhard,P..Analyzing and Optimizing Multibody Systems[J].Mechanics of Structures and Machines,1992,20(1):67~92
    [149]Serban,R.,Dynamics and Sensitivity Analysis of Multibody Systems[D]. PhD Thesis,The University of Iowa,1998
    [150]Eberhard,P.,Analysis and Optimization of Complex Multibody Systems Using Aadvanced Sensitivity Analysis Methods[D]. PhD Thesis,University of Stuttgart,1997
    [151]Lee, Jong-Nyun. Design sensitivity analysis of multibody systems with special reference to four-wheel steering[D]. PhD Thesis, The University of Arizona,1992
    [152]Horatiu Ciprian German. Computer-aided design sensitivity analysis for dynamic multibody systems[D]. PhD Thesis, The University of Iowa,2006
    [153]Xicheng Wang. Design sensitivity analysis of rigid and flexible multibody systems[D]. PhD Thesis, The University of Iowa,2007
    [154]Anderson,K.S.,Hsu,Y.H..Analytical Full-Recursive Sensitivity Analysis for Multibody Chain Systems[J].Multibody Systems Dynamics,2002,8(1):1-27
    [155]Hsu,Y.H.,Anderson,K.S..Recursive Sensitivity Analysis for Constrainted Multi-rigid-body Dynamic Systems Design Optimization[J]. Structural and Multidisciplinary Optimization,2002,24(4):312-324
    [156]Sohl,G.A.,Bobrow,J.E..A Recursive Multibody Dynamics and Sensitivity Algorithm for Branched Kinematic Chains[J] Journal of Cryptology,2001,123(3):391-399
    [157]Li,S.,Petzold,L..Software and Algorithms for Sensitivity Analysis of Large-Scale Differential-Algebraic Systems[J] Journal of Comp. and App. Math.,2000,13:131-145
    [158]Li, S.,Petzold,L.,Zhu,W.. Sensitivity Analysis of Differential Algebraic Equations:A Comparison of Methods on a Special Problems[J]. Applied Numerical Mathematics,2000,32(2):161-174
    [159]Maly,T.,Petzold,L.R..Numerical Methods and Software for Sensitivity Analysis of Differential Algebraic Systems[J]. Applied Numerical Mathematics,1997,20:57-59
    [160]潘振宽,赵维加.多体系统动力学设计灵敏度分析与动态优化设计方法[J].青岛大学学报(工程技术版),2002,17(4):1-11.
    [161]潘振宽,丁洁玉,高磊,高波.多体系统动力学动态最优化设计与灵敏度分析[J].力学学报,2005,37(5):611-618
    [162]潘振宽,赵维加,高垒,高波,多体系统动力学设计灵敏度分析[J].力学学报,2002,34:70-74.
    [163]潘振宽,丁洁玉,高磊.基于微分/代数方程的多体系统动力学设计灵敏度分析[J].力学与实践,2005,27(1):60-63
    [164]潘振宽,丁洁玉,王钰.基于隐式微分代数方程的多体系统动力学设计灵敏度分析 方法[J].动力学与控制学报,2004,2(2):66-69
    [165]减宏文,潘振宽.基于常微分方程数学模型的多体系统动力学设计灵敏度分析方法[J].青岛大学学报(工程技术版),2001,16(2):1-5
    [166]Ding Jie-Yu, Pan Zhen-Kuan, Chen Li-Qun. Second order adjoint sensitivity analysis of multibody systems described by differential-algebraic equations, Multibody Syst Dyn(2007),18:599-617;
    [167]丁洁玉,潘振宽.基于二阶常微分方程的多体系统动力学设计灵敏度分析的伴随变量方法[J].工程力学,2006,23(2):56-59
    [168]丁洁玉,潘振宽,陈立群.基于微分/代数方程的多体系统动力学设计灵敏度分析的伴随变量方法[J].动力学与控制学报,2006,4(3):205-209
    [169]丁洁玉.基于多体系统的灵敏度分析及动态优化设计[D].上海大学,2008
    [170]康新中,王宝元.机械系统动态优化设计的灵敏度方法[J].机械工程学报,1990,13(1):18-23
    [171]沈志云.京沪高速铁路技术方案的探讨[J],交通运输工程学报,2001,1(2):10-13
    [172]沈志云.高速磁浮列车对轨道的动力作用及其与轮轨高速铁路的比较[J],交通运输工程学报,2001,1(1):1-6;
    [173]肖新立.高速铁路轮轨与磁悬浮方案对比分析[J],交通科技,2004,3:87-90
    [174]周鸿伟.武器系统总体概念设计集成技术研究[D],国防科学技术大学博士论文,2002
    [175]严隽耄.车辆工程[M],北京:中国铁道出版社,1990
    [176]池博士.耦合轮对车辆动力学性能的研究[D],成都,西南交大博士论文,2003
    [177]95J01-L.高速试验列车动力车强度及动力学性能规范.北京:铁道科学研究院,1995
    [178]严隽耄.具有任意轮廓形状的轮轨空间几何约束的研究[J].西南交通大学学报,1983,(3):40-48
    [179]王福天.车辆系统动力学[M].北京:中国铁道出版社,1995
    [180]王开文.车轮接触点迹线及轮轨接触几何参数的计算[J],西南交通大学学报,1984,(1):89-99
    [181]陈果.车辆——轨道耦合系统随机振动分析[D].成都:西南交通大学博士学位论文,2000
    [182]Vijay K. Garg. Rao V. Dukkip. Dynamics of Railway Vehicle Systems. Orland: Academic Press,1984
    [183]Shen Z Y, Hedrick J K, Elkins J A. A comparison of alternative creep force models for rail vehicle dynamic analysis. In:Proceedings 8th IAVSD Symposium, MIT, Cambridge,1983:591-605
    [184]任尊松.车辆系统动力学[M].北京:中国铁道出版社,2007
    [185]铁道科学研究院铁道建筑研究所.我国干线轨道不平顺功率谱的研究TY-1215[R].北京:铁道科学研究院,1999
    [186]95J01-M.高速试验列车客车强度及动力学性能规范.北京:铁道科学研究院,1995
    [187]德国联邦铁路慕尼黑研究中心.城间特快列车ICE技术任务书,1993
    [188]GB5599-85.铁道车辆动力学性能评定和试验鉴定规范.北京:中国计划出版社,1985
    [189]TB/T2360-93.铁道机车动力学性能试验鉴定方法及评定标准.北京:中国铁道出版社,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700