用户名: 密码: 验证码:
大气化学中几种重要物种反应的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NCO自由基与碳氢化合物的反应以及氢氟烷与活泼自由基的反应在烃类燃烧过程和大气化学等方面有着举足轻重的作用。然而由于这些反应通常速度较快,反应机理复杂,对它们进行结构和动力学的实验研究一般具有相当大的难度。因此对这些反应的理论研究倍受关注。
     本论文利用量子化学计算方法着重研究了NCO自由基与碳氢化合物(主要是CH_3、C_2H_5、CH_4、C_2H6)以及CH_4与NO_2反应机理及动力学进行了详细的理论研究。另外还研究了氢氟烷与OH的反应机理。从而为进一步研究和利用这些反应提供了理论依据。主要内容概括如下:
     1.在QCISD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p)理论水平上对NCO + CH_3反应的单重态和三重态势能面进行了研究。研究结果表明,反应主要在单重态势能面上进行。在单重态势能面上主要的反应通道是N原子和O原子与CH_3自由基无垒加成生成加合产物IM1(CH_3NCO)和IM2(CH_3OCN)。在三重态势能面上最可行的反应通道是N原子与CH_3自由基无垒加成生成加合产物3IM2(CH_3NCO),经N-C键断裂生成CH_3N+CO。其他的反应通道由于其较高的势垒都是次要的。
     2.在QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p)理论水平上对NCO+C_2H_5反应的单重态和三重态势能面进行了研究。结果表明,单重态势能面的能垒要比三重态势能面低。在单重态势能面上,反应物通过无能垒过程形成最初的加成物,最初形成的富能的中间体能进一步发生断裂和异构化反应。考虑到最低的能垒高度和低于反应物的重要的过渡态,反应最主要的通道是从IM2开始涉及氢迁移和C-O键断裂协同步骤生成C_2H_4+HNCO的通道。第二个主要生成物是C_2H_4+HOCN,它是由另一个中间体IM1通过相似的协同步骤生成的。其他的产物通道因为有高的能垒和不稳定的产物可以忽略。在三重态势能面上,最可能的反应通道是甲基上的氢原子被N原子提取生成CH_2CH_2 +HNCO,但是产物不稳定,与单重态势能面的主要通道不存在竞争。
     3.在G3MP2//MP2/cc-PVDZ从头算数据的基础上,利用POLYRATE9.1程序,采用由Truhlar及其合作者提出的包含小曲率隧道效应校正(SCT)的正则变分过渡态理论(CVT)计算了NCO自由基与CH_4反应在400-2000K温度区间的速率常数。所得理论速率常数与已有实验值比较吻合。
     4.在G3MP2//MP2/cc-PVDZ从头算数据的基础上,利用POLYRATE9.1程序,采用由Truhlar及其合作者提出的包含小曲率隧道效应校正(SCT)的正则变分过渡态理论(CVT)计算了NCO自由基与C_2H6反应在220-2000K温度区间的速率常数。理论结果与前人报道的实验结果一致。
     5.在BMC-CCSD//MPW1K/6-311G(d, p)水平上得到CH_4与NO_2反应的势能面信息,并在从头算给出的电子结构信息的基础上用变分过渡态理论加小曲率隧道效应校正系统地研究了NO_2与CH_4的反应的动力学性质,所得结论与实验结果符合得很好。反应存在三种可能的通道,存在N进攻和O进攻两种方式,经历了三个不同的过渡态,TS1,TS2和TS3。在整个温度区间总包反应的主要通道是NO_2中O原子提取CH_4中的H原子,生成CH_3和cis-HONO。
     6.在QCISD(T)/6-31G(d)//B3LYP/6-311G(d,p)理论水平上首次运用从头算直接动力学方法对CF_3CHFCH_2F+OH的直接氢提取反应进行了理论研究。初步的势能面信息是在B3LYP/6-311G(d,p)水平上获得的,更精确的单点能计算是在QCISD(T)/6-31G(d)水平上完成的。反应存在四条可能的反应通道:两条α-H提取反应和两条β-H提取反应。从能量上预测β-H提取反应为主要通道。
The reactions of the isocyanate radical with hydrocarbons and hydrofluorocarbons (HFCs)with active radicals play important roles in various fields, such as combustion chemistry and atmospheric chemistry. Due to the short lives of the radicals and the difficulty to obtain the pure species, the experimental research for their structures and reaction features (especially the reaction mechanisms and the dynamics) is very difficult. Therefore, more and more attentions have been focused on their theoretical researches in recent years.
     With the quantum chemistry calculation methods, we studied the reactions of the isocyanate radical with hydrocarbons(CH_3、C_2H_5、CH_4 and C_2H_6) and CH_4 with NO_2. The reaction mechanisms are theoretically investigated in detail. As well as we studied the mechanism of hydrofluorocarbons(HFCs)with OH radical. Our calculations provide the elementary theoretical evidence for further experimental research. The following is the main results:
     1. A detailed computational study has been performed at the QCISD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p) level for the NCO with CH_3 reaction by constructing singlet and triplet potential energy surfaces(PESs). The computational results show that the title reaction is more favorable on the singlet PES than on the triplet PES. On the singlet PES, the dominant channel is the barrierless addition of O or N atom to C atom of methyl group to form CH_3NCO (IM1) and CH_3OCN (IM2). On the triplet PES, the favorable channel is the barrierless addition N atom to C atom of methyl group to form an intermediate CH_3NCO (3IM2), which then undergoes N─C scission process to give out CH_3N+CO. And other products channels are minor with high barrier heights.
     2. The mechanisms of C_2H_5 with NCO was investigated at QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p) level on both of single and triple PES.. The results indicate that single PES is much lower than that of the triple PES. On the single PES, the initial adduct of the reactant is barrierless and released lots of energy available for further reaction. With the lowest barrier heights and the significant transition states lower than the reactant, the dominant channel is a concerted step of involving H shift and C-O bond scission from the adduct C_2H_5OCN(IM2) to give out the product C_2H_4+HNCO. The secondary product is C_2H_4+HOCN, which is yielded via a similar concerted step form another adduct C_2H_5NCO (IM1). Other products are negligible with high barriers or less stable product. On the triple PES, the most feasible channel is the direct hydrogen abstraction of H in CH_3 group by N atom to form CH_2CH_2+HNCO. However, the product is less stable, and it is not competitive with the dominant channel on the single PES.
     3. The kinetics of hydrogen abstraction reaction of NCO + CH_4 is studied by ab initio direct dynamics method. The potential energy surface(PES)information is obtained at the MP2/cc-pVDZ level level, and more accurate energies of stationary points are calculated at the G3(MP2)level. By means of the Polyrate 9.1 program ,the rate constants over the temperature range of 400—2000 K are calculated by canonical variational transition state theory(CVT)incorporating small-curvature tunnelling(SCT)contributions proposed by Truhlar et al. The calculated rate constants are found to be in good agreement with the available experimental data.
     4. The kinetics of hydrogen abstraction reaction of NCO + C_2H6 is studied by ab initio direct dynamics method. The potential energy surface(PES)information is obtained at the MP2/cc-pVDZ level, and more accurate energies of stationary points are calculated at the G3(MP2)level. By means of the Polyrate 9.1 program ,the rate constants over the temperature range of 220—2000 K are calculated by canonical variational transition state theory(CVT) incorporating small-curvature tunnelling(SCT)contributions proposed by Truhlar et al. The calculated rate constants are found to be in accordance with the experimental results.
     5. The potential energy surface (PES) information of the CH_4+NO_2 reaction is built up at the BMC-CCSD//MPW1K/6-311G(d,p) level. The rate constants are calculated by canonical variational transition state theory (CVT) with the small-curvature tunneling correction (SCT). The theoretical rate constants are in good agreement with the experimental values. Three feasible channels and the three corresponding transition states, TS1, TS2 and TS3 are identified respectively. Both N and O can attack the carbon atom of CH_4 in the reaction of CH_4 with NCO. The dynamics calculations also exhibit that O abstraction H of CH_4 dominates the title reaction over the temperature range.
     6. The H-abstraction reaction of CF3CHFCH_2F+OH is investigated by ab initio direct dynamics method. The potential energy surface(PES)information is obtained at the B3LYP/6-311G(d,p) level, and more accurate energies of stationary points are calculated at the level of QCISD(T)/6-31G(d). Four feasible channels and the four corresponding transition states: two channels forα-H abstraction and two channels forβ-H abstraction. The reaction proceeds feasible mainly viaβ-H abstraction with most exothermic.
引文
[1]王殿勋. 2001科学发展报告[R].北京:科学出版社,2001,p86.
    [2]刘静玲.环境污染与控制[M].化学工业出版社, 2001年02月(第1版) p282.
    [3]王明星.大气化学[M].气象出版社,1999年05月第2版, p467.
    [4]寒冬,寒之.臭氧层[M].中国环境科学出版,2001年04月第1版p116.
    [5]秦大河.大气臭氧层和臭氧空洞[M].气象出版社,2003年3月第一版,p187.
    [6]McElroy M B, Salawitch R J, Wofsy S C, et al. Reductions of antarctic ozone due to synergistic interactions of chlorine and bromine[J]. Nature, 1986, 321(6072): 759-762.
    [7]McConnell J C, Henderson G S, Barrie L, et al. Photochemical bromine production implicated in Arctic boundary-layer ozone depletion[J]. Nature, 1992, 355(6356): 150-152.
    [8]Fan S M, Jacob D J. Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols[J]. Nature, 1992, 359(6395): 522-524.
    [9]Montzka S A, Butler J H, Mayers R C, et al. Decline in the tropospheric abundance of halogen from halocarbons: Implications for stratospheric ozone depletion[J]. Science, 1996, 272(5266): 1318-1322.
    [10]Redeker K R, Wang N Y, Low J C, et al. Emissions of methyl halides and methane from rice paddies[J]. Science, 2000, 290(5493): 966-969.
    [11]G. Robert, A.H .Zewail, J. Phys.Chem.1991, 95, 7973; S .Pedersen, L Banares, A .H .Zewail, J. Chem. Phys.1992, 97, 8801
    [12]J .B .Foresman, M .J. Frisch, Exploring Chemistry with Electronic Structure Methods, 1993; W.J. Hehre, I. Radom, P .V .R .Schleyer, J.A .Pople, Ab Initio Molecular Orbital Theory, 1986.
    [13] J .A .Seetula, I. R .Slagle, Chem. Phys.Lett.1997, 277,381.
    [14]穆光照.自由基反应[M].北京:高等教育出版社,1985, 7, 239.
    [15]Rayson L, Huang S H, Goh S H O著,穆光照,甘礼骓等译,自由基化学[M].上海:上海科学技术出版社, 1983, 258.
    [16]Smith I W M. Radiative associaton in collisions between neutral free radicals[J]. Chem Phys, 1989, 131(2-3): 391-401.
    [17]Berson M, Baird J C. An introduction of electron paramagnetic resonance[M]., W. A. Benjiamin, New York, 1966.
    [18]Hey D H, Waters W A. Some organic reactions involving the occurrence of free radicals in solution[J]. Chem Review, 1937, 21(1): 169-208.
    [19]Kharasch M S. Photodecomposition of chlorine dioxide in carbon tetrachloridesolution[J]. J Am Chem Soc, 1937, 59(6): 1155-1156.
    [20]Lowry J H. Mechainism and theory in organic chemistry[M]. New York,N. Y., Harper&Row3, Pub., 1987.
    [21]Harris J M. Fundamentals of organic reaction mechanism[M], New York willey, 1976.
    [22]Schlegel H B, Sosa C. Abinitio molecular-orbital calculations on F + H2→HF + H and OH + H2→H2O + H using unrestricted moller-plesset perturbation-theory with spin projection[J]. Chem Phys Lett, 1988, 145(4): 329-333.
    [23]Bowman C T. Control of combustion-generated nitrogen oxide emissions: technology driven by regulation[J]. Symp (Int) Combust. 1992, 24: 859-878.
    [24]Perry R A, Siebers D L. Rapid reduction of nitrogen-oxides in exhaust-gas streams[J]. Nature, 1986, 324(6098): 657-658.
    [25]Miller J A, Bowman C T. Kinetic modeling of the reduction of nitric-oxide in combustion products by isocyanic acid[J]. Int J Chem Kinet, 1991, 23(4): 289-313.
    [26]Becker K H, Kurtenbach R, Schmidt F, Wiesen P. Kinetics of the NCO radical reacting with atoms and selected molecules[J]. Combustion and Flame, 2000, 120(4): 570-577.
    [27] Edwards M A, Hershberger J F. Kinetics of the CN+CH2CO and NCO+CH2CO reactions[J]. Chem Phys , 1998, 234(1-3): 231-237.
    [28] Pei L S, Hu C J, Liu Y Z, Zhang Z Q, Chen Y, Chen C X. Kinetic studies on reactions of NCO(X 2Πi) with alcohol molecules[J]. Chem l Phys Lett , 2003, 381(1-2): 199-204.
    [29] Brownsword R A, Laurent T, Vatsa R K, Volpp H -R, Wolfrum J. Branching ratio for the H + NCO channel in the 193 nm photodissociation of HNCO[J]. Chem Phys Lett, 1996, 249(3-4): 162-166.
    [30] Baronavski A P, Owrutsky J C, Pasternack L. Fluorescence quenching of NCO in CH4/O2 and CH4/air premixed low pressure flames[J]. Chem Phys Lett, 1997, 272(3-4): 239-244.
    [31]Hancock G, Mckendrick K G. Vibrational relaxation of NCO() by rare gases, and rate constant measurement of the NCO + NO reaction[J]. Chem Phys Lett, 1986, 127(2): 125-129.
    [32]Chang Y W, Wang N S. Rates of the reactions CN + H2CO and NCO + H2CO in the temperature range 294–769 K[J]. Chem Phys, 1995, 200(3): 431-437.
    [33]Zhang W C, Du, B, Feng C J. Theoretical study of reactionme chanism for NCO+HCNO[J].Chem Phys Lett , 2007 1-6.
    [34]Macdonald, R G. Determination of the rate constant and product channels for the radical-radical reaction NCO(X (2)Pi) + C2H5 (X (2) A '') at 293 K[J]. Phys Chem Chem Phys, 2007, 9(31): 4301-4314.
    [35] Feng W H, Hershberger, J F. Kinetics of the NCO + HCNO reaction [J]. J Phys Chem A, 2007, 3831-3835
    [36]Xie H B, Wang J, Zhang S W, et al. An ignored but most favorable channel forNCO+C2H2 reaction [J]. J Chem Phys, 2006, 125(12): 124317-1-10
    [37]Gao Y D, MacDonald R G. Determination of the rate constant for the radical-radical reaction NCO(X-2 Pi)+CH3(X(2)A(2)'') at 293 K and an estimate of possible product channels [J]. J Phys Chem A, 2006, 110(3): 977-989.
    [38]Gao Y D, MacDonald R G. Determination of the rate constants for the NCO((XII)-I-2)+Cl(P-2) and Cl(P-2)+CINCO(X(1)A ') reactions at 293 and 345 K [J]. J Phys Chem A, 2005, 109(24): 5388-5397.
    [39]Gao Y D, MacDonald R G.Determination of the Rate Constant for the NCO(X2) + O(3P) Reaction at 292 K[J]. J Phys Chem A, 2003, 107 (23), 4625 -4635.
    [40]Park J, Hershberger J F. Kinnetics of NCO plus hydrocarbon reactions [J]. Chem Phys Lett , 1994, 218(5-6): 537-543.
    [41] Zhou Z Y, Guo L, Gao H W. Theoretical studies on the mechanism and kinetics of the reaction of F atom with NCO radical[J]. Int J Chem Kinet, 2003,35(2): 52-60.
    [42] Edwards M A, Hersberger J F. Kinetics of the CN+CH2CO and NCO+CH2CO reactions [J]. Chem Phys, 1998, 234(1-3): 231-237.
    [43]Becker K H, Kurtenbach R, Schmidt F, Wiesen P. Temperature and pressure dependence of the NCO + C2H2 reaction [J].Chem Phys Lett ,1995, 235(3-4): 230-234.
    [44]Schuck A, Volpp H R, Wolfrum J. Kinetic investigation of the reactions of NCO radicals with alkanes in the temperature range 294 to 1113 K[J]. Combustion and Flame, 1994, 99(3-4): 491-498.
    [45]Perry R A. Kinetics of the reaction of NCO with ethene and oxygen over the temperature range 295–662K[J]. Sym (Int) Combustion,1988, 21(1): 913-918.
    [46]Charlton T R, Okamura T, Thrush B A. Laser-induced fluorescence of NCO in the gas phase[J].Chem Phys Lett , 1982, 89(2): 98-100.
    [47]Tang Y Z, Sun H, Sun JY, Pan Y R, Li Z S, Wang R S. Theoretical study of H-abstraction reaction of C2H5OH with NCO[J]. Chem Phys, 2007, 337(1-3): 119-124.
    [48]Shuji S, Takayoshi A. Microwave spectrum of the NCO radical [J]. Journal of Molecular Spectroscopy, 1970, 34(3): 231-237.
    [49]Zhang Z Q, Hu C J, Pei LS, et al. The rate constants of the reactions of NCO with SO2 or CS2 [J]. Acta physico-chimica simica. 2004, 20(5): 535-539.
    [50]Chen H T, Ho J J. Theoretical Study of NCO and RCCH (R = H, CH3, F, Cl, CN) [3 + 2] Cycloaddition Reactions [J]. J. Phys. Chem. A, 2003,107 (38): 7643 -7649.
    [51]Hu C J, Liu Y Z, Pei L S, Dai J H, Chen Y, Chen C X, Ma X X. Collisional quenching of NCO (A(2)Sigma(+)) by some inorganic molecules[J]. Chem Phys, 2003, 289(2-3): 389-396.
    [52]Gomez S, Lambert H M, Houston P L. The 193-nm photodissociation of NCO[J]. J Phys Chem A, 2001, 105(26): 6342-6352.
    [53]Hou H, Wang B S, Gu Y S. Mechanism and kinetics of the F+NCO reaction[J]. Actaphysico-chimica simica. 2000, 16(6): 517-521.
    [54]Ludwig W, Brandt B, Friedrichs G, et al. Kinetics of the reaction C2H5+HO2 by time-resolved mass spectrometry [J]. J Phys Chem A, 2006, 110(9); 3330-3337.
    [55]Pimentel A S, Payne W A, Nesbitt F L, et al. Rate constant for the reaction H+C2H5 at T=150-295 K [J]. J Phys Chem A, 2004, 108(35); 7204-7210.
    [56]Zhu R S, Xu Z F, Lin M C. Ab initio studies of alkyl radical reactions: Combination and disproportionation reactions of CH3 with C2H5, and the decomposition of chemically activated C3H8 [J]. J Chem Phys, 2004, 120(14): 6566-6573.
    [57] Sheng L, Li Z S, Liu J Y, et al. Theoretical study on the rate constants for the C2H5+HBr -> C2H6+Br reaction[J]. J Computational Chem, 2004, 25(3): 423-428.
    [58]Cody R J, Romani P N, Nesbitt F L, et al. Rate constant for the reaction CH3+CH3 -> C2H6 at T=155 K and model calculation of the CH3 abundance in the atmospheres of Saturn and Neptune[J]. J Geophys Res-Planets, 2003, 108(E11).
    [59]Hack W, Hoyermann K, Olzmann M, et al. Mechanisms and rates of the reactions C2H5+O and 1-C3H7+O[J]. Proceedings of the Combustion Institute, 2002, 29(Part1): 1247-1255.
    [60]Cody R J, Payne W A, Thorn R P, et al. Rate constant for the recombination reaction CH3+CH3 -> C2H6 at T=298 and 202 K [J]. J Chem Phys, 2002, 106(25): 6060-6067.
    [61]Kaiser E W. Mechanism of the reaction C2H5+O-2 from 298 to 680 K [J]. J Chem Phys, 2002, 106(7): 1256-1265.
    [62]Lee A Y T, Yung Y L, Moses J. Photochemical modeling of CH3 abundances in the outer solar system[J]. J Geophys Res-Planets, 2000, 105(E8): 20207-20225.
    [63]Fahr A, Laufer A H, Tardy D C. Pressure effect on CH3 and C2H3 cross-radical reactions[J]. J Phys Chem A, 1999, 103(42); 8433-8439.
    [64]Krasnoperov L N, Mehta K. Kinetic study of CH3+HBr and CH3+Br reactions by laser photolysis-transient absorption over 1-100 bar pressure range[J]. J Phys Chem A, 1999, 103(40); 8008-8020.
    [65](a) Kerr J B. Trends in total ozone at Toronto between 1960 and 1991[J]. J Geophys Res, 1991, 96(D11): 20703-20709; (b) Stolarski R, Bojkoy R, Bishop L, et al. Measured trends in stratospheric ozone[J]. Science, 1992, 256(5055): 342-349; (c) Ravishankara A R, Turnipseed A A, Jensen N R, et al. Do hydrofluorocarbons destroy stratospheric ozone?[J]. Science, 1994, 263(5143): 71-75; (d) Kerr R A. The ozone hole reaches a new low[J]. Science, 1993, 262(5133): 501; (e) Kerr J B, McElroy C T. Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion[J]. Science, 1993, 262(5136): 1032-1034; (f) Newman A. What-ifs for a northern ozone hole[J]. Environ Sci Technol, 1993, 27(8): 1488-1491; (g) Rosswall T. Greenhouse gases and global change: International collaboration[J]. Environ Sci Technol, 1991, 25(4): 567-573.
    [66]R. Atkinson, J Phys Chem. Ref. Data, Monogr.1, 1989
    [67]T. D. Fang, P. H. Taylor, B. Dellinger, C. J. Ehlers, R. J. Bery, J Phys Chem A,1997,101,5758
    [68]麦克迈克尔A J《危险的地球》[M].南京:江苏人民出版社,2000年.
    [69]Ferguson J D, Johnson N L, Kekenes-Huskey P M, et al. Unimolecular rate constants for HX or DX elimination (X = F, Cl) from Chemically Activated CF3CH2CH2Cl, C2H5CH2Cl, and C2D5CH2Cl: Threshold energies for HF and HCl elimination[J]. J Phys Chem A, 2005, 109(20): 4540-4551.
    [70]唐有祺,王夔.《化学与社会》[M].北京:高等教育出版社,1997:p96-103.
    [71]Kozlov S N, Orkin V L, Kurylo M J. An investigation of the reactivity of OH with fluoroethanes: CH3CH2F (HFC-161), CH2FCH2F (HFC-152), and CH3CHF2 (HFC-152a)[J]. J Phys Chem A, 2003, 107(13): 2239-2246.
    [72]Schmoltner A M, Talukdar R K, Warren R F, et al. Rate coefficients for reactions of several hydrofluorocarbons with OH and O(1D) and their atmospheric lifetimes[J]. J Phys Chem, 1993, 97(35): 8976-8982.
    [73]Hsu K J, DeMore W B. Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements[J]. J Phys Chem, 1995, 99(4): 1235-1244.
    [74]Singleton D L, Paraskevopoulos G, Irwin R S. Reaction of OH with CH3CH2F—the extent of H abstraction from the alpha and beta positions[J]. J Phys Chem, 1980, 84(19): 2339-2343.
    [75]Nip W S, Singleton D L, Overend R, et al. Rates of OH radical reactions. 5. Reactions with CH3F, CH2F2, CHF3, CH3CH2F, and CH3CHF2 at 297 K[J]. J Phys Chem, 1979, 83(19): 2440-2443.
    [76]Huang J, Prinn R G. Critical evaluation of emissions of potential new gases for OH estimation[J]. J Geophys Res-Atmos, 2002, 107(D24): 4784-4784.
    [77]Orkin V L, Khamaganov V G, Determination of rate constants for reactions of some hydrohaloalkanes with OH radicals and their atmospheric lifetimes[J]. J Atmos Chem, 1993, 16(2): 157-167.
    [78]Jeong K M, Hsu K J, Jeffries J B, et al. Kinetics of the reactions of OH with C2H6, CH3CCl3, CH2ClCHCl2, CH2ClCClF2, and CH2FCF3[J]. J Phys Chem, 1984, 88(6): 1222-1226.
    [79]Bednarek G, Breil M, Hoffmann A, et al. Rate and mechanism of the atmospheric degradation of 1,1,1,2-tetrafluoroethane (HFC-134a)[J]. Ber Bunsen Phys Chem, 1996, 100(5): 528-539.
    [80]Morris R A, Viggiano A A, Arnold S T, et al. Reactions of atmospheric ions with selected hydrofluorocarbons[J]. J Phys Chem, 1995, 99(16): 5992-5999.
    [81]Leu G H, Lee Y P, Temperature-dependence of the rate coefficient of the reaction OH + CF3CH2F over the range 255-424 K[J]. J Chin Chem Soc-Taip, 1994, 41(6): 645-649.
    [82]Gierczak T, Talukdar R, Vaghjiani G L, Lovejoy E. R, et al. Atmospheric fate of hydrofluoroethanes and hydrofluorochloroethanes. 1. Rate coefficients for reactions with OH [J]. J Geophys Res-Atmos, 1991, 96(D3): 5001-5011.
    [83]Jordan A, Frank H, Trifluoroacetate in the environment. Evidence for sources other than HFC/HCFCs[J]. Environ Sci Technol, 1999, 33(4): 522-527.
    [84]Simmonds P G, O-Doherty S, Huang, J, et al. Calculated trends and the atmospheric abundance of 1,1,1,2-tetrafluoroethane, 1,1-dichloro-1-fluoroethane, and 1-chloro-1, 1-difluoroethane using automated in-situ gas chromatography mass spectrometry measurements recorded at Mace Head, Ireland, from October 1994 to March 1997[J]. J Geophys Res-Atmos, 1998, 103(D13): 16029-16037.
    [85]DeMore W B. Rate constants for the reactions of OH with HFC-134a (CF3CH2F) and HFC-134 (CHF2CHF2)[J]. Geophys Res Lett, 1993, 20(13): 1359-1362.
    [86]Zhang Z Y, Huie R E, Kurylo M J. Rate Constants for the reactions of OH with CH3CFCl2, (HCFC-141b), CH3CF2Cl(HCFC-l42b), and CH2FCF3(HFC-134a)[J]. J Phys Chem, 1992, 96(4): 1533-1535.
    [87]Zhong J X, Mu Y J, Yang W X, et al. Photooxidation of hydrochlorofluocarbons and hydrofluorocarbons initiated by OH radicals[J]. J Environ Sciences, 1996, 8(2): 228-234.
    [88]Kanakidou M, Dentener F J, Crutzen P J, A Global 3-Dimensional Study of the Fate of HCFCs and HFC-134a in the Troposphere[J]. J Geophys Res-Atmos, 1995, 100(D9): 18781-18801.
    [89]Tschuikow-Roux E, Yano T, Niedzielsk J. Reactions of ground state chlorine atoms with fluorinated methanes and ethanes[J]. J Chem Phys, 1985, 82(1): 65-74.
    [90]Hitsuda K, Takahashi K, Matsumi Y, et al. Kinetics of the reactions of Cl(2P1/2) and Cl(2P3/2) atoms with C2H6, C2D6, CH3F, C2H5F, and CH3CF3 at 298 K[J]. J Phys Chem A, 2001, 105(21): 5131-5136.
    [91]Taketani F, Nakayama T, Takahashi K, et al. Atmospheric chemistry of CH3CHF2 (HFC-152a): Kinetics, mechanisms, and products of Cl Atom and OH radical-initiated oxidation in the presence and absence of NOx[J]. J Phys Chem A, 2005, 109(40): 9061-9069.
    [92]Wallington T J, Hurley M D. A kinetic-study of the reaction of chlorine atoms with CF3CHCl2, CF3CH2F, CFCl2CH3, CF2ClCH3, CHF2CH3, CH3D, CH2D2, CHD3, CD4, and CD3Cl at 295±2 K[J]. Chem Phys Lett, 1992, 189(4-5): 437-442.
    [93]Tuazon E C, Atkinson R , Tropospheric transformation products of a series of hydrofluorocarbons and hydrochlorofluorocarbons[J]. J Atmos Chem, 1993, 17(2): 179-199.
    [94]Edney E O, Driscoll D J. Chlorine initiated photooxidation studies of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs): Results for HCFC-22(CHClF2); HFC-41 (CH3F); HCFC-124 (CClFHCF3); HFC-125 (CF3CHF2); HFC-134a (CF3CH2F); HCFC-142b (CClF2CH3); and HFC-152a (CHF2CH3)[J]. Int J Chem Kinet, 1992, 24(12) 1067-1081.
    [95]Tuazon E C, Atkinson R, Corchnoy S B. Rate constants for the gas-phase reactions of Cl atoms with a series of hydrofluorocarbons and hydrochlorofluorocarbons at 298 K±2 K[J]. Int J Chem Kinet, 1992, 24 (7): 639-648.
    [96]Kaiser E W. Relative rate constants for reactions of HFC-152a, 143, 143a, 134a, and HCFC 124 with F or Cl atoms and for CF2CH3, CF2HCH2, and CF3CFH radicals with F2, Cl2, and O2[J]. Int J Chem Kinet, 1993, 25(8): 667-680.
    [97]Yano T, Tschuikow-roux E. Competitive photochlorination of the fluoroethanes CH3CH2, CH2FCH2F and CHF2CHF2[J]. J Photochem, 1986, 32(1): 25-37.
    [98]Kono M, Y, Matsumi, Reaction processes of O(1D) with fluoroethane compounds[J]. J Phys Chem A, 2001, 105(1): 65-69.
    [99]Tseregounis S I, Riley M J, Solubility of HFC-134a refrigerant in glycol-type compounds-Effects of glycol structure[J]. Aiche J, 1994, 40(4): 726-737.
    [100]Liu J Y, Li Z S, Dai Z W, et al. Direct ab initio dynamics calculations on the rate constants for the hydrogen-abstraction reaction of C2H5F with O(3P)[J]. Theor Chem Acc, 2002, 108(3): 179-186.
    [101]Shiina H, Tsuchiya K, Oya M, et al. Reaction rates of O(3P) atom with fluoroethanes at 1000-1400 K[J]. Chem Phys Lett, 2001, 336(3-4): 242-247.
    [102]Peverall R, Kennedy R A, Mayhew C A, et al. Selected ion flow tube study of the reactions of O- and O2- with CHCl2F, CHClF2, CHF3, CH2ClF, CH2F2, CH3F, CHF2CHF2, CH2FCF3, and CH3CHF2[J]. Int J Mass Spectrometry and Ion Processes, 1998, 171(1-3): 51-72.
    [103]李宗和,吴立明,刘若庄. CHF2CH3(HFC-152a)与F反应的反应途经及反应速率常数研究[J].化学学报, 1997, 55, 1061-1065.
    [104]Warren R, Gierczak T. A study of O (1D) reactions with CFC substitutes[J]. Chem. Phys. Lett. 1991,5(1-2), 403-409.
    [105]Wilson E W, Jacoby A M, Kukta S J, et al. Rate constants for reaction of CH2FCH2F (HFC-152) and CH3CHF2 (HFC-152a) with hydroxyl radicals[J]. J Phys Chem A, 2003, 107(44): 9357-9361.
    [106]Wilson E W, Sawyer A A, Sawyer H A. Rates of reaction for cyclopropane and difluoromethoxydifluoromethane with hydroxyl radicals[J]. J Phys Chem A, 2001, 105(9): 1445-1448.
    [107]Taghikhani M, Parsafar G A, Sabzyan H. Theoretical investigation of the hydrogen abstraction reaction of the OH radical with CH3CHF2 (HFC152-a): A dual level direct density functional theory dynamics study[J]. J Phys Chem A, 2005, 109(36): 8158-8167.
    [108]Nielsen O J. Rate constants for the gas-phase reactions of OH radicals with CH3CHF2 and CHCl2CF3 over the temperature range 295-388 K[J]. Chem Phys Lett, 1991, 187(3): 286-290.
    [109]Mashino M, Ninomiya Y, Kawasaki M, et al. Atmospheric chemistry of CF3CF=CF2: Kinetics and mechanism of its reactions with OH radicals, Cl atoms, and ozone[J]. J Phys Chem A, 2000, 104(31): 7255-7260.
    [110]DeMore W B, Wilson E W. Rate constant and temperature dependence for the reaction of hydroxyl radicals with 2-fluoropropane (HFC-281ea)[J]. J Phys Chem A, 1999, 103(5): 573-576.
    [111]Orkin V L, Huie R E, Kurylo M J. Rate constants for the reactions of OH with HFC-245cb (CH3CF2CF3) and some fluoroalkenes (CH2CHCF3, CH2CFCF3, CF2CFCF3, and CF2CF2)[J]. J Phys Chem A, 1997, 101(48): 9118-9124.
    [112]Chen J Y, Young V, Niki H, et al. Kinetic and mechanistic studies for reactions of CF3CH2CHF2 (HFC-245fa) initiated by H-atom abstraction using atomic chlorine[J]. J Phys Chem A, 1997, 101(14): 2648-2653.
    [113]Carr S, Treacy J J, Sidebottom H W, et al. Kinetics and mechanisms for the reaction of hydroxyl radicals with trifluoroacetic-acid under atmospheric conditions[J]. Chem Phys Lett, 1994, 227(1-2): 39-44.
    [114]Chen L, Tokuhashi K, Kutsuna S, et al. Rate constants for the gas-phase reaction of CF3CF2CF2CF2CF2CHF2 with OH radicals at 250-430 K[J]. Int J Chem Kinet, 2004, 36(1): 26-33.
    [1]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社, 1985.
    [2]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社, 1982.
    [3]金松寿.量子化学基础及其应用[M].上海:上海科学技术出版社,1980.
    [4]陈念陔,高坡,乐征宇.量子化学理论基础[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [5]Born M, Huang K. Dynamical Theory of Crystal Lattices[M]. New York: Oxford University Press, 1954.
    [6]Born M, Oppenheimer R. Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84, 457-484.
    [7]Hartreee D R. Proc. Cambridge Phil. Soc. 1928, 24, 89.
    [8]Fock V. Ann. Physik. 1930, 61: 126.
    [9]Hartree D. Calculations of Atomic Structure[M]. Wiley, 1957.
    [10]Roothaan C C J. New developments in molecular orbital theory[J]. Rev Mod Phys, 1951, 23(2): 69-89.
    [11]Thomas L H. Calculation of atom field[J]. Proc. Combridge Philos.Soc, 1927, 23: 542.
    [12]Fermi E. Statistical method of investigating electrons in atom[J]. Z Phys, 1928, 48: 73.
    [13]Dirac M A P. Exchange phenomena in the Thomas atom[J]. Combridge Philos Soc, 1930, 26: 376.
    [14]Wigner P E. On the interaction of electrons in metals[J]. Phys Rev, 1934, 46: 1002.
    [15]Hohenberg P,Kohn W. Inhomogeneous Electron Gas[J]. Phys Rev, 1964, B136:864.
    [16]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys Rev, 1965, A140:1133.
    [17]Sham L J, Kohn W. One-particle properties of an inhomogeneous interacting electron gas[J]. Phys Rev, 1966, 145:561.
    [18]赵学庄,罗渝然,臧雅茹等.《化学反应动力学原理》下册[M].高等教育出版社,1990.
    [19]Parr R G, Yang W. Density-functional theory of atoms and molecules Oxford Univ[M]. Press: Oxford, 1989.
    [20]Pople J A, Head-Gordon M, Raghavachari K. Quadratic configuration interaction: A general technique for determining electron correlation energies[J]. J Chem Phys, 1987, 87(10): 5968-5975.
    [21] Szabo A, Ostlund N S. Modern Quantum Chemistry, Introduction toAdvanced Electronic Structure Theory[M]. Dover, New York, 1996.
    [22]M?ller C , Plesset M S. Note on an Approximation Treatment for Many-Electron Systems[J]. Phys Rev, 1934, 46: 618-622.
    [23]Head-Gordon M, Pople J A, Frisch M J. MP2 energy evaluation by direct methods[J]. Chem. Phys Lett., 1988, 153(6): 503-506.
    [24]Pople J A, Seeger R, Krishnan R. Variational configuration interaction methods and comparison with perturbation theory[J]. Int J Quantum Chem, 1977, 11(1): 149-161.
    [25]Foresman J B, Head-Gordon M, Pople J A, et al. Toward a Systematic Molecular Orbital Theory for Excited States[J]. J Phys Chem, 1992, 96(1): 135-149.
    [26]Krishnan R, Schlegel H B, Pople J A. Derivative studies in configuration interaction theory[J]. J Chem Phys, 1980, 72(8): 4654-4655.
    [27]Brooks B R, Laidig W D, Saxe P, et al. Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach[J]. J Chem Phys, 1980, 17(8): 4652-4653.
    [28]Salter E A, Trucks G W, Bartlett R J. Analytic energy derivatives in many-body methods I. First derivatives[J]. J Chem Phys, 1989, 90(3): 1752-1766.
    [29]Raghavachari K, Pople J A. Calculation of one-electron properties using limited configuration interaction techniques[J]. Int J Quantum Chem, 1981, 20(5): 1067-1071.
    [30]Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys Rev, 1964, 136, B864-B871.
    [31]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys Rev, 1965, 140, A1133-A1138.
    [32]Fukui K. Varational principles in a chemical reaction[J]. Int J Quantum Chem, 1981, 15: 633-641.
    [33]Fukui K, Tachibana A, Yamashita K. Toward chemodynamitcs[J]. Int J Quantum Chem, 1981, 15: 621-632.
    [34]Slater J C. Quantum Theory of Molecular and Solids: The Self-Consistent Field for Molecular and Solids McGraw-Hill[M]. New York, 1974.
    [35]Salahub D R, Zerner M C,et al. The Challenge of d and f Electrons[M]. Washington, D.C, 1989.
    [36]Pople J A , Gill P M W , Johnson B G. Kohn-Sham density-functional theory within a finite basis set[J]. Chem Phys Lett, 1992, 199(6): 557-560.
    [37]Johnson B G, Fisch M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy[J]. J Chem Phys, 1994, 100(10): 7429-7442.
    [38]Labanowski J K, Andzelm J W, eds. Density Functional Methods in Chemistry[M]. Springer-Verlag: New York, 1991.
    [39]Hegarty D, Robb M A. Application of unitary group methods to configuration interactioncalculations[J]. Mol Phys, 1979, 38(6): 1795-1812.
    [40]Garrett B C, Truhlar D G. Generalized transition state theory. canonical variational calculations using the bond energy-bond order method for bimolecular reactions of combustion products[J]. J Am Chem Soc, 1979, 101(18): 5207-5217.
    [41]Garrett B C, Truhlar D G. Semiclassical Tunneling Calculations[J]. J Phys Chem, 1979, 83(11): 2921-2925.
    [42]傅献彩,沈文霞,姚天扬.《物理化学》下册[M].高等教育出版社,1990.
    [43]金家骏.《分子化学反应动态学》[M].上海交通大学出版社,1988.
    [44]Garrett B C, Truhlar D G. Generalized transition state theory. Bond energy-bond order method for canonical variational calculations with application to hydrogen atom transfer reactions[J]. J Am Chem Soc, 1979, 101(16): 4534-4548.
    [45]Smith I W M. Kinetics and Dynamics of Elementary Gas Reactions[M]. Butterworths, London, 1980.
    [46]Moore J W, Pearson R G. Kinetics and Mechannism, 3rd Ed[M]. Wiley, New York. 1980.
    [47]Miller W H. Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants[J]. J Chem Phys, 1974, 61(5): 1823-1834.
    [48]Truhlar D G, Gordon M S. From force fields to dynamics: Classical and quantal paths [J].Science, 1990, 249(4968): 491-498.
    [49]Espinosa-Garcia J, Corchado J C. Reliability of the single-point calculation technique at characteristic points of the potential-energy [J]. J Phys Chem, 1995, 99(21): 8613-8616.
    [50]Garrett B C, Truhlar D G. Generalized transition-state theory-quantum effects for collinear reaction of hydrogen molecules and isotopically substituted hydrogen molecules [J]. J Phys Chem, 1979, 83(8): 1079-1112,
    [51]Garrett B C. Correction [J]. J. Phys Chem, 1980, 84(6): 682-682.
    [1]Schlegel H B, Sosa C. Ab initio molecular-orbital calculations on F + H2→HF + H and OH + H2→H2O + H using unrestricted moller-plesset perturbation-theory with spin projection[J]. Chem Phys Lett, 1988, 145(4): 329-333.
    [2]Bowman C T. Control of combustion-generated nitrogen oxide emissions: technology driven by regulation[J]. Symp (Int) Combust. 1992, 24: 859-878.
    [3]Perry R A, Siebers D L. Rapid reduction of nitrogen-oxides in exhaust-gas streams[J]. Nature, 1986, 324(6098): 657-658.
    [4]Miller J A, Bowman C T. Kinetic modeling of the reduction of nitric-oxide in combustion products by isocyanic acid[J]. Int J Chem Kinet, 1991, 23(4): 289-313.
    [5]Becker K H, Kurtenbach R, Schmidt F, Wiesen P. Kinetics of the NCO radical reacting with atoms and selected molecules[J]. Combustion and Flame, 2000, 120(4): 570-577.
    [6] Edwards M A, Hershberger J F. Kinetics of the CN+CH2CO and NCO+CH2CO reactions[J]. Chem Phys , 1998, 234(1-3): 231-237.
    [7] Pei L S, Hu C J, Liu Y Z, Zhang Z Q, Chen Y, Chen C X. Kinetic studies on reactions of NCO(X 2Πi) with alcohol molecules[J]. Chem l Phys Lett , 2003, 381(1-2): 199-204.
    [8] Brownsword R A, Laurent T, Vatsa R K, Volpp H -R, Wolfrum J. Branching ratio for the H + NCO channel in the 193 nm photodissociation of HNCO[J]. Chem Phys Lett, 1996, 249(3-4): 162-166.
    [9] Baronavski A P, Owrutsky J C, Pasternack L. Fluorescence quenching of NCO in CH4/O2 and CH4/air premixed low pressure flames[J]. Chem Phys Lett, 1997, 272(3-4): 239-244.
    [10]Hancock G, Mckendrick K G. Vibrational relaxation of NCO() by rare gases, and rate constant measurement of the NCO + NO reaction[J]. Chem Phys Lett, 1986, 127(2): 125-129.
    [11]Chang Y W, Wang N S. Rates of the reactions CN + H2CO and NCO + H2CO in the temperature range 294–769 K[J]. Chem Phys, 1995, 200(3): 431-437.
    [12]Zhang W C, Du, B, Feng C J. Theoretical study of reactionme chanism for NCO+HCNO[J].Chem Phys Lett , 2007 1-6.
    [13]Macdonald, R G. Determination of the rate constant and product channels for the radical-radical reaction NCO(X (2)Pi) + C2H5 (X (2) A '') at 293 K[J]. Phys Chem Chem Phys, 2007, 9(31): 4301-4314.
    [14] Feng W H, Hershberger, J F. Kinetics of the NCO + HCNO reaction [J]. J Phys Chem A, 2007, 3831-3835
    [15]Xie H B, Wang J, Zhang S W, et al. An ignored but most favorable channel forNCO+C2H2 reaction [J]. J Chem Phys, 2006, 125(12): 124317-1-10
    [16]Gao Y D, MacDonald R G. Determination of the rate constant for the radical-radical reaction NCO(X-2 Pi)+CH3(X(2)A(2)'') at 293 K and an estimate of possible product channels [J]. J Phys Chem A, 2006, 110(3): 977-989.
    [17]Gao Y D, MacDonald R G. Determination of the rate constants for the NCO((XII)-I-2)+Cl(P-2) and Cl(P-2)+CINCO(X(1)A ') reactions at 293 and 345 K [J]. J Phys Chem A, 2005, 109(24): 5388-5397.
    [18]Gao Y D, MacDonald R G.Determination of the Rate Constant for the NCO(X2) + O(3P) Reaction at 292 K[J]. J Phys Chem A, 2003, 107 (23), 4625 -4635.
    [19]Park J, Hershberger J F. Kinnetics of NCO plus hydrocarbon reactions [J]. Chem Phys Lett , 1994, 218(5-6): 537-543.
    [20] Zhou Z Y, Guo L, Gao H W. Theoretical studies on the mechanism and kinetics of the reaction of F atom with NCO radical[J]. Int J Chem Kinet, 2003,35(2): 52-60.
    [21] Edwards M A, Hersberger J F. Kinetics of the CN+CH2CO and NCO+CH2CO reactions [J]. Chem Phys, 1998, 234(1-3): 231-237.
    [22]Becker K H, Kurtenbach R, Schmidt F, Wiesen P. Temperature and pressure dependence of the NCO + C2H2 reaction [J].Chem Phys Lett ,1995, 235(3-4): 230-234.
    [23]Schuck A, Volpp H R, Wolfrum J. Kinetic investigation of the reactions of NCO radicals with alkanes in the temperature range 294 to 1113 K[J]. Combustion and Flame, 1994, 99(3-4): 491-498.
    [24]Perry R A. Kinetics of the reaction of NCO with ethene and oxygen over the temperature range 295–662K*[J]. Sym (Int) Combustion,1988, 21(1): 913-918.
    [25]Charlton T R, Okamura T, Thrush B A. Laser-induced fluorescence of NCO in the gas phase[J].Chem Phys Lett , 1982, 89(2): 98-100.
    [26]Tang Y Z, Sun H, Sun J Y, Pan Y R, Li Z S, Wang R S. Theoretical study of H-abstraction reaction of C2H5OH with NCO[J]. Chem Phys, 2007, 337(1-3): 119-124.
    [27]Shuji S, Takayoshi A. Microwave spectrum of the NCO radical [J]. Journal of Molecular Spectroscopy, 1970, 34(3): 231-237.
    [28]Zhang Z Q, Hu C J, Pei LS, et al. The rate constants of the reactions of NCO with SO2 or CS2 [J]. Acta physico-chimica simica. 2004, 20(5): 535-539.
    [29]Chen H T, Ho J J. Theoretical Study of NCO and RCCH (R = H, CH3, F, Cl, CN) [3 + 2] Cycloaddition Reactions [J]. J. Phys. Chem. A, 2003,107 (38): 7643 -7649.
    [30]Hu C J, Liu Y Z, Pei L S, Dai J H, Chen Y, Chen C X, Ma X X. Collisional quenching of NCO (A(2)Sigma(+)) by some inorganic molecules[J]. Chem Phys,2003, 289(2-3): 389-396.
    [31]Gomez S, Lambert H M, Houston P L. The 193-nm photodissociation of NCO[J]. J Phys Chem A, 2001, 105(26): 6342-6352.
    [32]Hou H, Wang B S, Gu Y S. Mechanism and kinetics of the F+NCO reaction[J]. Actaphysico-chimica simica. 2000, 16(6): 517-521.
    [33]Schlegel H B. Potential-energy curves using unrestricted moller-plesset perturbation-theory with spin annihilation [J]. J Chem Phys, 1986, 84(8): 4530-4534.
    [34]Jensen F. A remarkable large effect of spin contamination on calculated vibrational frequencies[J]. Chem Phys Lett, 1990, 169(6): 519-528.
    [35]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G. A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Stefanov B B, Liu G., Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B G., Chen W, Wong M W, Andres J L, Head-Gordon M, Replogle E S, Pople J A (1998) Gaussian, Inc., Pittsburgh PA, Revision A.9
    [36]Ludwig W, Brandt B, Friedrichs G, et al. Kinetics of the reaction C2H5+HO2 by time-resolved mass spectrometry [J]. J Phys Chem A, 2006, 110(9); 3330-3337.
    [37]Pimentel A S, Payne W A, Nesbitt F L, et al. Rate constant for the reaction H+C2H5 at T=150-295 K [J]. J Phys Chem A, 2004, 108(35); 7204-7210.
    [38]Zhu R S, Xu Z F, Lin M C. Ab initio studies of alkyl radical reactions: Combination and disproportionation reactions of CH3 with C2H5, and the decomposition of chemically activated C3H8 [J]. J Chem Phys, 2004, 120(14): 6566-6573.
    [39] Sheng L, Li Z S, Liu J Y, et al. Theoretical study on the rate constants for the C2H5+HBr -> C2H6+Br reaction[J]. J Computational Chem, 2004, 25(3): 423-428.
    [40]Cody R J, Romani P N, Nesbitt F L, et al. Rate constant for the reaction CH3+CH3 -> C2H6 at T=155 K and model calculation of the CH3 abundance in the atmospheres of Saturn and Neptune[J]. J Geophys Res-Planets, 2003, 108(E11).
    [41]Hack W, Hoyermann K, Olzmann M, et al. Mechanisms and rates of the reactions C2H5+O and 1-C3H7+O[J]. Proceedings of the Combustion Institute, 2002, 29(Part1): 1247-1255.
    [42]Cody R J, Payne W A, Thorn R P, et al. Rate constant for the recombination reaction CH3+CH3 -> C2H6 at T=298 and 202 K [J]. J Chem Phys, 2002, 106(25): 6060-6067.
    [43]Kaiser E W. Mechanism of the reaction C2H5+O-2 from 298 to 680 K [J]. J Chem Phys, 2002, 106(7): 1256-1265.
    [44]Lee A Y T, Yung Y L, Moses J. Photochemical modeling of CH3 abundances in the outer solar system[J]. J Geophys Res-Planets, 2000, 105(E8): 20207-20225.
    [45]Fahr A, Laufer A H, Tardy D C. Pressure effect on CH3 and C2H3 cross-radical reactions[J]. J Phys Chem A, 1999, 103(42); 8433-8439.
    [46]Krasnoperov L N, Mehta K. Kinetic study of CH3+HBr and CH3+Br reactions by laser photolysis-transient absorption over 1-100 bar pressure range[J]. J Phys Chem A, 1999, 103(40); 8008-8020.
    [47]Gonzalez C, Schlegel H B. Reaction-path following in mass-weighted internal coordinates [J]. J Phys Chem, 1990, 94(14); 5523-5527.
    [48]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Jr, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M., Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02, (Gaussian, Inc.,Pittsburgh PA, 2003).
    [1]Georgievskii Y, Klippenstein S J. Strange kinetics of the C2H6+CNreaction explained [J]. J Phys Chem A , 2007, 111(19); 3802-3811.
    [2]Vasudevan V, Hanson R K, Golden D M, et al. High-temperature shock tube measurements of methyl radical decomposition [J]. J Phys Chem A , 2007, 111(19); 4062-4072.
    [3]Li W, Huang C S, Patel M, et al. State-resolved reactive scattering by slice imaging: A new view of the Cl+C2H6 reaction [J]. J Chem Phys, 2006, 124 (1), 011102(1-4).
    [4]Kerkeni B, Clary D C. The effect of the torsional and stretching vibrations of C2H6 on the H+C2H6 -> H-2+C2H5 reaction [J]. J Chem Phys, 2006, 123 (6), 064305(1-8).
    [5]Krasnoperov L N, Michael J V. Shock tube studies using a novel multipass absorption cell: Rate constant results for OH+H-2 and OH+C2H6 [J]. J Phys Chem A , 2004, 108(26); 5643-5648.
    [6]Olkhov R V, Smith I W M. Time-resolved experiments on the atmospheric oxidation of C2H6 and some C-2 hydrofluorocarbons [J]. Phys Chem Chem Phys, 2003, 5(16): 3436-3442.
    [7] McKee K, Blitz M A, Hughes K J, et al. H atom branching ratios from the reactions of CH with C2H2, C2H4, C2H6, and neo-C5H12 at room temperature and 25 torr [J]. J Phys Chem A , 2003, 107(30): 5710-5716.
    [8]Galland N, Caralp F, Hannachi Y, et al. Experimental and theoretical studies of the methylidyne CH((XII)-I-2) radical reaction with ethane (C2H6): Overall rate constant and product channels[J]. J Phys Chem A , 2003, 107(28): 5419-5426.
    [9]Ceursters B, Nguyen H MT, Nguyen M T, et al. The reaction of C2H radicals with C2H6: Absolute rate coefficient measurements for T=295-800 K, and quantum chemical study of the molecular mechanism [J]. Phys Chem Chem Phys, 2001, 1(15): 3070-3074.
    [10]Dahl I M, Myhrvold E M, Olsbye U, et al. On the gas-phase chlorination of ethane [J]. Industrial and Engineering Chem Research. 2001, 40(10): 2226-2235.
    [11]Kandel S A, Rakitzis T P, Lev-On T, et al. Angular distributions for the Cl+C2H6 -> HCl+C2H5 reaction observed via multiphoton ionization of the C2H5 radical[J]. J Phys Chem A , 1998, 102(13): 2270-2273.
    [12]Opansky B J, Leone S R. Rate coefficients of C2H with C2H4, C2H6, and H-2 from 150 to 359 K [J]. J Phys Chem, 1996, 100(51); 19904-19910.
    [13]Mors V, Arguello G A, Hoffmann A, et al. Kinetic of the reactions of FC(O)O radicals with H NO, NO2, O-3, O(P-3), CH4,and C2H6 [J]. J Phys Chem, 1995, 99(43); 15899-15910.
    [14]Qin S, Yang H Q, Qin S, et al. A DFT study on the reaction mechanism of SrO+CH4 [J]. J of Theoretical & Computational Chem, 2008, 7(2): 189-203.
    [15]Espinosa G J,Bravo J L, Rangel, C. New analytical potential energy surface for the F(P-2)+CH4 hydrogen abstraction reaction: Kinetics and dynamics[J]. J phys chem A, 2007, 111(14): 2761-2771.
    [16]Su Z S, Qin S, Tang, D Y, et al. Theoretical study on the reaction of methane and zinc oxide in gas phase[J]. J of Molecular Structure-Theochem, 2006, 778(1-3): 41-48.
    [17]Yang H Q, Hu C W, Qin, S. Theoretical study on the reaction mechanism of CH4 with CaO[J]. Chem Phys, 2006, 330(3): 343-348.
    [18]Rangel C, Corchado J C, Espinosa-Garcia, J. Quasi-classical trajectory calculations analyzing the reactivity and dynamics of asymmetric stretch mode excitations of methane in the H+CH4 reaction [J]. J phys chem A, 2006, 110(35); 10375-10383.
    [19]Levandier D J, Chiu Y H, Dressler R A, et al. Hyperthermal reactions of O+(S-4(3/2)) with CD4 and CH4: Theory and experiment [J]. J phys chem A, 2004, 108(45): 9794-9804.
    [20]Hu C W, Yang, H Q, Wong N B, et al. Theoretical study on the mechanism of the reaction of CH4+MgO[J]. J phys chem A, 2003, 107(13): 2316-2323.
    [21] Schuck A, Volpp H R, Wofrum J. Kinetic investigation of the reactions of NCO radicals with alkanes in the temperature-range 294-K to 1113-K[J]. Combustion Flame, 1994,99(3-4): 491-498.
    [22]Park J, Hershberger J F. Kinetics of NCO plus hydrocarbon reactions [J]. Chem. Phys. Lett 1994, 218(5-6): 537-543.
    [23]Becker K H, Geiger H, Schmidt F, Wiesen P. Kinetic investigation of NCO radicals reacting with selected hydrocarbons [J]. Phys. Chem. Chem. Phys 1999, 1(23): 5305-5309.
    [24]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, revision C. 02, Gaussian Inc., Pittsburgh, PA, 2003.
    [25]Curtiss L A, Redfern P C, Raghavachari K, Rassolov V, Pople J A. Gaussian-3 theoryusing reduced Moller-Plesset order [J]. J Chem Phys, 1999,110 (10), 4703-4709.
    [26] Corchado J C, Chang Y Y, Fast P L, Villa J, Hu W P, Liu Y P, Lynch G C, Nguyen K A, Jackels C F, Melissas V S, Lynch B J, Rossi I, Coitino E L, Fernandez-Ramos A, Pu J Z, Albu T V, Steckler R, Garrett B C, Isaacson A D, Truhlar D G.. POLYRATE Version 9.1, University of Minnesota, Minneapolis, 2002.
    [27] Liu Y P, Lynch G C, Truong T N, Lu D H, Trular D G, Garrett B C. Molecular modeling of the kinetic isotope effect for the [1,5] sigmatropic rearrangement of cis-1,3-pentadiene [J] J Am Chem Soc, 1993, 115 (6): 2408-2415.
    [28] Garrett B C, Truhlar D G. Criterion of minimum state density in the transition-state theory of bimolecular reactions [J]. J Chem Phys, 1979, 70 (4): 1593-1598.
    [29]NIST Chemistry Webbook, National Institute of Standards and Technology, http://webbook.nist.gov, 2000.
    [1]Qin S, Yang H Q, Qin S, et al. A DFT study on the reaction mechanism of SrO+CH4 [J]. J of Theoretical & Computational Chem, 2008, 7(2): 189-203.
    [2]Espinosa G J,Bravo J L, Rangel, C. New analytical potential energy surface for the F(P-2)+CH4 hydrogen abstraction reaction: Kinetics and dynamics[J]. J phys chem A, 2007, 111(14): 2761-2771.
    [3]Su Z S, Qin S, Tang, D Y, et al. Theoretical study on the reaction of methane and zinc oxide in gas phase[J]. J of Molecular Structure-Theochem, 2006, 778(1-3): 41-48.
    [4]Yang H Q, Hu C W, Qin, S. Theoretical study on the reaction mechanism of CH4 with CaO[J]. Chem Phys, 2006, 330(3): 343-348.
    [5]Rangel C, Corchado J C, Espinosa-Garcia, J. Quasi-classical trajectory calculations analyzing the reactivity and dynamics of asymmetric stretch mode excitations of methane in the H+CH4 reaction [J]. J phys chem A, 2006, 110(35); 10375-10383.
    [6]Levandier D J, Chiu Y H, Dressler R A, et al. Hyperthermal reactions of O+(S-4(3/2)) with CD4 and CH4: Theory and experiment [J]. J phys chem A, 2004, 108(45): 9794-9804.
    [7]Hu C W, Yang, H Q, Wong N B, et al. Theoretical study on the mechanism of the reaction of CH4+MgO[J]. J phys chem A, 2003, 107(13): 2316-2323.
    [8]Mors V, Arguello G A, Hoffmann A, et al. Kinetic of the reactions of FC(O)O radicals with H NO, NO2, O-3, O(P-3), CH4,and C2H6 [J]. J Phys Chem, 1995, 99(43); 15899-15910.
    [9]Yamaguchi Y, Teng Y H, Shimomura S, et al. Ab initio study for selective oxidation of methane with NOx (x = 1, 2) [J]. J phys chem A , 1999, 130(41); 8272-8278.
    [10]Rasmussen CL, Rasmussen A E, Glarborg P. Sensitizing effects of NOx on CH4 oxidation at high pressure[J]. Combustion and Flame, 2008, 154(3): 529-545.
    [11]Enami S, Hoshino Y, Kawasaki M A. kinetic study of the gas-phase reactions of OIO with NO, NO2, and Cl-2[J]. Int J Chem Kinet, 2007, 39(12): 688-693.
    [12]Wang Y C, Zhang J H, Geng Z Y, et al. Theoretical investigation for the reaction of NO2 with CO catalyzed by Sc+[J]. Chem Phys Lett, 2007, 446(1-3): 8-13.
    [13]Chen C, Shepler B C, Braams B J, et al. Quasiclassical trajectory calculations of the OH+NO2 association reaction on a global potential energy surface[J]. J Chem Phys, 2007,127(10).
    [14]Jagiella S, Zabel F. Reaction of phenylperoxy radicals with NO2 at 298 K [J]. Phys Chem Chem Phys, 2007, 36(9): 5036-5051.
    [15]Williams C F, Pogrebnya S K, Clary D C. Quantum study on the branching ratio of thereaction NO2+OH [J]. J Chem Phys,2007, 126(15):
    [16]Chen H T, Musaev D G, Irle S, et al] Mechanisms of the reactions of W and W+ with NOx (x=1, 2): A computational study [J]. J phys chem A ,2007, 111(5): 982-991.
    [17]Eskola A J, Wojcik-Pastuszka D, Ratajczak E, et al. Kinetics of the reactions of CH2I, CH2Br, and CHBrCl radicals with NO2 in the temperature range 220-360 K [J]. J phys chem A ,2006, 110(44): 12177-12183.
    [18]Zhang J Y, Donahue N M. Constraining the mechanism and kinetics of OH+NO2 and HO2+NO using the multiple-well master equation[J]. J phys chem A ,2006, 110(21): 6898-6911.
    [19]Sadanaga Y, Kondo S, Hashimoto K, et al. Measurement of the rate coefficient for the OH+NO2 reaction under the atmospheric pressure: Its humidity dependence[J]. Chem Phys Lett, 2006, 419(4-6): 474-478.
    [20]Herndon S C, Ravishankara A R. Kinetics of the reaction of SH and SD with NO2 [J]. J phys chem A, 2006, 110(1): 106-113.
    [21]Pan X M, Fu Z, Li ZS, et al.Theoretical study on the mechanism of the gas-phase radical-radical reaction of CH3O with NO2 [J]. Chem Phys Lett, 2005, 409(1-3): 98-104.
    [22]Jenkin M E, Andersen M P S, Hurley M D, et al. A kinetics and mechanistic study of the OH and NO2 initiated oxidation of cyclohexa-1,3-diene in the gas phase[J]. Phys Chem Chem Phys, 2005, 7(6): 1194-1204.
    [23]Stabel J R, Johnson M S, Langer S. Rate coefficients for the gas-phase reaction of isoprene with NO3 and NO2[J]. Int J Chem Kinet. 2005, 37(2): 57-65.
    [24]Lelievre S, Bedjanian Y, Laverdet G, et al. Heterogeneous reaction of NO2 with hydrocarbon flame soot [J]. J phys chem A, 2004, 108(49): 10807-10817.
    [25]Zhang J X, Liu J Y, Li Z S, et al.Theoretical study on reaction mechanism of the fluoromethylene radical with nitrogen dioxide [J]. J phys chem A, 2004, 25(15): 1888-1894.
    [26]Xu Z F, Lin M C. Kinetics and mechanism for the CH2O+NO2 reaction: A computational study[J]. Int J Chem Kinet, 2003, 35(5): 184-190.
    [27]Dransfield T J, Donahue N M, Anderson J G. High-pressure flow reactor product study of the reactions of HOx+NO2: The role of vibrationally excited intermediates [J]. J phys chem A, 2001, 105(9): 1507-1514.
    [28]Breheny C, Hancock G, Morrell C. The CF3+NO2 rate constant measured between 1.5 and 110 Torr and between 251 and 295 K by time resolved infrared emission[J]. Phys Chem Chem Phys, 2000, 2(22): 5105-5112.
    [29]Lu X, Park J, Lin M C. Gas phase reactions of HONO with NO2, O-3, and HCl: Ab initio and TST study [J]. J phys chem A, 2000, 104(38): 8730-8738.
    [30]Ninomiya Y, Goto M, Hashimoto S, et al. Cavity ring-down spectroscopy and relative rate study of reactions of HCO radicals with O-2, NO, NO2, and Cl-2 at 295 K [J]. J phys chem A,2000, 104(32): 7556-7564.
    [31]Meyer S, Temps F. An FTIR product study of the reaction between HCO and NO2[J]. Int J Chem Kinet, 2000, 32(3): 136-145.
    [32]Stirling A. Theoretical calculations on the reactions of NO2 with Sc, Ti and V [J]. Chem Phys Lett,1998, 298(1-3): 101-106.
    [33]Sehested J, Nielsen O J, Rinaldi C A, et al. Kinetics and mechanism of the reaction of CF3 radicals with NO2[J]. Int J Chem Kinet, 1996, 28(8): 579-588.
    [34]Slack M W, Grillo A R. Proc Int Symp, Shock Tubes Waves, 1978, 11: 408.
    [35]Yamaguchi Y, Teng Y H, Shimomura S, Tabata K, Suzuki E. Ab initio study for selective oxidation of methane with NOx (x = 1, 2) [J]. J Phys Chem A, 1999, 103(41): 8272-8278.
    [36]Tabata K, Teng Y, Yamaguchi Y, Sakurai H, Suzuki E. Experimental verification of theoretically calculated transition barriers of the reactions in a gaseous selective oxidation of CH4-O-2-NO2[J]. J Phys Chem A, 2000, 104(12): 2648-2654.
    [37] Chan W T, Heck S M, Pritchard H O. Reaction of nitrogen dioxide with hydrocarbons and its influence on spontaneous ignition. A computational study[J]. Phys Chem Chem Phys, 2001, 3(1): 56-62.
    [38]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G., N. Rega, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, R. Gomperts, R. Stratmann E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G. A, Salvador P, J. Dannenberg J, Zakrzewski V G., Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, R. Martin L, Fox D J, Keith T, Al-Laham M A, PengC Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A, Gaussian 03, revision C. 02, Gaussian Inc., Pittsburgh, PA, 2003.
    [39]Lynch B J, Fast P L, Harris M, Truhlar D G. Adiabatic connection for kinetics [J]. J phys chem A,2000, 104(21): 4811-4815.
    [40]Benjamin J, Lynch Y Z, Truhlar D G [J]. The 6-31B(d) basis set and the BMC-QCISD and BMC-CCSD multicoefficient correlation methods[J]. J phys chem A, 2005, 109(8): 1643-1649.
    [41]Corchado J C, Chang Y Y, Fast P L, Villa J, Hu W P, Liu Y P, Lynch G C, Nguyen K A, Jackels C F, Melissas V S, Lynch B J, Rossi I, Coitino E L, Fernandez-Ramos A, Pu J Z, Albu T V, Steckler R, Garrett B C, Isaacson A D, Truhlar D G.. POLYRATE Version 9.1, University of Minnesota, Minneapolis, 2002.
    [42] Liu Y P, Lynch G C, Truong T N, Lu D H, Trular D G, Garrett B C. Molecular modeling of the kinetic isotope effect for the [1,5] sigmatropic rearrangement of cis-1,3-pentadiene [J] J Am Chem Soc, 1993, 115 (6): 2408-2415.
    [43]Garrett B C, Truhlar D G. Criterion of minimum state density in the transition-state theory of bimolecular reactions [J]. J Chem Phys, 1979, 70 (4): 1593-1598.
    [44]NIST Chemistry Webbook, National Institute of Standards and Technology, http://webbook.nist.gov, 2000.
    [1]R. Atkinson, J Phys Chem. Ref. Data, Monogr.1, 1989
    [2]T. D. Fang, P. H. Taylor, B. Dellinger, C. J. Ehlers, R. J. Bery, J Phys Chem A,1997,101,5758
    [3]麦克迈克尔A J《危险的地球》[M].南京:江苏人民出版社,2000年.
    [4]Ferguson J D, Johnson N L, Kekenes-Huskey P M, et al. Unimolecular rate constants for HX or DX elimination (X = F, Cl) from Chemically Activated CF3CH2CH2Cl, C2H5CH2Cl, and C2D5CH2Cl: Threshold energies for HF and HCl elimination[J]. J Phys Chem A, 2005, 109(20): 4540-4551.
    [5]唐有祺,王夔.《化学与社会》[M].北京:高等教育出版社,1997:p96-103.
    [6]Nelson D D, Zahniser M S, Kolb C E, et al. OH Reaction-kinetics and atmospheric lifetime estimates for several hydrofluorocarbons[J]. J Phys Chem, 1995, 99(44):16301-16306.
    [7] Rajakumar B, Portmann R W, Burkholder J B, et al. Rate coefficients for the reactions of OH with CF3CH2CH3 (HFC-263fb), CF3CHFCH2F (HFC-245eb), and CHF2CHFCHF2 (HFC-245ea) between 238 and 375 K[J]. J Phys Chem A, 2006, 110(23): 6724-6731.
    [8]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, revision C. 02, Gaussian Inc., Pittsburgh, PA, 2003.
    [9]Fukui K, Kato S, Fujimoto H. Constituent analysis of the potential gradient along a reaction coordinate. Method and an application to methane + tritium reaction [J]. J Am Chem Soc, 1975, 97(1): 1-7.
    [10]Gonzalez C, Schlegel H B. An improved algorithm for reaction path following [J]. J Chem Phys, 1989, 90(4): 2154-2161.
    [11]Gonzalez C, Schlegel H B. Reaction path following in mass-weighted internal coordinates[J]. J Phys Chem 1990, 94(14): 5523-5527.
    [12]Chase Jr M W. Nist-janaf Themochemical Tables,fourth edn. J Phys Chem Ref.Date,Monograph 9,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700