用户名: 密码: 验证码:
HSP70及其相互作用蛋白质HIP在应激适应建立中的生物学功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
适应(adaptation)是生物体应对生存环境调整自身生理机制以适应环境而生存的过程,是对抗应激损伤的有效机制。应激状态下,机体通过神经内分泌系统的调节,多层次启动了复杂的细胞内调控网络,导致多种内源性物质产生,如腺苷、受体、细胞内信息传导因素、效应蛋白等,以维持机体内环境的相对稳定,修复分子损伤,减轻细胞损伤的发生,增强机体对外界不良因素的抗御能力,逐步建立了对外界应激源的适应能力。热休克蛋白(heat shock/stress proteins, HSPs)是机体应激时迅速大量表达的一组蛋白质,HSP70是HSP家族中最著名的成员,作为分子伴侣参与了新生肽链的折叠、转运和蛋白质的组装聚集及降解。更值得关注的是,HSP70可以通过阻抑细胞内重要蛋白质的变性和聚集,修复已变性失活的蛋白质,稳定细胞骨架、增强细胞内抗氧化能力、保护酶功能以抗御细胞损伤,是重要的损伤修复分子。本研究室前期工作发现,用预热应激方法诱导HSP70高表达能够明显减缓应激损伤,加速机体应激适应机制的建立;进一步的研究发现,HSP70的升高显著阻抑应激所致细胞凋亡途径。因此我们推测,HSP70是应激适应建立的重要功能蛋白质,HSP70与其所调节的多种功能蛋白质及其所参与的细胞分子修复机制构成了一种多系统多层次协调的应激损伤修复体系,为应激适应机制的建立提供了可能性和生物学基础。本研究通过认识HSP70在机体应激适应过程中表达规律的变化,确认其对应激适应的促进功能,发现HSP70在此过程中的相互作用蛋白质,阐明其生物学功能及其相互关系,不仅可以深刻揭示应激适应的生物学机制及其重要蛋白质基础,而且对于探索控制应激损伤,促进应激适应的医学措施具有十分重要的意义。
     一、HSP70在应激适应建立过程中的表达规律及其生物学功能
     采用间歇性温和束缚应激的方式诱导大鼠应激适应机制的建立,以机体在应激状态下神经内分泌变化和心肌的损伤程度作为确认大鼠应激适应机制建立的重要指标。结果表明,适应大鼠应激时,HPA轴反应趋于平缓,血浆糖皮质激素、儿茶酚胺分泌水平、LDH、CK-MB活性显著低于单纯应激组;Nagar olsen染色和电镜检查可见:适应大鼠应激时心肌损伤明显低于单纯应激组,表明应激适应动物模型已经建立。同时,模拟适应机体糖皮质激素水平变化,采用低浓度糖皮质激素预处理心肌细胞株,发现其可以降低高浓度糖皮质激素对心肌细胞的损伤作用,表明低浓度糖皮质激素预处理可以诱导心肌细胞应激适应的建立。
     采用蛋白质免疫印迹技术观察应激适应大鼠心肌组织中HSP70表达水平。结果显示,间歇性温和应激诱导心肌组织HSP70表达水平显著升高,并在适应诱导过程中持续高水平表达,在HSP70表达水平升高的应激适应状态下,适应大鼠应激时心肌损伤明显低于单纯应激组。离体细胞研究发现,低浓度糖皮质激素预处理亦可导致心肌细胞HSP70明显升高。调控心肌细胞中HSP70的表达,可见高表达HSP70对糖皮质激素导致的心肌细胞损伤具有明显的抑制作用,而抑制HSP70表达可显著增强糖皮质激素导致的心肌细胞损伤。表明HSP70在应激适应建立中具有重要的生物学功能。
     二、应激适应建立过程中HSP70相互作用蛋白质的筛选
     采用生物信息学分析发现了43个与HSP70具有相互作用的蛋白质,包括HSP70协同伴侣分子:HSF1、HSPBP1、BAG1、BAG2、BAG3、BAG4、HIP、HSP40、CHIP、HOP、DNAJA3、DNAJB11、TTC1;凋亡通路相关蛋白质:PDCD8、FANCC、IKBKG、TP53、APAF1、BCL2、HCFC1、RHOA等;细胞周期调节相关蛋白质:APEX1、MAP3K5、PPP1R15A、CDK9、EIF2AK1、NR3C1、EIF2AK2、APOB、PKC等;细胞分化调控蛋白质:MSR1、PTMA、TIF1、KRT7等;胚胎发育相关蛋白质:SOX9、PEX5等;蛋白质的翻译转运相关蛋白质:BAT3、TCERG1、TID1、TOM7等;以及能量代谢调节蛋白质:NQO1、SLC5A1等。
     采用酵母双杂交方法,以HSP70为诱饵蛋白筛选与HSP70具有相互作用的蛋白质,发现HIP与HSP70存在相互作用。免疫共沉淀结果不仅确认应激适应过程中HIP和HSP70相互作用的存在,而且显示随着应激适应诱导时程的延长及应激适应机制的建立,HIP与HSP70相互作用复合物逐渐增多,提示了HIP和HSP70的相互作用在应激适应建立过程中可能具有重要作用。
     三、HSP70相互作用蛋白质HIP在应激适应建立过程中的生物学功能
     采用蛋白质免疫印迹技术观察应激适应大鼠心肌组织HIP的表达变化,结果显示:应激适应可诱导HIP表达水平显著升高,且在适应诱导过程中持续高水平表达。以心肌细胞株H9C2建立细胞应激适应模型,HIP在应激适应诱导建立过程中持续升高。调控心肌细胞株中HIP表达水平,可见高表达HIP对糖皮质激素导致的心肌细胞损伤具有明显的抑制作用,而抑制HIP表达可导致心肌细胞损伤明显增强;表明HIP在应激适应建立中亦具有重要的生物学功能。
     对HIP和HSP70在H9C2细胞中表达水平实现共同调控,观察其对应激细胞的保护作用。实验结果显示,应激适应建立过程中HIP生物学功能的实现依赖于HSP70的存在;抑制HSP70表达,或使HIP与HSP70相互作用结构域缺失不能与HSP70结合,则使HIP失去对应激心肌细胞的保护作用。应用荧光素酶报告基因系统的初步研究结果显示,HIP与HSP70阻抑应激心肌细胞损伤可能是通过降低糖皮质激素的转录激活活性实现的。
     综上所述,HSP70在应激适应建立过程中具有重要的生物学功能;HIP是应激适应过程中心肌细胞内与HSP70相互作用的重要蛋白质,其可通过HSP70的介导,降低糖皮质激素受体的转录激活活性,实现对应激机体心肌细胞的保护作用,促进应激适应机制的建立。
Adaptation is characterized as stressful elicit a complex array of behavioral and physiological changes believed to contribute to optimal coping of the organism with the situation. As a result of stress, cellular and molecular response could result in either adaptation or damage in cells, which depended on the stress load. This implied that biomolecule that can inhibit and repair stress damage were just the important regulating molecule and proteins. HSPs(heat shock/stress protein, HSP)was a group of proteins which were rapidly expressed with organism coping with stress, including HSP90、HSP70、HSP40 and small HSP. HSP70 was a very famous member among HSP family, it played important roles in nascent polypeptide chain folding and transport and protein assembly and degradation, and HSP70 could also regulate biological function of many proteins and vital process, especially normal cell signaling and cell life cycle regulation. It must be paid much more attention that HSP70 could inhibit important cellular protein degeneration and degradation, repair damaged protein, stabilize cytoskeleton, improve cellular anti-oxidant ability, and protect enzyme activity, so HSP70 was a very important restoration protein. Previous study of our lab had demonstrated that high expressing level of HSP70 with heat shock can inhibit cell apoptosis to improve adaptation establish. So we presumed that HSP70 was an important protein which composed a system of protein damage and restoration with its regulation proteins to improve adaptation establish. So to explore the HSP70 expression pattern during adaptation, confirm its adaptation promotion, detect HSP70 interacting protein during adaptation, and interpret its biological function could not only deeply reveal biological mechanism of adaptation and its protein basis, but also have important significance in controlling stress damage and promoting adaptation.
     1. Expression pattern of HSP70 during adaptation and protecting role of HSP70 during stress damage.
     Intermittence chronic restraint stress was used to induce the construction of adaptation, and neuroendocrine hormone and myocardium damage degree were used as indexes to evaluate adaptation establish. The results showed that HPA response tend to be mild when adaptation rat were given a more intense stress. And plasma level of E、NE、GC and plasma LDH\CK-MB activity of stress group after adaptation were lower than more intense stress group. pathological observation showed that adaptation could significantly attenuate the damage of more intense stress. So those results showed that an adaptation model was established. At the same time, low GC concentration pretreatment can attenuate the damage of high GC concentration treatment, so an adaptation cell model was established.
     HSP70 level was detected by western blotting. The results showed that HSP70 level continuing increased within two weeks of construction of adaptation, adaptation rat with high HSP70 level could attenuate the damage of more intense stress. HSP70 expression pattern was similar in H9C2 cell with glucocorticoids treatment. These results implied that HSP70 have an important role in adaptation. We also found that HSP70 could protect H9C2 cell from GC inducing cell damage with over expression and inhibition of HSP70. These results confirmed that HSP70 had an important role on adaptation attenuating the damage of more intense stress.
     2. Screening for HSP70 interacting proteins during adaptation
     43 proteins were acquired with bioinformatics technology including: co-chaperones: HSF1、HSPBP1、BAG1、BAG2、BAG3、BAG4、HIP、HSP40、CHIP、HOP、DNAJA3、DNAJB11、TTC1, proteins in apoptosis pathway: PDCD8、FANCC、IKBKG、TP53、APAF1、BCL2、HCFC1、RHOA, cell cycle regulating proteins: APEX1、MAP3K5、PPP1R15A、CDK9、EIF2AK1、NR3C1、EIF2AK2、APOB、PKC, cell differentiation correlated proteins:MSR1、PTMA、TIF1、KRT7, embryo development correlated proteins: SOX9、PEX5, protein translation and transport correlated proteins: BAT3、TCERG1、TID1、TOM7, energy metabolism correlated proteins: NQO1、SLC5A1.
     pGBKT7-Hsp70 was used as a bait to screen cDNA library with yeast two hybrid technology. HIP was acquired after yeast two hybrid screen, repeat identification and sequencing. Co-immunonoprecipitation of complexes captured using antibody against HSP70 showed that HIP bound to HSP70 in rat adaptation animal model and H9C2 cell with GC treatment. So these results showed that HIP also had important role in adaptation with its interaction with HSP70.
     3. Mechanism of protection role of HSP70 and its interacting protein during stress damage
     Western blotting results showed that HIP level continuing increased within two weeks of construction of adaptation. HIP expression pattern was similar in H9C2 cell with glucocorticoids treatment. HIP could also protect H9C2 cell from GC inducing damage with over expressing and inhibiting HIP expression. Mutant analysis and cotransfection research showed that HIP and HSP70 could protect H9C2 cell from GC inducing damage through their interaction. Luciferase report gene system showed that HIP and HSP70 could decrease the GR transcription activity, this may be a mechanism of HSP70 and HIP protecting H9C2 cell from GC inducing damage.
     In conclusion, HSP70 had important roles in adaptation establish, and HIP was an important HSP70 interacting protein in adaptation, which can reduce the transcription activity of GR, protect H9C2 cells from GC induced damage, and promote adaptation establish.
引文
[1] Selye H, Horava A. Stress Research. Science. 1953; 8;117(3045):509-511.
    [2] Selye H. The significance of the adrenals for adaptation. Science. 1937; 5; 85(2201): 247-248.
    [3] Dipak K Daz. Heart in stress. Annals of the New York Academy of Science. 1999; vol. 874.
    [4] Esch T, Stefano G.B, Fricchione GL, Benson H. Stress-related diseases-a potential role for nitric oxide. Med Sci Monit. 2002; 8(6): RA103-118.
    [5] Jabbi M, Korf J, Ormel J, Kema IP, den Boer JA. Investigating the molecular basis of major depressive disorder etiology: a functional convergent genetic approach. Ann N Y Acad Sci. 2008;1148: 42-56.
    [6] Sauty A, Prosper M. The hyperventilation syndrome. Rev Med Suisse. 2008; 19; 4(180): 2502-2505.
    [7] Grippo AJ, Johnson AK. Stress, depression and cardiovascular dysregulation: a review of neurobiological mechanisms and the integration of research from preclinical disease models. Stress. 2009; 12(1): 1-21.
    [8] Klepin H, Mohile S, Hurria A. Geriatric assessment in older patients with breast cancer. J Natl Compr Canc Netw. 2009; 7(2): 226-36.
    [9] Kudielka BM, Hellhammer DH, Wüst S. Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology. 2009; 34(1): 2-18.
    [10] Bauer ME. Chronic stress and immunosenescence: a review. Neuroimmunomodulation. 2008; 15(4-6): 241-50.
    [11] Hirokawa E. Effects of music listening and relaxation instructions on arousal changes and the working memory task in older adults. J Music Ther. 2004 ; 41(2): 107-27.
    [12] Sinha R. Chronic stress, drug use, and vulnerability to addiction. Ann N Y Acad Sci. 2008; 1141: 105-30.
    [13] He RR, Yao XS, Li HY, Dai Y, Duan YH, Li YF, Kurihara H. The anti-stresseffects of Sarcandra glabra extract on restraint-evoked immunocompromise. Biol Pharm Bull. 2009; 32(2): 247-52.
    [14] Cohen MV .Baines CP. Dowey JM:Ischemic preconditioning:from adenosine receptor of KATP channel.Annu Rev physiol. 2000; 62: 79-109.
    [15] Zhou X, Zhai XL. Ashraf M. Direct evidnce that initial oxidative stress triffered by preconditioning contributes to second window of protection by endogenous antioxidant enzyme in myocytes. Circulation. 1996; 93: 1177-1184.
    [16] Latchman D S. Heat shock proteins and cardiac protection. Cardivasc Res. 2001; 51(4): 637-46.
    [17] Minowada G and Welch WJ. Clinical limitation of the stress response. J Clin Invet. 1995; 95(1): 3-12
    [18] Sorger P K. Heat shock factor and the heat shock response. Cell. 1991; 65: 363-367.
    [19] Brown CR, Doxsey SJ, Hong Brown LQ. Molecular chaperones and the centrosone. J Biol Chem. 1996; 271 (2) : 824-832.
    [20] Mestril R, Dillmann WH. Heat shock proteins and protection against myocardial ischemia. J Nol Cell Cardiol. 1995; 27: 45-50.
    [21] Beckham JT, Wilmink GJ, Mackanos MA, Takahashi K, Contag CH, Takahashi T, Jansen ED. Role of HSP70 in cellular thermotolerance. Lasers Surg Med. 2008; 40(10): 704-15.
    [22] Yun Zhao, WanYin Wang. Hsp70 may protect cardiomyocytes from stress-induced injury by inhibiting Fas-mediated apoptosis. Cell stress &chaperones. 2007; 12(1): 83-95.
    [23] Koegl M, Uetz P. Improving yeast two-hybrid screening systems. Brief Funct Genomic Proteomic. 2007; 6(4): 302-12.
    [24] Peregrín-Alvarez JM. Inferring ancestral protein interaction networks. Methods Mol Biol. 2008; 452: 417-30.
    [25] Suter B, Kittanakom S, Stagljar I. Two-hybrid technologies in proteomics research. Curr Opin Biotechnol. 2008; 19(4): 316-23.
    [26] Weiner H. Use of animal models in peptic ulcer disease. Psychosom Med. 1996; 58(6): 524-45.
    [27] Feuerstein G, Rufflo JR, Yue TL. Apoptosis and congestive heart failure. Trends Cardiovasc Med. 1997; 7: 249-255.
    [28] Chen Z, Obeerley TD, HOY, Chua CC. Overexpression of CuZnSOD in coronaru vascular cells attenuates myocardial ischemia/reperfusion injury. Free Radic Biol Med. 2000; 29(7): 589-596.
    [29] Grouzmann E, Fathi M, Gillet M. Disappearance rate of catecholamines, total metanephrines, and neuropeptide Y from the plasma of patients after resection of pheochromocytoma. Clin Chem. 2001; 47: 10752-1082.
    [30] Vikenes K, Farstad M E. Serotonin is associated with coronary artery disease and cardiac events. Circulation. 1999 ; 100: 483-489.
    [31] Liu XH, Qian LJ, Gong JB, Shen J, Zhang XM, Qian XH. Proteomic analysis of mitochondrial proteins in cardiomyocytes from chronic stressed rat. Proteomics. 2004, 4 (10): 3167-3176.
    [32] McEwen B S, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med. 1993; 153: 2093–2101.
    [33] Munck A, Guyre PM, Holbrook NJ. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev. 1984; 5: 25–44.
    [34] Sapolsky RM, Krey LC, Mcewen BS. Stress down-regulates corticosterone receptors in a site-specific manner in the brain. Endocrinology. 1984; 114: 287–292.
    [35] Katagiri Y, Takeda K, Yu ZX, Ferrans VJ, Ozato K, and Guroff G.. Modulation of retinoid signaling through NGF-induced nuclear export of NGFI-B. Nature Cell Biol. 2000; 2: 435-440
    [36] Choi HJ, Seon MR, Lim SS, Kim JS, Chun HS, Park JH. Hexane/ethanol extract of Glycyrrhiza uralensis licorice suppresses doxorubicin-induced apoptosis in H9c2 rat cardiac myoblasts. Exp Biol Med (Maywood). 2008; 233(12):1554-1560.
    [37] Will Y, Dykens JA, Nadanaciva S, Hirakawa B, Jamieson J, Marroquin LD, Hynes J, Patyna S, Jessen BA. Effect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated ratheart mitochondria and H9c2 cells. Toxicol Sci. 2008; 106(1):153-161.
    [38] Han X, Pan J, Ren D, Cheng Y, Fan P, Lou H. Naringenin-7-O-glucoside protects against doxorubicin-induced toxicity in H9c2 cardiomyocytes by induction of endogenous antioxidant enzymes. Food Chem Toxicol. 2008; 46(9): 3140-3146.
    [39] Singla DK, Singla RD, McDonald DE. Factors released from embryonic stem cells inhibit apoptosis in H9c2 cells through PI3K/Akt but not ERK pathway. Am J Physiol Heart Circ Physiol. 2008; 295(2): H907-913.
    [40] Majumdar G, Johnson IM, Kale S, Raghow R. Epigenetic regulation of cardiac muscle-specific genes in H9c2 cells by Interleukin-18 and histone deacetylase inhibitor m-carboxycinnamic acid bis-hydroxamide. Mol Cell Biochem. 2008; 312(1-2): 47-60.
    [41] Venkatakrishnan CD, Dunsmore K, Wong H, Roy S, Sen CK, Wani A, Zweier JL, Ilangovan G. HSP27 regulates p53 transcriptional activity in doxorubicin-treated fibroblasts and cardiac H9c2 cells: p21 upregulation and G2/M phase cell cycle arrest. Am J Physiol Heart Circ Physiol. 2008; 294(4): H1736-1744.
    [42] Liu L, Zhang XJ, Jiang SR, Ding ZN, Ding GX, Huang J, Cheng YL. Heat shock protein 27 regulates oxidative stress-induced apoptosis in cardiomyocytes: mechanisms via reactive oxygen species generation and Akt activation. Chin Med J (Engl). 2007; 120(24): 2271-2277.
    [43] Wang Z, Cui M, Sun L, Jia Z, Bai Y, Ma K, Chen F, Zhou C. Angiopoietin-1 protects H9c2 cells from H2O2-induced apoptosis through AKT signaling. Biochem Biophys Res Commun. 2007; 359(3): 685-90.
    [44]司徒镇强吴军正细胞培养. 2007,世界图书出版公司.
    [45] Lee WK, Abouhamed M, Thévenod F. Caspase-dependent and -independent pathways for cadmium-induced apoptosis in cultured kidney proximal tubule cells. Am J Physiol Renal Physiol. 2006; 291(4): F823-832.
    [46] Ohta S, Ishibashi Y. Molecular mechanism of apoptosis. No To Hattatsu. 1999; 31(2): 122-128.
    [47]萨姆布鲁克.J,拉塞尔. D. W.著,黄培堂译.分子克隆实验指南.第三版,北京:科学技术出版社, 2002.
    [48] Voyer J, Heikkila JJ. Comparison of the effect of heat shock factor inhibitor, KNK437, on heat shock- and chemical stress-induced hsp30 gene expression in Xenopus laevis A6 cells. Comp Biochem Physiol A Mol Integr Physiol. 2008; 151(2): 253-261.
    [49] Nimmanapalli R, Gerbino E, Dalton WS, Gandhi V, Alsina M. HSP70 inhibition reverses cell adhesion mediated and acquired drug resistance in multiple myeloma. Br J Haematol. 2008; 142(4): 551-561.
    [50] Song KJ, Song KH, Kim JH, Sohn HJ, Lee YJ, Park CE, Shin HJ. Heat shock protein 70 of Naegleria fowleri is important factor for proliferation and in vitro cytotoxicity. Parasitol Res. 2008;103(2): 313-317.
    [51] Manwell LA, Heikkila JJ. Examination of KNK437- and quercetin-mediated inhibition of heat shock-induced heat shock protein gene expression in Xenopus laevis cultured cells. Comp Biochem Physiol A Mol Integr Physiol. 2007; 148(3): 521-530.
    [52] Matsuda K, Nakagawa SY, Nakano T, Asaumi J, Jagetia GC, Kawasaki S. Effects of KNK437 on heat-induced methylation of histone H3 in human oral squamous cell carcinoma cells. Int J Hyperthermia. 2006; 22(8): 729-735.
    [53] H?hfeld J. Regulation of the heat shock conjugate Hsc70 in the mammalian cell: the characterization of the anti-apoptotic protein BAG-1 provides novel insights. Biol Chem. 1998; 379(3): 269-274.
    [54] Murata S, Chiba T, Tanaka K. CHIP: a quality-control E3 ligase collaborating with molecular chaperones. Int J Biochem Cell Biol. 2003; 35(5): 572-578.
    [55] Mayer MP. Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol. 2005; 153: 1-46.
    [56] Tanimura S, Kohno M. Heat shock protein 70 binding protein 1 induces enhanced apoptotic response against anticancer drugs in tumor cells. Nippon Rinsho. 2004; 62(7): 1291-1296.
    [57] Shi ZZ, Zhang JW, Zheng S. What we know about ST13, a co-factor of heat shock protein, or a tumor suppressor? J Zhejiang Univ Sci B. 2007; 8(3): 170-176.
    [58] Dong QH, Zheng S, Hu Y, Chen GX, Ding JY. Evaluation of ST13 geneexpression in colorectal cancer patients. J Zhejiang Univ Sci B. 2005; 6(12): 1170-1175.
    [59] Yang M, Cao X, Yu MC, Gu JF, Shen ZH, Ding M, Yu de B, Zheng S, Liu X. Potent antitumor efficacy of ST13 for colorectal cancer mediated by oncolytic adenovirus via mitochondrial apoptotic cell death. Hum Gene Ther. 2008; 19(4): 343-353.
    [60] Yu DB, Zhong SY, Yang M, Wang YG, Qian QJ, Zheng S, Liu XY. Potent antitumor activity of double-regulated oncolytic adenovirus-mediated ST13 for colorectal cancer. Cancer Sci. 2009 Feb 27.
    [61] Wang LB, Zheng S, Zhang SZ, Peng JP, Ye F, Fang SC, Wu JM. Expression of ST13 in colorectal cancer and adjacent normal tissues. World J Gastroenterol. 2005; 11(3): 336-339.
    [62] Smith DF. Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol. Endocrinol. 1993; 7(11): 1418-1429.
    [63] Smith DF, Whitesell L, Nair SC, Chen S, Prapapanich V, Rimerman RA. Progesterone receptor structure and function altered by gsdanamycin, an hsp90 binding agent. Mol. Cell. Biol. 1995; 15(12): 6804-6812.
    [64] H?hfeld J, Minami Y, Hartl FU. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell. 1995; 83(4): 589-598.
    [65] Hartl FU. Molecular chaperones in cellular protein folding. Nature. 1996; 381(6583): 571-579.
    [66] Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell. 1998; 92(3): 351-366.
    [67] Esser C, Alberti S, Hohfeld J. Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochim. Biophys. Acta, Mol. Cell Res. 2004; 1695(1-3): 171-188.
    [68] Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. CMLS Cell. Mol.Life Sci. 2005; 62(6): 670-684.
    [69] Freeman BC, Myers MP, Schumacher R, Morimoto RI. Identification of aregulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J. 1995; 14(10): 2281-2292.
    [70] H?hfeld J, Jentsch S. GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1.EMBO J. 1997; 16(20): 6209-6216.
    [71] Takayama S, Xie Z, Reed JC. An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J. Biol. Chem. 1999; 274(2): 781-786.
    [72] Alberti S, Esser C, H?hfeld J. BAG-1—a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones. 2003; 8(3): 225-231.
    [73] Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, Patterson C. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell Biol. 1999; 19(6): 4535-4545.
    [74] Murata S, Minami Y, Minami M, Chiba T, Tanaka K. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep. 2001; 2(12):1133-1138.
    [75] Murata S, Chiba T, Tanaka K. CHIP: a quality-control E3 ligase collaborating with molecular chaperones.Int. J. Biochem. Cell Biol. 2003; 35(5): 572-578.
    [76] Prapapanich V, Chen S, Nair SC, Rimerman RA, Smith DF. Molecular cloning of human p48, a transient component of progesterone receptor complexes and an Hsp70-binding protein. Mol. Endocrinol. 1996; 10(4): 420-431.
    [77] Prapapanich V, Chen S, Toran EJ, Rimerman RA, Smith DF. Mutational analysis of the hsp70-interacting protein Hip. Mol. Cell. Biol. 1996; 16(11): 6200-6207.
    [78] Prapapanich V, Chen S, Smith DF. Mutation of Hip’s carboxy-terminal region inhibits a transitional stage of progesterone receptor assembly. Mol. Cell. Biol. 1998; 18(2): 944-952.
    [79] Velten M, Villoutreix BO, Ladjimi MM. Quaternary structure of the HSC70 cochaperone HIP. Biochemistry. 2000; 39(2): 307-315.
    [80] Velten M, Gomez-Vrielynck N, Chaffotte A, Ladjimi MM. Domain structure of the HSC70 cochaperone, HIP. J Biol Chem. 2002; 277(1): 259-266.
    [81] Nollen EA, Kabakov AE, Brunsting JF, Kanon B, Hohfeld J, Kampinga HH.Modulation of in vivo HSP70 chaperone activity by Hip and Bag-1. J Biol Chem. 2001; 276(7): 4677-4682.
    [82] Nollen EA, Kabakov AE, Brunsting JF, Kanon B, H?hfeld J, Kampinga HH. Modulation of in vivo HSP70 chaperone activity by Hip and Bag-1. J Biol Chem. 2001; 276(7): 4677-4682.
    [83] Tanaka Y. Immunosuppressive effects of glucocoriticoid. Nippon Rinsho. 2008; 66(1): 83-88.
    [84] Tomlinson JW, Stewart PM. Modulation of glucocorticoid action and the treatment of type-2 diabetes. Best Pract Res Clin Endocrinol Metab. 2007; 21(4): 607-619.
    [85] Kondili E, Xirouchaki N, Georgopoulos D. Modulation and treatment of patient-ventilator dyssynchrony. Curr Opin Crit Care. 2007; 13(1): 84-89.
    [86] Rogatsky I, Ivashkiv LB. Glucocorticoid modulation of cytokine signaling. Tissue Antigens. 2006; 68(1): 1-12.
    [87] Roth M, Black JL. Transcription factors in asthma: are transcription factors a new target for asthma therapy? Curr Drug Targets. 2006; 7(5): 589-595.
    [88] Giordano R, Pellegrino M, Picu A, Bonelli L, Balbo M, Berardelli R, Lanfranco F, Ghigo E, Arvat E. Neuroregulation of the hypothalamus-pituitary-adrenal (HPA) axis in humans: effects of GABA-, mineralocorticoid-, and GH-Secretagogue-receptor modulation. ScientificWorldJournal. 2006; 6:1-11.
    [89] Carvalho LA, Pariante CM. In vitro modulation of the glucocorticoid receptor by antidepressants. Stress. 2008;11(6): 411-424.
    [90] Fernández-Pérez L, Flores-Morales A, Chirino-Godoy R, Díaz-Chico JC, Díaz-Chico BN. Steroid binding sites in liver membranes: interplay between glucocorticoids, sex steroids, and pituitary hormones. J Steroid Biochem Mol Biol. 2008;109(3-5): 336-343.
    [91] Ribarac-Stepi? N, Djurica S, Zakula Z, Kori?anac G, Milosevi? DP. Molecular basis of glucocorticoid action. Srp Arh Celok Lek. 2005;133 Suppl 1:61-66.
    [92] Pratt WB, Morishima Y, Murphy M, Harrell M. Chaperoning of glucocorticoid receptors. Handb Exp Pharmacol. 2006; (172):111-38.
    [93] McMaster A, Ray DW. Modelling the glucocorticoid receptor and producing therapeutic agents with anti-inflammatory effects but reduced side-effects. Exp Physiol. 2007; 92(2): 299-309.
    [94] Heitzer MD, Wolf IM, Sanchez ER, Witchel SF, DeFranco DB. Glucocorticoid receptor physiology. Rev Endocr Metab Disord. 2007; 8(4): 321-330.
    [95] Adcock IM, Barnes PJ. Molecular mechanisms of corticosteroid resistance. Chest. 2008;134(2): 394-401.
    [96] Nelson GM, Prapapanich V, Carrigan PE, Roberts PJ, Riggs DL, Smith DF. The heat shock protein 70 cochaperone hip enhances functional maturation of glucocorticoid receptor. Mol Endocrinol. 2004; 18(7): 1620-1630.
    [97] Kosano H, Stensgard B, Charlesworth MC, McMahon N, Toft D. The assembly of progesterone receptorhsp90 complexes using purified proteins. J Biol Chem. 1998; 273(49): 32973-32979.
    [98] Kanelakis KC, Murphy PJ, Galigniana MD, Morishima Y, Takayama S, Reed JC, Toft DO, Pratt WB. Hsp70 interacting protein Hip does not affect glucocorticoid receptor folding by the hsp90-based chaperone machinery except to oppose the effect of BAG-1.Biochemistry. 2000; 39(46): 14314-14321.
    [99] Das M, Das DK. Molecular mechanism of preconditioning. IUBMB Life. 2008; 60(4):199-203.
    [100] Werner J. Process- and controller-adaptations determine the physiological effects of cold acclimation. Eur J Appl Physiol. 2008;104(2):137-143.
    [101] Horowitz M. Heat acclimation and cross-tolerance against novel stressors: genomic-physiological linkage. Prog Brain Res. 2007; 162: 373-392.
    [102] Rintam?ki H. Performance and energy expenditure in cold environments. Alaska Med. 2007; 49(2 Suppl): 245-246.
    [103] Harwood JL. Temperature stress: reacting and adapting: lessons from poikilotherms. Ann N Y Acad Sci. 2007; 1113: 52-57.
    [104] Steegmann AT Jr. Human cold adaptation: an unfinished agenda. Am J Hum Biol. 2007;19(2): 218-227.
    [105] Melia KR, Ryabinin AE, Schroeder R, Bloom FE, Wilson MC. Induction andhabituation of immediate early gene expression in rat brain by acute and repeated restraint stress. J Neurosci. 1994; 14: 5929–5938,
    [106] Umemoto S, Kawai Y, Senba E. Differential regulation of IEGs in the rat PVH in single and repeated stress models. Neuroreport. 1994; 6: 201–204.
    [107] Watanabe Y, Stone E, Mcewen BS. Induction and habituation of c-fos and zif/268 by acute and repeated stressors. Neuroreport. 1994; 5:1321–1324.
    [108] Umemoto S, Kawai Y, Ueyama T, Senba E. Chronic glucocorticoid administration as well as repeated stress affects the subsequent acute immobilization stress-induced expression of immediate early genes but not that of NGFI-A. Neuroscience. 1997; 80: 763–773.
    [109] Campeau S, Dolan D, Akil H. c-fos mRNA induction in acute and chronic audiogenic stress: possible role of the orbitofrontal cortex in habituation. Stress. 2002; 5: 121–130.
    [110] Munck A, Guyre PM, Holbrook NJ. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev. 1984; 5: 25–44.
    [111] Sapolsky RM, Krey LC, Mcewen BS. Stress down-regulates corticosterone receptors in a site-specific manner in the brain. Endocrinology. 1984; 114: 287–292.
    [112] Chang K, Lubo Zhang. Review article: steroid hormones and uterine vascular adaptation to pregnancy. Reprod Sci. 2008; 15(4): 336-348.
    [113] Joyeux-Faure M, Arnaud C, Godin-Ribuot D, Ribuot C. Heat stress preconditioning and delayed myocardial protection: what is new? Cardiovasc Res. 2003; 60(3): 469-477.
    [114] O'Connor PM, Jackman J, Jondle D, Bhatia K, Magrath I, Kohn KW. Role of the p53 tumor suppressor gene in cell. Cancer Res. 1993; 53: 4776-4780
    [115] Baird NA, Turnbull DW, Johnson EA. Induction of the heat shock pathway during hypoxia requires regulation of heat shock factor by hypoxia-inducible factor-1. J Biol Chem. 2006; 281(50): 38675-38681.
    [116] Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ. Heat shock proteins and cardiovascular pathophysiology. Physiol Rev. 2001; 81(4):1461-1497.
    [117] Okubo S, Bernardo NL, Elliott GT, Hess ML, Kukreja RC. Tyrosine kinase signaling in action potential shortening and expression of HSP72 in late preconditioning. Am J Physiol Heart Circ Physiol. 2000; 279(5): H2269-76.
    [118] Pagliaro P, Gattullo D, Rastaldo R, Losano G. Ischemic preconditioning: from the first to the second window of protection. Life Sci. 2001; 69(1): 1-15.
    [119] Kast J. Making connections for life: an in vivo map of the yeast interactome. HFSP J. 2008; 2(5): 244-250.
    [120] Hendrickx A, Beullens M, Ceulemans H, Abt TD, Van Eynde A, Nicolaescu E, Lesage B, Bollen M. Docking motif-guided mapping of the interactome of protein phosphatase-1. Chem Biol. 2009;16(4): 365-371.
    [121] Kanaan SP, Huang C, Wuchty S, Chen DZ, Izaguirre JA. Inferring protein-protein interactions from multiple protein domain combinations. Methods Mol Biol. 2009; 541: 43-59.
    [1]Ritossa F. Experientia, 1962, 18: 571-573.
    [2]Buckiova D, Jelinek R. Reprod Toxicol, 1995, 9(6): 501-511.
    [3]Mosser DD, Caron AW, Bourget L, et al. Mol Cell Biol, 2000, 20(19): 7146-7159.
    [4]Makoto H, et al. J Biol Chem, 1998, 273 (10): 5435-5438.
    [5]Liu XH, Qian LJ, Gong JB, et al. Proteomics, 2004, 4(10): 3167-3176
    [6]Mosser DD, Caron AW, bourget L, et al. Mol Cell boil, 1997, 17(9): 5317 -5327.
    [7]Chant ID, Rose PE, Br J Haematol, 1996, 93: 898-902.
    [8]Gabai VL, Meriin AB, Yaglom JA, et al. FEBS Lett, 1998, 438(12): 1-4.
    [9]Yaglom JA, Gabai VL, Meriin AB, et al. J Biol Chem, 1999, 274(29): 20223-20228.
    [10]Luft JC, Dix DJ. Cell Stress & Chaperones, 1999, 4 (3): 162-170.
    [11]Lee YL,Cony PM. J Biol Chem,1998,273(45):29857-29863.
    [12]Wang S, Guo M, Ouyang H, et al. Proc Natl Acad Sci USA, 2000, 97(4): 1584-1588.
    [13]Karlseder J,Wissing D, Holzer G, et al. Biolchem Biophys Res Commun,1996, 220(1): 153-159.
    [14]Kwak HJ, Jun CD, Pae HO, et al. Cell Immunol, 1998,187: 1-12.
    [15]Geract PA, Padilha JCF, Guillaumin S. Nutrition British, 1996, 75: 205-2l6.
    [16]Ballinger CA, Connell P, Wu Y, et al. Mol Cell Biol, 1999, 19 (6): 4535-4545.
    [17]Meacham GC, Patterson C, Zhang WY, et al. Nat Cell Biol, 2001, 3: 100-105.
    [18] Huang Z, Nie L, Xu M, et al. Mol Cell Biol, 2004, 10: 8951–8962.
    [19] Fan M, Park A, Nephew KP. Mol Endocrinol, 2005, 19(12): 2901–2914
    [20] Petrucelli L, Dickson D, Kehoe K, et al. Hum Mol Genet, 2004, 13(7): 703–714.
    [21]Miller VM, Nelson RF, Gouvion CM, et al. J Neurosci, 2005, 25(40): 9152–9161.
    [22] Shimura H, Schwartz D, Gygi SP, et al. J Biol Chem, 2004, 279(6): 4869–4876.
    [23]Jana NR, Dikshit P, Goswami A, et al. J Biol Chem, 2005,280(12): 11635–11640.
    [24] Choi JS, Cho S, Park SG, et al. Biochem Biophys Res Commun, 2004, 321: 574–583.
    [25]Jae Ryoung Hwang, et al. Cell Stress & Chaperones, 2005, 10 (2): 147–156.
    [26] Sahara N, Murayama M, Mizoroki T, et al. J Neurochemistry, 2005, 94: 1254–1263.
    [27] Esser C, Scheffner M, H?hfeld J. J Biol Chem, 2005, 280(29): 27443–27448.
    [28] ShinY, KluckenJ, Patterson C,et al. J Biol Chem, 2005, 280(25): 23727–23734.
    [29] Timsit YE, Miller SL, Mohney RP, et al. Communications, 2005, 328: 550–559.
    [30] Esser C, Scheffner M, H?hfeld J, et al. J Biol Chem. 2005, 280(29): 27443-8.
    [31] Daviau A, Proulx R, Robitaille K, et al. J Biol Chem. 2006, 281(42): 31467-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700