用户名: 密码: 验证码:
LED不同光对葡萄离体试管苗生理生化特性效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在植物组织培养中,光合光量子通量密度(PPFD:Photosynthetic Photon Flux Density)、光照周期和光谱分布对植物的光合作用和形态建成起重要调控作用。植物组培主要依靠电光源,传统电光源对植物的生物能效低、发热量大,光照用电约占整个电费成本的65%,是植物组织培养中较高的非人力成本之一。因此在植物组织培养中采用新型的LED光源,调控光质和PPFD,不仅能够调控组培植物的生长发育和形态建成,而且能够大大减少能耗,降低成本。同时解决了光质不纯的问题,增加了试验结果的可靠性。
     本研究以葡萄砧木品种贝达(Beta)和变叶葡萄(Vitis piasezkii Maxim)试管苗为实验材料,研究其在LED白、红、黄、蓝、绿和蓝红六种光质,24 h·d-1、16 h·d-1、12 h·d-1、8 h·d-1四个光周期试管苗生长发育动态、地上部位(株高、叶面积、生物量、节间长、茎粗)和地下部位(根重、根条数、根长、根粗)增殖以及色素含量、气孔、酶活性的效应。以便得到组织培养最佳的LED光质、光周期。取得的主要研究结果有:
     (1)LED红光有利于葡萄试管苗地上地下部位的纵向生长;LED蓝光抑制葡萄试管苗地上地下部位的纵向生长,而促进其横向生长;LED蓝红光对葡萄试管苗的光合速率较普通荧光强。红光、蓝光和蓝红光在16 h·d-1下对生物量的增加有明显的促进作用:在24 h·d-1、蓝光和蓝红光下茎节最粗。
     (2)LED黄光、绿光,光周期16 h·d-1、12 h·d-1的光照有利于株高的增加,蓝光和蓝红光在16 h·d-1下有利于试管苗叶面积的增加,绿光和黄光在24 h·d-1下叶面积均较小。节间长在绿光和黄光下较长,而在蓝光下最短;,8 h·d-1、绿光和黄光下茎节最细;试管苗在16 h·d-1,黄光下根粗最细,而光合速率在LED蓝红光下最大,而在LED黄光和绿光下为负值。
     (3)在不同的LED光质和光周期下均表现出,气孔频度越大,则气孔长×宽越小,基因型不同所需光质、光周期也不完全相同,变叶葡萄气孔频度在蓝光、16 h·d-1下最高,而贝达试管苗气孔频度在蓝红光和24 h·d-1下最高。红光、蓝光和蓝红光有利于叶绿素的合成,8 h·d-1较其他三种光周期叶绿合成能力差,且光质与光周期效应也因基因型存在差异
     SOD活性均在蓝光下最高,红光下最低。贝达试管苗在8 h·d-1下最高,24 h·d-1下最低,变叶葡萄试管苗则在16 h·d-1下最高,12 h·d-1下最低。试管苗的PPO、POD与CAT活性强弱均为:24h.d-1>16 h.d-1>12 h.d-1>8 h.d-1。
Photosynthetic photon flux density (PPFD), photoperiod and spectral distribution play important roles in regulation of plant photosynthesis and morphogenesis during plant tissue culturing. Plant tissue culture mainly depends on electric light source, which has low bioenergy efficiency and high calorific capacity, and its electricity comsuption acount for 65% of the whole power expenditure, that is one of the non-human costs in plant tissue culture. Using light emitting diode as light source in plant tissue culture to regulate light quality and PPFD can not only regulate the plant growth and development and morphogenesis, but also reduce energy comsumption remarkbly, and decrease the cost accordingly. Besides, it solves the weakness of light quality impurity, and increases the reliability of experiment results.
     The test-tube plantlets of grape variety Beta and Vitis piasezkii Maxim were used as the material in this experiment, and their dynamic growth, propagation of the aboveground parts (plant height, leaf size, biomass, internode length and stem diameter) and underground parts (root weight, root numbers, root length and root diameter), pigment content, stoma and enzyme activity were studied with LEDs irradiation (white, red, yellow, blue and green) on four photoperiods (24 h·d-1、16 h·d-1、12 h·d-1、8 h·d-1), so as to get the optimum LED light quality and photoperiod to the plantlets growth.The results are as follows:
     1. Red LED was favorable to the longitudinal growth of the plantlets aboveground and underground parts, however, blue LED had opposite effect, but promoted their cross growth; blue-red LED was better than ordinary fluorescence to increase photosynthetic rate of the plantlets. Red, blue and blue-red LEDs enhanced the biomass obviously with 16 h·d-1 irradiation; the stem nodes were the thickest under blue and blue-red LEDs with 24 h·d-1 irradiation.
     2. Yellow, green LEDs with 16 h·d-1、12 h·d-1 irradiation were favorable to increase plant height; blue and blue-red LEDs with 16 h·d-1 were benefit to leaf size increase, but the leaf size was smaller under green and yellow LEDs with 24 h·d-1 irradiation. The internodes were longer under green and yellow LEDs, but the shortest under blue LED; the stem nodes were the thinnest under green and yellow LEDs with 8 h·d-1 irradiation; the root was the thinnest under yellow LED with 16 h·d-1 irradiation; however, the photosynthetic rate was the maximum under blue-red LED, but showed negative value under yellow and green LEDs.
     3. With each LED and photoperiod irradiation, it was showed that the bigger the stomatal frequency is, the smaller the length X width of the stomata is. The different genotypes needed different LED and photoperiod:the stomatal frequencies of Vitis piasezkii Maxim and Beta were the biggest with blue,16 h·d-1 irradiation and blue-red 24 h·d-1 irradiation, respectively. Red, blue, blue-red LEDs were suitable to chlorophyll synthesis, but 8 h·d-1 was inferior to the other three photoperiods to synthesize chlorophyll; light quality and photoperiod effect varied due to different genotypes.
     SOD activities were the highest under blue LED, but the lowest under red LED, and the activity of Beta plantlet was the highest with 8 h·d-1 irradiation, the lowest with 24 h·d-1 irradiation; but that of Vitis piasezkii Maxim was the highest with 16 h·d-1 irradiation, the lowest with 12 h·d-1 irradiation. The order of PPO,POD and CAT activities in test tube plantlets were all 24h.d-1>16 h.d-1 >12h.d-1>8h.d-1。
引文
1.Dooley J H. Influence of lighting spectra on plant tissue culture[A]. Presented at an ASAE(Americam Society of Agricultural Engineers) Meeting[C]. Chicago, Illinois,1991
    2.Kevin Williams."Photo-Manipulation-Boxes"; An instrument for the study of plant photobiology [J].Plant Photobiology,2000,26(1):3-15.
    3.Brown,C.S.A.C.Schuerger, J.C.Sager.Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far red lighting[J].Hort Science, 1995,120:808-813.
    4.Bula Rj,Morrow RC,Tibbitts TW, et al.Light-emitting diodes as a radiation source for plants [J].Hort Science,1991,26(2):203-205.
    5.张育铨.LED与传统灯泡之好坏研究[EB/OL]. http://www.shs.edu.tw/works/essay/2007 /03/2007031715220544.pdf.
    6.杨其长,张成波.植物工厂概论[M].北京:中国农业科学技术出版社,2005:144-149.
    7.刘江,范广涵,刘承宜.用于细胞及组织培养的低强度LED生物光源[J].激光杂志,2003,24(4):78-80.
    8.贺冬仙,杨其长,马承伟,等.植物生产中人工光环境调控[C].第五次全国高等学校农业工程类学科专业教学改革暨国际学术研讨会,2002.
    9.Langhans, R. W. A growth chamber manual[M].Enviromental control for plants,1978.
    10.Tibbitts, T W, T.T. Kozlowski (eds.). Controlled environment guidelines for plant research [M].Academic, New York,1979.
    11.Ignatius R W,T S Martin, RJ Bula, et al. Tibbitts. Method andapparatus for irradiation of plants using optoe.lectronic devices.U.S Patent Application [J].1988,07/283,245.
    12.将要卫.大花蕙兰、蝴蝶兰试管苗光合自养培养体系初步建立[D].郑州:河南农业大学,2006:33-42.
    13.牟宁宁,高亦珂.发光二极管在植物组织培养中的应用[A]//中国观赏园艺研究进展2007——中国园艺学会观赏园艺专业委员会2007年学术年会论文集[C].中国观赏园艺进展,2007:220-222.
    14.张婕,高亦珂,何琦,等.发光二极管(LED)在菊花组织培养中的应用研究[A]//中国观赏园艺研究进展2008——中国园艺学会观赏园艺专业委员会2008年学术年会论文集 [C].2008:296-299.
    15.邸秀茹,焦学磊,崔瑾,等.新型光源辐射的不同光质比对菊花组培苗生产的影响[J].植物生理学通讯,2008,44(4):661-664.
    16.Tanaka,Takamura, Watanabe, et al.In vitro growth of cymbidium plantlets cultured under superbright red and blue light-emitting diodes (leds) Journal of horticultural science & biotechnology,1998,73:39-44.
    17.Jordan K A, Ono E, Norikane J, et al. Control of LEDs to achieve light quality and intensity in tissue culture and micro-propagation studies[J]. Acta-Horticulturae,2001, 562: 135—140
    18.尾田羲治.植物光形态建成[M].刘瑞征,译.北京:科学出版社,1981:1-5
    19.余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1998:633-654
    20.陈汝民.现代植物科学引论[M].广州:广东高等教育出版社,1995:415-428
    21.Kendr Ick R C, Kromnenberg G H. Photo-morphogenesis in p lants[M].2nd ed. Dordrecht:Kluwer Academic Publishers,1994
    22.李慎英.花果蔬菜快速繁殖技术新技术[M].2版.北京:中国人事出版社,1996:63-64
    23.裘文达,曹孜义.植物组织培养实用技术[M].北京:高等教育出版社,1989:18-19
    24.De Cap Ite. Action of light and temperature on growth of plant tissue culture in vitro[J]. Am J Bot,1955,42:869-873
    25.庞基良.激素、光照对仙客来叶片愈伤组织诱导、分化及试管苗生长的影响[J].园艺学报,1994,21(1):103.
    26.谭文澄,戴策刚.观赏植物组织培养技术[M].北京:中国林业出版社,1991:235-246
    27.倪德祥,曹勇伟,张丕方,等.毛地黄叶离体培养过程中光质与培养基对器官发生的交互作用[J].植物生理学报,1987,13(4):359-364
    28.Feldman L J. Regulation of root development[J]. Ann Rew Plant Physiol,1984,35: 223-242
    29.童哲,连汉平,段静霞,等.植物离体根的光形态建成[J].植物学报,1987,29(1):59-66
    30.梁伯,朱宝成.不同光质对黄瓜离体根形态建成的影响[J].河北大学学报:自然科学版,1998,3(18):260-262
    31.石岭,霍秀文.不同光质对河套蜜瓜器官培养的影响[J].内蒙古农牧学院学报.1999,2(20):76-79
    32.倪德祥,张丕方,陈刚,等.光质对锦葵愈伤组织生长和发根的效应[J].上海农业学报,1985,1(3):39-46
    33.李胜.葡萄试管苗生根机理的研究[D].2003,兰州:.甘肃农业大学
    34.李胜,李唯,杨德龙,等.不同光质对葡萄试管苗根系生长的影响.园艺学报,2005,32(5):872-874
    35.周吉源,赵洁,杨和平,等.油菜薄层细胞培养中不同光质对愈伤组织诱导和增殖的效应[J].华中师范大学学报:自然科学版,1992,26(1):77-80
    36.王维荣,王咏冬,欧阳光察,等.光质对黄瓜及番茄愈伤组织培养中分化和有关酶的影响[J].植物生理学报,1991,17(2):118-125
    37.许桂芳,董诚明.不同光质对华黄芪愈伤组织诱导、增殖及器官分化的效应[J].华中师范大学学报:自然科学版,1994,28(4):533-537
    38.焦海华,铁军.不同光质对一品红幼茎愈伤组织的诱导和器官分化影响的研究[J].内蒙古师范大学学报:自然科学(汉文)版,2003,2(32):168-170
    39.车生泉,盛月英.光质对小苍兰茎尖试管培养的影响[J].园艺学报,1997,24(3):269-273
    40.董崇楣,张丕方.光对烟草叶片不定芽发生和生长的影响[J].复旦大学学报:自然科学版,1989,28(4):438-442
    41.张丕方,董崇楣,倪德祥,等.不同激素浓度及光质对烟草叶片不定芽发生的效应[J].实验生物学报,1988,21(4):541-543
    42.王爱民,肖炜,杜文雪,等.光质对缕丝花试管苗生长发育的影响[J].徐州师范大学学报:自然科学版,2001,19(4):56-58
    43.张书标,庄伟建.不同品种、外植体和光照条件对花生体细胞胚诱导的影响[J].广西农业生物科学,2001,4(20):243-245
    44.邓向阳,卫志明.幼胚长度、2,4-D浓度、光强度等对花生体细胞胚发生的影响及高效再生系统的建立[J].植物生理学报,2000,26(6):525-531
    45.杨安元,李敏,陈庆余,等.茶树体细胞植株再生的光照效应[J].湖南农业大学学报,1999,25(2):112-115
    46.师嘉临,师桂英,任治斌,等.非洲紫罗兰叶片体细胞胚培养及快繁技术研究[J].植物遗传资源学报,2005,6(4):453-456
    47.徐根娣,李瑶.光质和碳素对旱芹体细胞胚发生的影响[J].浙江师范大学学报:自然科 学版,1995,18(2):57-60
    48.曲桂芹,张贤泽,霍俊伟.影响大豆体细胞胚诱导因素的研究[J].植物研究,2001,21(2):201-215
    49. Owen H R, Miller A R. Hap loid p lant regeneration from anther cultures of three north american cultivars of strawberry (Fragria ananassa Duch.) [J]. Plant Cell Reports,1996,15: 905-909
    50. Michler C H, L Ineberger R D. Effects of light abscisic levels in carrot suspension cultures[J]. Plant Cell Tiss Org Cult,1987,11:189-207
    51. Tome JM, Moyssetl, Claparols, et al. Photocontrol of somatic embryogenesis and polyamine content in A raujia sericifera petals[J]. Physiol Plant,1996,98:413-418
    52.梁伯潘,周毓君,朱宝成,等.不同光质对黄瓜离体根形态建成的影响,河北大学学报(自然科学版),1998,3:260-262
    53.赵洁,程井辰.光因子对石刁柏愈伤组织生长过程中蛋白质含量及酶活性变化的影响[J].武汉植物学研究,1994,12(3):251-256
    54.毛学文,陈荃,连仲毅,等.不同因子对毛地黄叶离体培养强心苷含量的影响[J].西北植物学报,1994,14(6):141-146
    55.Voskrenskava N P, Nechayeya E P, Vlasova M P. The significance of blue light and kinetin for restoration of the photosynthetic apparatus in aging narley leaves [J]. Fizid Rast, 1968,15:890
    56.张真,李胜,李唯,等.不同光质光对葡萄愈伤组织增殖和白藜芦醇含量的影响[J].植物生理学通讯,2008,44(1):106-108
    57.Seibertm, Wetherbee P J, Job D D. The effects of light intensity and spectral quality on growth and initiation in tobacco callus[J]. Plant Physiol,1975,56:130-139
    58.赵洁,程井辰.光因子对石刁柏愈伤组织生长过程中蛋白质含量及酶活性变化的影响[J].武汉植物学研究,1994,12(3):251-256
    60.Cui Y I, Hahn E J, Kozai T, et al. Number of air exchanges,sucrose concentration, photosynthetic photon flux, and differences in photoperiod and dark period temperatures affect growth of Rehmannia glutinosa plantlets in vitro[J]. Plant Cell Tiss. Org. Cult,2000, 62:219—26
    61.Kozai T, Kubota C, Jeong B R. Environmental control for large-scale production of plants through in vitro techniques[J]. Plant Cell Tiss. Org. Cult,1997,51:49-56
    62.Standaert-de Metsenaere R E A. Economic considerations[A]. In:Debergh PC and Zimmerman RH (ed). Micropropagation [M]. The Netherlands Kluwer Academic Publishers. Dordrecht,1991:131—40
    63.Jordan K A, Ono E, Norikane J, et al. Control of LEDs to achieve light quality and intensity in tissue culture and micro-propagation studies[J]. Acta-Horticulturae,2001,562: 135—140
    64.Murakami K, Alga I, Horaguchi I. Red/far—red photon flux ratio used as an index number of morphological control of plant growth under artificial lighting conditions[J]. Acta Horticulture,1994,2:135—140
    65.Fujiwara K, Kozai T. Physical microenvironment and its effects[A]. In:Automation and Environmental Control in Plant Tissue Culture[M]. (ed. By Aitken—Christie J. Kozai T. Smith M A L). The Netherlands Kluwer Academic Publishers. Dordrechtr,1995:319— 369
    66.Tanaka M, Takamura T, Watanabe H. In vitro growth of Cymbidium plantlets cultured under superbright red and blue light-emitting diodes (LEDs) [J]. Journal of Horticultural Science and Biotechnology,1998,73(1):39—44
    67.Lian M L, Murthy H N, Paek K Y. Effects of light emitting diodes on the in vitro induction and growth of bulblets of Lilium oriental hybrid'Pesaro'[J]. Sci Hort,2002,94:365—370
    68.Goins G D, Yorio N C, Sanwo M M, et al. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under light emitting diodes (LEDs) with or without supplemental blue lighting[J]. J Exp Bot,1997,48:1407—1413
    69.Miyashita Y, Kimura T, Kitaya Y, et al. Effects of red light on the growth and morphology of potato plantlets in vitro:using light emitting diodes(LEDs) as a light source for micropropagation[J]. Acta-Horticulturae,1997, (418):169—173
    70.Nhut D T, Takamura T, Watanabe H, et al. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs)[J]. Plant Cell, Tiss and Org Cult,2003,73:43—52
    71.Hahn E J, Kozai T, Paek KY. Blue and red light-emitting diodes with or without sucrose and ventilation affects in vitro growth of Rehmannia glutinose plantlets[J]. J Plant Biol, 2000,43:247—250
    72.Tennessen D J, Singsaas E L, Sharkey T D. Light-emitting diodes as a light source for photosynthesis research[J]. Photosynth. Res,1994,39:85—92
    73.Tuong-Huan L V, Tanaka M. Effects of red and blue light-emitting diodes on callus induction, callus proliferation, and protocorm-like body formation from callus in Cymbidium orchid[J]. Environment Control in Biology,2004,42(1):57—64
    74.Senger H. The effect of blue light on plants and microorganisms[J]. Phytochem. Photobiol,1982,35:911—920
    75.Zeiger E. The biology of stomatal guard cells[J]. Ann. Rev. Plant Physiol,1983,34:441 —475
    76.Appelgren M. Effects of light quality in stem elongation of Pelargonium in vitro[J]. Sci Hort,1991,45:345—351
    77.Jao R C, Lai C C, Fang W, et al. Effects of red light on the growth of Zantedeschia plantlets in vitro and tuber formation using light-emitting diodes[J]. Hortscience,2005,40(2): 436—438
    78.Puspa Raj Poudel, Ikuo Kataoka, Ryosuke Mochioka.. Effect of red-and blue-light-emitting diodes on growth and morphogenesis of grapes plant cell tissue organ culture [J].2008,92:147-153
    79.Anzelika Kurilcik, Renata Miklusyte-Canova, Stase Dapkuniene,et al. In vitro culture of Chrysanthemum plantlets using light-emitting diodes[J]. Cent. Eur. J. Biol..2008, 3(2)161—167
    80.Hua YU, Bee-Lian ONG Effect of radiation quality on growth and photosynthesis of Acacia mangium seedlings[J].Photosynthetica 41 (3):349-355,2003
    81.Nina P. Aksenova,Morphogenesis of Potato Plants In vitro. I. Effect of Light Quality and Hormones[J]. Plant Growth Regul,1994,13:143-146
    82.Moon H K, Park S Y, Kim Y W, et al. Growth of Tsuru-rindo (Tripterospermum japonicum) cultured in vitro under various sources of light-emitting diode (LED) irradiation[J]. Journal of Plant Biology,2006,49(2):174—179
    83.Kim S, Hahn E J, Heo J W,et al. Effect of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci Hort,2004,101:143-151
    84.Nhut D T, Hong L T A, Watanabe H, et al. Growth of banana plantlets cultured in vitro under red and blue light-emitting diode(LED) irradiation source[J]. Acta Hort,2002,575: 117—124
    85.Nhut D T, Takamura T, Watanabe H, et al. Artificial light source using light-emitting diode(LEDs) in the efficient micropropagation of spathiphyllum plantlets[J]. Acta Hort, 2005,693:137—141
    86.Rueychi J, Wei F. Growth of potato plantlets in vitro is different when provided concurrent versus alternating blue and red light photoperiods[J]. Hort Science,2004,39(2):380—382
    87.Kong Sik Shin, Hosakatte Niranjana Murthy, Jeong Wook Heo, et al. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis[J]. Plants Acta Physiology Plant,2008 30:339-343
    88.C. D'Onofrio, S. Morini and G. Bellocchi.Effect of light quality on somatic embryogenesis of quince leaves[J]. Plant Cell, Tissue and Organ Culture1998,53:91-98
    89.Eun-A. Jo, Rajesh Kumar Tewari, Eun-Joo Hahn,et al. Effect of photoperiod and light intensity on in vitro propagation of Alocasia amazonica[J]. Plant Biotechnology Report 2008 2:207-212
    90.吴沿友,刘建,胡光,等.发光二极管作为组培光源的特性分析与应用[J].江苏大学学报,2007,28(2):93-96
    91.Anzelika Kurilcik, Renata Miklusyte-Canova, Stase Dapkuniene2, et al. In vitro culture of Chrysanthemum plantlets using light-emitting diodes [J]. Cent. Eur. J. Biol, 2008,3(2):161-167
    92.Eun-A. Jo, Rajesh Kumar Tewari, Eun-Joo Hahn, et al. Effect of photoperiod and light intensity on in vitro propagation of Alocasia amazonica [J]. Plant Biotechnol Rep, 2008,2:207-212
    93.邹琦.植物生理学实验指导.北京:中国农业出版社,2000,72-75;166-169
    94.张志良,瞿伟菁.植物生理学实验指导.北京:高等教育出版社,2005,13-15;268-269;120-124
    95.Carlioz A, Touati D. Isolation of superoxide dismutase mutants in Escherichia coli:Is superoxide dismutase necessary for aerobic life [J] EMBO J,1986,5:623~630.
    96.Van Loon APGM, Pesold-Hurt B, Schatz G. A yeast mutantlacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen[J]. Proc Natl Acad Sci SA,1986,83:3820~3824.
    97.Zhu D, Scandalios J G. Expression of the maize MnSod (Sod3)gene in MnSOD-deficient yeast rescues the mutant yeast underoxidative stress[J]. Genetics,1992,131:803-809.
    98.McKersie B D,Chen Y,Beus M D,et al.. Superoxide dismutase enhances tolerance of reezing stress in transgenic alfalfa (Medicago sativa L.)[J]. Plant Physiol,1993,103:1155~1163.
    99.McKersie B D,Bowley S R Jones K S. Winter survival of transgenic alfalfa overexpressing superoxide dismutase[J]. Plant Physiol,1999,119:839~847.
    100.Tepperman J M,Dunsmuir P. Transformed plants with elevated levelsof chloroplast superoxide dismutase are not more resistant to superoxide toxicity[J]. Plant Mol Biol,1990,14:501~511.
    101.Samis K,Bowley S,McKersie. Pyramiding Mn-superoxide dismutase transgenes to improve persistence and biomass production in alfalfa[J]. J Expl Bot,2002,53 (372):1343~ 1350.
    102.李敏权,张自和,马静芳,等.苜蓿幼苗叶片过氧化物同工酶与根和根颈腐烂病抗病性的关系[J].中国草地,2003,25(3):37-41
    103.Chance B, Maehly A C. Assay of catalase and peroxidases[J].Met hods Enzymol.1955, 2:764-775
    104.Ford T W, Simon E W. Peroxidase and glucose-6-phosphate dehydrogenase levels in cotyledons of Cucumis stativa [J]. J Exp. Bot.,1972,23:423-437
    105.Manoranjan K, Dinabandhu M. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence [J].Plant Physio.,1976,57:315-319
    106.Monica Quiroga. A Tomato peroxidase involved in the synthesis of Lignin and Suberin[J]. Plant Physiol.2000,112:1119-1127
    107.陈金锋,王宫南,程素满.过氧化氢酶在植物胁迫响应中的功能研究进展[J].西北植物学报,2008,28(1):0188-0193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700