用户名: 密码: 验证码:
LED光质(R/B)处理对甘薯组培苗品质及节能效果的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物组织培养作为一种短时间内获得大量同品质种苗的快速繁育技术,目前已经成为遗传育种、种质资源保护和脱毒快繁的重要手段。传统组培所采用的人工光源荧光灯不仅散热量大,电能利用率低,而且还有明显的组培苗徒长现象,新型节能光源的研究极为迫切。
     有明显的促使组培苗徒长的作用,并且散热多,不仅增加了空调的耗电量,还降低了灯具的电能利用率,增大耗电量。
     本文针对植物组培光源荧光灯发热量大、光源光量子效率低和使用寿命相对较短的缺点,设计了一套由红色LED(660nm、637nm)和蓝色LED(460nm、450nm)灯管组合而成的组培光源;针对LED光源价格问题,采用将红色LED灯管和荧光灯结合的方法,构建了一套组培光源系统;研究了以上LED光源及其组合对甘薯组培苗的品质的影响,并对各光源组合进行了经济性评价。主要得到以下结论:
     1. LED灯管的物理光学性能特性比荧光灯更省电、更有效。满负荷下光照度范围可达201.8~246.9μmol·m-2·s-1;可调光质范围为2.2~9.4;LED灯管均匀度为0.94~0.95,比荧光灯提高了13%;光照度和功率都与占空比呈线性关系,完全可以通过调节占空比达到调节光照度的目的;
     2. 660nm红光LED和450nm蓝光LED灯管组合中,R/B=8为适宜的光质比;637nm红光LED和460nm蓝光LED灯管组合中,应设定R/B=10,此时根冠比、地下鲜重最大,地上部分和地下部分的相关性得到较好的协调,植株发育健壮;
     3. 637nmLED灯管和荧光灯的组合光源(637F)是最佳光源组合方式。此时637F下生长的甘薯组培苗的各指标均显著优于荧光灯;株高和地上部干鲜重都显著优于纯红蓝(波峰分别为637nm和460nm)LED灯管;除地上鲜重以外的其他指标都没有与660nmLED灯管和荧光灯的组合光源(660F)下生长的甘薯组培苗表现出显著性差异。637F能同时促进地上部和根部生长。R/B=10是660F和637F的适宜光质比;
     4.除660nm红光灯管+450nm蓝光灯管的组合外,其它3个LED组合的每层组培架的修正十年总费用已经低于荧光灯。尤其是637F的修正十年总费用低于荧光灯38.24%,大大降低LED灯管在组培领域的应用门槛。
Plant tissue culture is important means for inheritance, breeding, protection of germplasm resources, detoxification and rapid propagation, as a rapid propagation technology getting mass seedling in short time. The traditional artificial light of tissue culture is tubular fluorescent lamps (TFL), which can lead vain growth of tissue culture plantlets and release so much heat that electric energy consumption of air condition is increased.
     A set of tissue culture light combinded with red LED tube (660nm, 637nm) and blue LED tube (460nm, 450nm) was designed to solve problems of large heat release, low photo active efficiency and short use life of TFL; a tissue culture light system was designed to reduce price of LED light by means of combining the red LED tube with TFL. Influence of the above LED tubes and the combination light on growth of sweet potato plantlets in vitro and cost accounting of LED combination lights were carried on. The main conclusions as follows:
     1. The physical and optical responses of LED tubes were better than TFL. Range of light intensity of LED tubes was 201.8~246.9μmol·m-2·s-1;range of light quality was 2.2~9.4; uniform of LED tube was 0.94~0.95 and higher 13% than TFL; and light intensity and power of LED tube were linear with duty ratio, so the light intensity could be controlled by change the duty ratio;
     2. Proper R/B of combination of 660nm red LED tubes and 450nm blue LED tubes was 8, and proper R/B of combination of 637nm red LED tubes and 460nm blue LED tubes was 10. Top-root ratio and root fresh weight were highest and relevance between shoot and root was balanced;
     3. Combination of 637nm LED tubes and TFL (637F) was the best combination way. The sweet potato plantlets in vitro under 637F were better than there under TFL; significant difference were not showed in height, shoot fresh weight and shoot dry weight compared with sweet potato plantlets in vitro under red and blue LED tubes; significant difference were not showed compared with sweet potato plantlets in vitro under combination of 660nm LED tubes and TFL (660F) expect shoot fresh weight. The 637F could promote both shoot growth and root growth. And proper R/B for 660F and 637F were 10;
     4. All-in cost each layer of tissue culture light systems were lower than TFL expect the combination of 660nm red LED tubes and 450nm blue LED tubes. The all-in cost of 637F was lower 38.24% than TFL, and price of tissue culture LED light was reduced sharply.
引文
[1]鲍顺淑.密闭式植物工厂中药用铁皮石斛组培生产的适宜光照环境[D].北京:中国农业大学,2007: 49-58.
    [2]陈洪国.LED在植物工厂中的应用[J].液晶与显示.1996,12(4): 311-312.
    [3]陈元灯.LED制造技术与应用[M].北京:电子工业出版社,2007,1-10.
    [4]崔瑾等.LED在植物设施栽培中的应用和前景[J].农业工程学报,2006,24(8):249-253.
    [5]邸秀茹,等.新型光源LED辐射的不同光质配比光对菊花组培苗生长的影响[J].植物生理学通讯,2008,44(4): 661-664.
    [6]郭双生,等.受控生态生保系统中植物生长光源的选择[J].航天医学与医学工程.2003,16:490-493
    [7]胡海蕾,等.基于道路照明的LED阵列光照度分布研究[J].照明工程学报,2009,20(1): 77-80.
    [8]胡海蕾.LED照明光学系统的设计及其阵列光照度分布研究[D].福州:福建师范大学,2005: 43-53.
    [9]黄秋婵,等.阳生植物和阴生植物叶绿素含量的比较分析[J].湖北农业科学,2009,49(8): 1923-1924,1929.
    [10]李合生.现代植物生理学[M].北京:高等教育出版社,2002,308-316
    [11]李胜,等.不同光质对葡萄试管苗根系生长的影响[J].园艺学报,2005,32(5): 872-874.
    [12]李式军.设施园艺学[M].北京:中国农业出版社,2002: 85-88.
    [13]刘水丽.人工光源在锁闭式植物工厂的应用研究[D].北京:中国农业科学院,2007: 46-51.
    [14]马承伟,等.农业生物环境工程[M].北京:中国农业出版社,2005
    [15]毛兴武,等.新一代绿色光源LED及其应用技术[M].北京:人民邮电出版社,2008: 99-100,112-117.
    [16]潘瑞炽.植物生理学[M].北京:高等教育出版社,2004: 58-63.
    [17]秦利锋,等.受控生态生保系统中叶用蔬菜植物品种的筛选[J].航天医学与医学工程,2006,19(6): 417-424.
    [18]饶瑞佶,等.超高亮度红、蓝光LED应用与蝴蝶兰组培苗栽培之研究.农业机械学刊,2002
    [19]饶瑞佶,等.超高亮度发光二极体作为组培苗栽培人工光源之灯具制作与应用.中国园艺,2001,47(3):301-312
    [20]饶瑞佶,等.组合式红、蓝发光二极体灯具之给光环境模拟.农业机械学刊,2000,9(3):51-63
    [21]茹考斯卡斯,等.固体照明导论[M].黄世华,译.北京:化学工业出版社,2002
    [22]时向东,等.光质对作物生长发育影响研究进展[J].植物生理科学. 2008,6(24): 226-230.
    [23]王海鸥,等.认识照明LED[J].中国照明电器.2004(2): 1-3.
    [24]王玉英.激光植物工厂的现状与未来展望[J].光机电信息.2005,1:8-13
    [25]魏灵玲,等.LED在植物工厂中的研究现状与应用前景[J].中国农学通报,2007b,23(11): 408-410.
    [26]魏灵玲.LED光源在密闭式植物苗工厂的应用研究[D].北京:中国农业大学,2007a: 62-65.
    [27]闻婧,等.LED光源R/B对叶用莴苣生理性状及品质的影响[J].中国农业气象,2009a,30(3): 413-416.
    [28]闻婧.LED红蓝光波峰及R/B对密闭植物工厂作物的影响[D].北京:中国农业科学院,2009b: 20-40.
    [29]吴沿友,等.发光二极管作为组培光源的特性分析与应用[J].江苏大学学报,2007,28(2): 93-96.
    [30]徐明芳,等.钝顶螺旋藻在LED光电板式光生物反应器中的培养研究[J].福建水产,1999,12(4): 26-32.
    [31]徐志刚,等.组培室补光光源应用分析与评价[J]. 2001,32(5): 62-64.
    [32]闫世霞.我国设施农业现状分析[J].北方园艺.2001,6: 4-5.
    [33]严永红.商业中庭采光及照明经济性研究(二)[J].照明工程学报,1999,10(4): 51-55.
    [34]杨其长,等.植物工厂概论[M].北京:中国农业科学技术出版社,2005,1-34.
    [35]杨其长.LED在农业与生物产业的应用与前景展望[J].中国农业科技导报,2008,10(6): 42-47.
    [36]杨雅婷,等.LED在设施园艺中的应用系列(三)——LED在植物组培中的应用[J].温室园艺,2009,7: 13-14.
    [37]张欢,等.不同光质对萝卜芽苗菜生长和营养品质的影响[J].中国蔬菜. 2009,10: 28-32.
    [38]周敏君,等.不同光质对黄瓜离体根形态建成的影响[J].河北大学学报,1998,18(3): 260-262.
    [39]周毓君.不同光质对萝卜离体根形态建成的影响[J].河北大学学报,1999,19(4): 369-371.
    [40]周云空.植物生物学[M].北京:高等教育出版社,2004.
    [41] Barta D J et al.Evaluation of lighting-emitting diodes characteristics for a space-based plant irradiation source[J].Advances Space Research, 1992, 12(5): 141-149.
    [42] Bula R J et al.Light-emitting diodes as a radiation source for plants.Hortscience, 1991, 26(2):203-205
    [43] Critten D L.A review of the light transmission into greenhouse crops.Acta Hort, 1993, 328: 9-32
    [44] Dewir Y H et al.Effect of light-emitting diode on growth and shoot proliferation of Euphorbia millii and Spathiphyllum canniforlium[J].Kor.Hort.Sci.2005, 46(6): 375-379
    [45] Fang W et al.Artificial lighting apparatus for young plants using light emitting diodes as light source.USA, patent, US6474838B2, 2002.
    [46] Goins G D, Yorio N C, Lewis L V.Comparison of Spinach Growth and Development Under Broad- and Narrow-spectrum Lighting[J].HortScience, 2000, 35(6): 425
    [47] Goins G D, Yorio N C, Sanwo M M, Brown C S.Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting[J].Exp.Botany, 1997, 48:1407-1413
    [48] Hahn E J et al.Blue and red light-emitting diode with or without sucrose and ventilation affect in vitro growth of Rehmannia glutinosa plantlets[J].Journal of plant biology, 2000, 43(4): 247-250.
    [49] Hans C P M et al.Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in Algal culture (Chlorella pyrenoidosa) .Biotech.And Bioeng, 1996, 50:98-107
    [50] Hunter D C et al. Light quality influences adventitious shoot production from cotyledon explants of lettuce(Lactuca sativa L.)[J]. In Vitro Cellular & Developmental Biology-Plant, 2004, 40(2): 215-220.
    [51] Iwanami Y et al.Effects of supplemental red and far-red lighting using light emitting diodes on stem elongation and growth of potato plantlets in vitro.Abstr.Intl.Symp.Transplant Production Systems.1992:183
    [52] Jao R C, Fang W.Adjusting frequency and duty cycle to promote growth of potato plantlets in vitro using super-bright red and blue LEDs.Proceedings of“International Symposium on De sign and Environmental Control of Tropical and Subtropical Greenhouses”.2001a, 4:15-18
    [53] Jao R C, Fang W.An adjustable light source for photo-phyto related research and young plant production.Applied Engineering in Agriculture, 2003a, 19(5):601-608.
    [54] Jao R C, Fang W.An adjustable light source for photo-phyto related research and young plant production[J].Applied engineering in agriculture, 2003b, 19(5): 601-608.
    [55] Jao R C, Fang W.Development of a flexible lighting system for plant related research using super-bright red and blue light-emitting diodes.Acta Horticulturae.2001b, 578:133-140.
    [56] Jao R C, Fang W.Effects of frequency and duty ratio on the growth of potato plantlets in vitro using LEDs.Hort Science, 2004a, 39(2): 375-379,
    [57] Jao R C, Fang W.Growth of potato plantlets in vitro is different when provided concurrent versus alternating red and blue light photoperiods.HortScience, 2004b, 39(2): 380-382
    [58] Jao R C, Lai C C, Fang W, Chang S F.Effects of Red light on the Growth of Zantedeschia Plantlets in vitro and Tuber Formation Using Light-emitting Diodes, Hort Science, 2005, 40(4): 436-438
    [59] Johnson C F et al.Infrared light-emitting diode radiation causes gravitropic and morphological effects in dark-grown oat seedlings.Photochemistry and Photobiology, 1996, 63(2):238-242.
    [60] Kim H H et al.Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes.HortScience, 2004, 39(7): 1617-1622.
    [61] Kozai T et al.Commercialized closed system with artificial lighting for high quality plant production at low cost.2004 CIGR International Conference Beijing, 2004, 50: 6
    [62] Lee C G et al. High-density algal photobioreactors using light-emitting diodes[J].Biotech.And Bioeng.1994, 44:1161-1167.
    [63] Lian M L et al.Effect of light emitting diodes on morphogenesis and growth of bulblets of Lilium in vitro[J].Scientia Horticulturae, 2003, 44(1): 125-128.
    [64] Lian M L et al.Effects of light emitting diodes(LEDs)on the in vitro induction and growth of bulblets of Lilium oriental hybrid‘Pesaro’[J].Scientia Horticulturae, 2002, 94(3-4): 365-370.
    [65] Lund J B et al.End-of-day Lighting with Different Red/Far-red Ratios Using Light-emitting Diodes Affects Plant Growth of Chrysanthemum x morifolium Ramat . 'Coral Charm'[J].HortScience, 2007, 42(11): 1609-1611.
    [66] Marcelis L F M et al . The latest developments in the lighting technologies in Dutch horticulture.Acta Horticulture, 2002, 580: 35-42
    [67] Miyashita Y, Kitaya Y, Kozai T.Effects of red and far-red light on the growth and morphology plantlets in vitro: using light emitting diode as a light source for micropropagation.Acta Horticulturae, 1995, 393:189-194
    [68] Navassard V K.Protective dissipation of excess absorbed energy by photosynthetic apparatus of cyanobacteria: role of antenna terminal emitters[J].Photosynth Res, 2008, 97:195–204.
    [69] Nhut D T et al.Light emitting diodes (LEDs) as a radiation source for micropropagation of strawberry[A].Transplant Production in the 21st Century[C].Nertherland: Kluwer Academic Publishers, 2000: 114-118.
    [70] Nhut D T, Takamura T, Watanabe H.Artificial lighting source using light-emitting-diodes (LEDs) in the efficient micropropagation of Spathiphyllum plantlets[J].Acta Horticulture, 2005, 692: 137-142.
    [71] Nhut D T, Takamura T, Watanabe H.Efficiency of a novel culture system by using light-emitting diode(LED)on in vitro and subsequent growth of micropropagated banana plantlets[J].Acta Horticulture, 2003, 6: 121-127.
    [72] Okamoto K, Yanagi T, Kondo S.Growth and morphogenesis of lettuce seedlings raised under different combinations of red and blue light[J].Acta Horticulturae, 1997, 435:149-157.
    [73] Okamoto K, Yanagi T, Takita S.Development of plant growth apparatus using blue and red LED as artificial light source[J].Acta Horticulturae, 1996, 440:111-116.
    [74] Schuerger A C, Brown C S.Spectral quality affects disease development of three pathogens on hydroponically grown plants[J].Hortscience, 1997, 32(1):96-100.
    [75] Schuerger A C, Brown C S.Spectral quality may be used to alter plant disease development in CELSS[J].Advances in Space Research, 1994, 14:395-398.
    [76] Tanaka M et al.In vitro growth of Cymbidium plantlets cultured under superbright red and blue light-emitting diodes (LEDs)[J].Hortic.Sci.biotech, 1998, 73(1):39-44.
    [77] Tripathy B C et al.Root-shoot interaction in the greening of wheat seedlings grown under red light.Plant Physiology, 1995, 107:407-411.
    [78] Williams K .“Photo Manipulation Boxes”——An Instrument for the Study of Plant Photobiology[J].Bioscene.2000, 26(1):3-15.
    [79] Yanagi T, Okamoto K, Takita S.Effects of blue and blue/red lights of two different PPF levels on growth and morphogenesis of lettuce plants[J].Acta Horticulturae, 1996, 440:117-122.
    [80] Yanagi T, Okamoto K.Super-bright light emitting diodes as an artificial light source for plant growth[C].Abstract of 3rd International Symposium on Artificial Lighting in Horticulture, 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700