用户名: 密码: 验证码:
声弹性效应测试金属材料内部平面应力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声弹性技术可以作为一种应力测试技术,而且可作为一种材料的无损评估技术,可用于零部件(或装置)从制造到服役过程的各个阶段,其应用前景广阔。本文对平面应力状态下声弹性公式做了归纳总结。经推导得到横波检测理论公式,为平面应力测试打好了理论基础。并自行设计和加工了四点弯曲加载夹具和固定探头的夹具。试验表明,四点弯曲夹具符合设计要求,试验现象稳定,探头夹具固定效果良好,实验数据准确可靠。
     在此基础上分别对LY12和45钢自然状态下不同偏振方向的横波声速进行了测试,结果表明LY12铝合金和45钢都具有正交各向异性材料的特征,即材料存在声速快轴和慢轴(声主轴),且声速快轴和慢轴互相垂直;横波声速随其偏振方向变化而改变,在LY12铝合金检测时当横波探头与辊轧方向成60°或120°夹角附近时,声速急剧增大;当横波探头与辊轧方向平行时,声速出现极大值;LY12铝合金横波声速与偏振夹角的关系表明,声速随偏振夹角变化会出现非连续现象,即声速跳变。经过对实验现象进行分析和查阅相关资料,其原因是与其微观择优取向有关。
     为了测试材料中的平面应力,本文对LY12铝合金和45钢的长方体和八面体进行了单轴标定试验,得到了材料的相关声弹性常数,并分别测试它们在自然状态和四点弯曲状态下的横波声速分布。研究结果表明在处于平面应力状态下弹性介质中传播的超声横波会产生声弹性现象,这与经典的声弹性理论是符合的。计算和实验都表明,当LY12铝合金和45钢受到平面载荷应力时,在其中传播的不同偏振方向的超声波声速都发生了变化,其中45钢声主轴发生明显的偏转。利用声速变化与应力之间的依赖关系——声弹性效应,测试得到了LY12铝合金和45钢四点弯曲状态下的各测试点的正应力和剪切应力。将测试得到的应力分量与有限元模拟的结果进行了比较,证明了利用声弹法测试弱织构效应的LY12铝合金方法的可行性,并且测试结果可靠、准确;文中对强织构效应材料45钢,测试结果不理想,可能与材料的织构及残余应力等因素有关,值得进一步研究。在测试过程中本文还考虑了温度对LY12铝合金声速的影响。
     本文主要研究了四点弯曲状态下的声弹性现象及其应用。可进一步研究二维轴向拉伸状态下,弱各向异性材料声速与应力的变化关系,使得理论与实验更完备;同时在模拟方面还有许多工作需要做,比如开发单独声弹性模拟单元,直接利用声速信息得到材料应力分布;由此可见超声波检测应力的方法有着广阔的应用前景。
The acoustoelastic phenomenon not only as a technique for experimental stress analysis but also as a nondestructive technique for evaluation in metals, which can be used to evaluate metals all period from be made up to serve, has been extensively attracting related research people domestically and abroad.
     The present paper has generalized and summarizes the acoustoelastic theory in the plane stress. It has studied the temperature influence to LY12 aluminum alloy. In this paper, This self-developed a set of four-point bending loading fixture, and two sets of transducers holder, it is showed that four-point bending fixture comply with design requirements, the experimental phenomenon of stability, one of which transducers holder works well, stable and reliable experimental data.
     Shear wave velocity changes as the polarization angle (or rotation angle of sensor) changes in unstressed condition;The results indicate that when the oscillation direction of the shear wave makes an angle of about 60 degrees or 120 degrees with rolling direction, the shear wave velocity decreases sharply and the relationship between shear wave velocity and rotation angle tends to become discontinuous in LY12 aluminum alloy; When the oscillation of the shear waves occurs in the anisotropic direction of the rolling direction, the shear wave velocity exhibits a peak value; After researching to LY12 aluminum alloy, can conclude that maybe the Microcosmic Preferred Orientation cause the shear wave velocity cups.
     In this paper, it is consistent with that the present paper deals with the classical acoustoelasticity in plane stressed and elastically deform media when they are submitted bending stresses. Numerical and experimental evaluations of the resulting change in the ultrasound velocities as a function of bending loads are described. Through detecting the shear wave velocity of different polarization direction in unstressed condition, obtained that the LY12 aluminum alloy and 45 steel sample are the characteristics of orthotropic materials, ie, they had fast axis and slow axis of shear wave velocity, which have an Characteristic that the lower velocity transverse the faster velocity.
     It detected the plane stress under four-point bending in LY12 aluminum alloy and 45 steel samples by acoustoelastic method, comparing the detecting result with the Computation simulation by the finite element, the acoustic elasticity detecting and the analogue result tallies well in the magnitude. But partial test point’s result in 45 steel and the simulation value had discrepancies, maybe because the anisotropic of 45 steel and the modeling selection of finite element software, this is worth further studying.
     Ultrasonic birefringence phenomena under four-point bending and its application are studied in this paper. In the following work, the relationship between ultrasonic velocities and the applied stress under two dimensions tensile or compression will be futher studied; the stress evaluation by ultrasonics will be studied and will be applied to pratical production. So, stress determination by ultrasonics has a broad application.
引文
[1]李家伟,陈积懋.无损检测手册[M].北京:机械工业出版社, 2004.
    [2]李喜孟.无损检测[M].北京:机械工业出版社, 2000.
    [3]李喜孟,林莉译.无损评价与宇宙观——从全新的角度看问题[J].无损探伤, 1997.
    [4]张定铨,何家文.材料中残余应力的X射线衍射分析和作用[M].西安:西安交通大学出版社, 1994, 284.
    [5] Eryi Hu, Yuming He, Yanming Chen. Experimental study on the surface stress measurement with Rayleigh wave detection technique [J]. Applied Acoustics 2009, 70: 356–360
    [6] Xiuhao Yang, Jiexiong Ding, Fan Liu, Jun Zhang. Study of Transmitting and Receiving in Longitudinal Stress Measurement with the LCR Wave[J].2006 IEEE International Conference on Mechatronics and Automation (IEEE ICMA), 2006, 2:945-950
    [7] Kenichi Okada. Acoustoelastic determination of stress in slightly orthotropic materials [J]. Exp. Mech., 1981, 21(12):461-466.
    [8]潘友光,钟善桐.国内外焊接残余应力的测试技术和理论分析的综述[J].钢结构, 1994, 9(25):145-152.
    [9] A.E.H.Love.A Treatise on the Mathematical Theory of Elasticity[J].New York:Dover Publications, 1944, 643.
    [10] Leon Brillouin. Les tenseurs en mecanique et en elasticite[J]. New York: Dover Publications, 1946, 364.
    [11] F.D.Murnaghan.Finite Deformation of an Elastic Solid[J].AM.J.Math, 1937, 59: 235-239.
    [12] F.D.Murnaghan.Finite Deformation of an Elastic Solid[J].New York: John Wiley and Sons, Inc., 1951.
    [13] D.S.Hughes, J.L.Kelly. Second-Order Elastic Deformation of Solids[J]. Physical Review, 1953, 92(5): 1145-1149.
    [14] Toupin, R. A. and Bernstein, B. Sound waves in deformed perfectly elastic materials.Acoustoelastic effect[J]. Acoust.Soc.Am., 1961, 33:216-225.
    [15] Jones, G. L.and Kobett, D.R., Interactions of elastic waves in an isotropic solid[J]. Acoust. Soc. Am., 1963, 35:5-10.
    [16] Gol’dberg, Z. A. Interaction of plane longitudinal and transverse elastic waves[J]. Soviet Phys.-Acoust., 1960, 6(2): 307-310.
    [17]Smith, R.T. Stress-induced anisotropy in solid-the acoustoelastic effect[J].Ultrasonics.1963, 1:135-147.
    [18] R.N. Thurston, K. Brugger. Third-order elastic constants and velocity of small amplitudeelastic waves in homogeneously stressed media[J].PhysicalReview, 1964, 133(6A): A1604-A1610.
    [19] R.T.Smith, R.Stern and R.W.B.Stephens. Third-order elastic module of polycrystalline metals from ultrasonic velocity measurements[J].Acoust.Soc.Am, 1966, 40(5):1002-1008.
    [20] Tokuoka T., Iwashimizu Y. Acoustical birefringence of ultrasonic waves in deformed isotropic elastic materials[J].Int. J Solids Struct, 1968, 4:383-389.
    [21] Lazarus, D. Variation of elastic constants of alkali halides at 10000bars[J]. Phys. Rev., 1949, 76:55.
    [22] Hughes, Blankenship and Mims.Variation of Elastic Moduli and Wave Velocity with Pressure and Temperature in Plastics[J]. Appl.Phys., 1950, 21:294-297.
    [23] McSkimin, H.J. and Andreatch, P. Analysis of the pulse superposition method for measuring ultrasonic wave velocities as a function of temperature and pressure[J]. Acoust.Soc. Am., 1962, 34:609-615.
    [24] W.B.Daniels and C.S.Smith.Pressure Derivatives of the Elastic Constants of Copper[J], Silver, and Gold to 10 000Bars. Phys. Rev., 1958, 111:713-721.
    [25] T.Bateman, W.P.Mason, and H.J.McShimin.Third-Order Elastic Moduli of Germanium[J], Appl, Phys., 1961, 32(5):928-936.
    [26] A.Seeger and O.Buck.Die Ermittelung der elastischen Konstanten horer Ordnung[J].Z.Naturforsch, 1960, 15A:1056-1067.
    [27] Egle D.M, Bray D.E. Measurement of acoustoelastic and third-order elastic constants for rail steel [J] .The Journal of the Acoustical Society of America, 1976, 60(3): 741- 744.
    [28] Bergman, R. H.and Shahbender, R. A. Effect of statically applied stresses on the velocity of propagation of ultrasonic waves[J].Appl.Phys.,1958,29:1736-1738.
    [29] Benson, R.W, and Raelson, V. J. Acoustoelasticity[M].Product Eng., 1959, 30(29):56-59.
    [30] Rollins, F .R. Study of method for non-destuctive measurement of residual stress[J].WADD Technical Report.Ohio: Wright Air Development Division, 1959.59-561.
    [31] Rollins, F. R. Study of method for non-destuctive measurement of residual stress[J].WADC Technical Report. Ohio: Wright Air Development Division, 1961. PartⅠ: 61-42.
    [32] Crecraft, D. I. Ultrasonic wave velocities in stressed nickel steel[J]. Nature, Lond, 1962, 195:1193-1194.
    [33] Crecraft, D. I. Lauching ultrasonic shear waves into solids at normal incidence by pressure coupling[J].Sound Vib, 1964, 1:381-387.
    [34] Crecraft, D.I. The use of ultrasonics in stress analysis.Strain[M], 1965, 1:1-5.
    [35] Crecraft, D.I. The measurement of applied and residual stresses in metals using ultrasonicwaves[J]. Sound Vib, 1967, 5:173-192.
    [36] Crecraft, D.I. Ultrasonic measurements of stresses.Ultrasonics[M], 1968, 6:117-121.
    [37]Chi-sing Man, Lu W Y. Towards an acoustoelastic theory for measurement of residual stress [J].Journal of Elasticity, 1987(17): 159- 182.
    [38] Johson G C. On the applicability of acoustoelasticity for residual stress determination [J].Journal of Applied Mechanics, 1981(48): 791- 795.
    [39] Johson GC. Acoustoelastic theory for elastic-plastic materials [J] .The Journal of the Acoustical Society of America, 1981, 70(2):591- 595.
    [40] Johson GC. The Effect of Plastic Deformation on the Acoustoe-lastic Response of Metals [J].Journal of Applied Mechanics, 1983(50): 689- 691.
    [41] Mahadevan P. Effect of Frequency on Texture-induced Ultrasonic Wave Birefringence in Metals [J].Nature, 1966(211): 621- 622.
    [42] Iwashimizu Y, Kubomura K. Stress-induced rotation of polarization directions of elastic waves in slightly anisotropic material [J] .Solids Structures, 1973(9): 99- 114.
    [43] Clark A V, Mignogna R B, Sanford R J. Acousto-elastic measurements of stress and stress intensity factors around crack tips [J]. Ultrasonics, 1983(3): 57-64.
    [44] Kenichi, Okada. Acoustoelastic determination of stress in slightly orthotropic materials [J].Experimental Mechanics, 1981(11):461- 466.
    [45] Clark A V, Mignogna R B.A comparison of two theories of acoustoelasticity [J]. Ultrasonics, 1983, 21(5): 217- 225.
    [46] King R B, Fortunko C M. Determination of in-plane residual stress states in plates using horizontally polarized shear waves [J] .Journal of Applied Physics, 1983, 54 (6): 3027- 3035.
    [47]Thompson R B, Smith J F, Lee S S.Microstructure-independent acoustoelastic measurement of stress [J] .Applied Physics letter,1984, 44(3): 296- 298.
    [48] Allen D R, Sayeres C M.The measurement of residual stress in textured steel using an ultrasonic velocity combinations technique [J]. Ultrasonics, 1984(7): 179-188.
    [49] Yih-Hsing Pao, Udo Gamer.Acoustoelastic waves in orthotropic media[J].The Journal of the Acoustical Society of America, 1985, 77(3): 806- 812.
    [50] Bruce R, Thompson, Lee S S et al Angular dependence of ultrasonic wave propagation in a stressed, orthorhombic continuum: theory and application to the measurement of stress and texture [J] .The Journal of the Acoustical Society of America, 1986, 80(3): 921- 931.
    [51]郑超祖.超声波实验应力分析方法[J].无损检测, 1979, 1(1): 18-22.
    [52]伍行健,吴克成.平面声弹性技术[J].实验力学, 1987, 2(1): 44- 51.
    [53]蒋立强,吴克成.残余应力的二维声弹性测量[J].无损检测, 1992, 14(5): 125-127, 138.
    [51]王庆龙.残余应力检测技术及其应用[J].重型机械科技, 2002, (4): 39-41,49.
    [54]吴克成.声弹性应力测量[J].实验力学, 1987, 2(4): 3-13.
    [55]吴克成,蒋立强.弱正交异性材料残余应力测量的声弹性方法[J].固体力学学报, 1991, 12(3): 191-197.
    [56]蒋立强,吴克成.残余应力的二维声弹性测量[J].无损检测, 1992, 14(5): 125-127, 138.
    [57]匡健,李文卿,吴克成.弱正交材料的超声波斜入射应力-声关系[J].华中理工大学学报, 1999, 27(1): 109-111.
    [58]张文珺,焦复杰,袁智康.声弹性法测定铝合金焊接残余应力[J].无损检测, 1993, 15(8): 211-214.
    [59]王亚民,王彦龙.残余应力超声波检测系统[J].仪表技术, 2004, 4: 33-34.
    [60]王彦龙.残余应力的超声波检测研究. [硕士学位论文].西安科技大学, 2005, 72.
    [61]王寅观,邵良华,刘辉章等.用于残余应力分析的超声波测量仪[J].同济大学学报, 1990, 18(1): 57-63.
    [62]王寅观,邵良华.三阶弹性常数的超声测量方法[J].同济大学学报, 1995, 23(5): 552-556.
    [63]刘蕊,王寅观,陈振宇等.利用临界折射纵波检测钢轨应力[J].声学技术, 2004, 23(4): 246-249.
    [64]刘艳华,杨思乾.超声波测定摩擦焊接头残余应力[J].焊接学报, 2000, 21(3): 55-58.
    [65]孟凡顺,王再山,王春镛.超声波法测量套管应力[J].无损检测, 2003, 25(11): 579-580, 584.
    [66] Kino, G.S., et al. Acoustic Measurements of stress Fields and Microstructure[J].Nondestr.Eval. 1980, 1(1): 67-77
    [67] A.V. Clark, Jr On the use of acoustic birefringence to determine components of plane stress Ultrssonics[J]. January 1985, 21-30.
    [68] Tanala E, Bourse G, Fremiot M.Determination of near surface residual stresses on welded joints using ultrasonic methods [J]. NDT International, 1995, 28(2): 83- 88.
    [69] Masumi Hasegawa, Yasutoshi Sasaki.Acoustoelastic birefringence effect in woodⅠ: effect of applied stresses on the velocities of ultrasonic shear waves propagating transversely to the stress direction[J].The Japan Wood Research Society, 2004, 50: 47-52.
    [70] Masumi Hasegawa, Yasutoshi Sasaki.Acoustoelastic birefringence effect in woodⅡ: influence of texture anisotropy on the polarization direction of shear wave in wood[J].The Japan Wood Research Society, 2004, 50: 101-107.
    [71] Masumi Hasegawa, Yasutoshi Sasaki.Acoustoelastic birefringence effect in woodⅢ: ultrasonic stress determination of wood by acoustoelastic birefringence method[J].The JapanWood Research Society, 2004, 50:108-114.
    [72] Michael Janssen. Jan Zuidema. An Acoustoelastic Determination of the Stress Tensor in textured Metal sheets Using the Birefringency of Ultrasonic Shear Waves[J]. Journal of Nondestructive Evalution,1985, 5(1):45-52.
    [73] Yabdallahoui,Walaszek H, Peyrac C, et al.The use of ultrasonic in the optimization ofwelding processes[ J] .Welding international, 2001, 15(4): 1- 12.
    [74] Walaszek H, Hoblos J, Bourse G, et al Effect of microstructure on ul trasonic measurement of residual stress in welded joints[C]. Material Science Forum Vols: 404- 407, 2002: 875- 880.
    [75] Walaszek H, H-P Lieurade, C Peyrac, et al. Potentialities of ultrasonic for evaluation residual stresses: influence of microstructure[J].Journal of Pressure Vessel Technology, 2002,124:349- 353.
    [76]孟立春,路浩等.焊接结构服役状态残余应力超声波无损测量的研究进展[J].电焊接, 2008, 3(28): 1-6.
    [77]Lin Shaofeng, Zhang Hongjian. A new method for nondestructively measuring pressure based on the Rayleigh wave. Applied Acoustics [J]. 2008,69:891-900
    [78] Murayama R, Fujisawa K. Non-destructive Evaluation of Material Properties with EMAT[C]. Unknown: Ultrasonic sysmposium, 1989.
    [79] Kudryavtsev, Kleiman J.Ultrasonic Technique and Device for Residual Stress Measurement[C].USA: Proceedings of the SEM Annual Conference on Theoretical, Experimental and Computational Mechanics, 1999.
    [80] Kudryavtsev Y, Kleiman J, Gushcha O.Ultrasonic Measurement of Residual Stresses in Welded Railway Bridge[A].Structural Materials Technology[R].USA: An NDT Conference, 2000.
    [81] Kudryavtsev Y, Kleiman J.Residual Stress Measurement in welded Elements by ultrasonic Method[C].USA: International Congress on Experimental mechanics, 2000.
    [82] Raymond E.Schramma.Ultrasonic measurement of stress in railroad wheels [J].ReviewOf Scientific Instruments, 1999, 2(70):1468- 1472.
    [83] Massimo GORI.Non-destructive Evaluation of Residual Stresses in Railway Solid Wheels by Non-Contact EMAT Probe[R].Italy: ECNDT.
    [84] Hildebrand, B. P., Harrington, T.P. Mapping of materials stress with ultrasonic tomography[J].Mater. Eval,1981, 39:383.
    [85]杜功焕等.声学基础(上) [M].上海:上海科学技术出版社, 1951.
    [86]贺玲凤,刘军.声弹性技术[M].北京:科学出版社,2002. 176.
    [87] J.L.罗斯著,何存富译.固体中的超声波[M].北京:科学出版社, 2004, 3
    [88]蒋危平,方京.超声检测学[M].武汉:武汉测绘科技大学出版社, 1991.
    [89] Z.M. Zhang and K. Park“On the Group Front and Group Velocity in a Dispersive Medium Upon Refraction From a Nondispersive Medium”[J]. Heat Transfer,126,244一249 (2004).
    [90]M.J.P.Musgrave.The Propagation of elastic waves in crystals and other anisotropic media. Rep. Progr[J].Phys., 1959, 22:74-96.
    [91]魏勤,董师润,徐秉汉,徐颖梅.超声双折射法测试铝合金的内部应力[J].应用声学, 2008, 9(5): 401-406
    [92]冯升波.磁测残余应力法的基本理论和实验研究[D].清华大学, 1997 .
    [93]谢大吉,冯升波,王增梅,胡德贵.双向载荷作用下试件应力分布的理论和实验分析[J].实验力学, 1997, (01).
    [94]福岡秀和.音弹性定数の温度依存性.音弹性研究会音弹性[J]. 1988, 1: 61~64.
    [95]孙强,张忠平,李春旺,乔艳江,赵文轸.一个新的声应力系数及其确定.力学与实践[J],2005, (27): 62-64.
    [96]魏建新,赵群,孟平,周正仁.各向异性介质中横波特征的实验研究[J].石油地球物理勘探, 1997, (4).
    [97]Tatham, R.H., Mattews, M.D.,Wade, C.J., and Sekharan,K.K. A physical model study of shear-wave splitting and fracture intensity[J]. SAL tenth semi-annual Progress Review,1987,20 15-25.
    [98]武保林等.铝合金的再结晶织构及晶界特征分布[J].材料研究学报, 2000, (6): 634-638
    [99] C M. Sayerst, D R. Allen, G E. Haines and G. G. Prodfoo. Texture and stress determination in metals by using ultrasonic Rayleigh waves and neutron diffraction [J]. Phil. Trans. R. Sac. Lond. 1986, A 320: 187-200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700