用户名: 密码: 验证码:
熔盐电解共沉积制备镁锂钬合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mg-Li系合金具有低密度、高比强度、高比刚度、阻尼性能好以及抗高能粒子穿透能力强等一系列优点,因而在航空航天、电子工业及通讯行业备受关注,以前所未有的速度向前发展。然而二元Mg-Li合金由于强度较低、抗腐蚀能力差在应用上受到很大的限制。加入稀土元素能显著提高Mg-Li合金的高温强度和抗蠕变性能。Mg-Li-RE合金的制备一般采用对掺法,该法是先制备金属镁、金属锂和稀土,之后将金属镁、金属锂和稀土混合,但该法存在着诸如流程长、金属锂和稀土的严重偏析等缺点,鉴于对掺法的缺点,本文提出全部采用金属化合物为原料,通过熔盐电解共电沉积一步直接制备Mg-Li-RE合金的新方法。
     本论文在620℃的LiCl-KCl-MgCl2-HoCl3-(KF)熔盐体系中采用熔盐电解共电沉积制备Mg-Li-Ho合金,研究了金属锂、镁和钬的电沉积过程,并对Mg-Li-Ho合金的电解工艺进行优化,研究合金成分可控性;并进一步探讨稀土钬对Mg-Li合金组织结构和性能的影响。采用循环伏安法在LiCl-KCl-MgCl2-HoCl3熔盐体系中研究Li+、Mg2+和Ho3+分别在钼电极的电化学还原过程。研究结果表明,在熔盐体系的温度为620℃时,金属Li和Ho的欠电位沉积发生在预先沉积在钼电极的二次Mg电极上,形成富含钬的a(Mg)固熔体合金和包含α(Mg)、β(Li)和Mg2Ho相的液态Mg-Li-Ho合金。在低温620℃熔盐LiCl-KCl-MgCl2-HoCl3-KF体系中制备Mg-Li-Ho合金,研究了电流密度、电解温度和电解时间等电解工艺参数,优化了低温条件下制备镁锂钬合金的最佳工艺条件,并通过控制电解时间及稀土Ho添加量制备α、α+β和β等不同相组成的Mg-Li-Ho合金。研究了稀土Ho在Mg-1.9Li基合金中的作用及机理,结果表明:Ho分布在α(Mg)和α(Mg)晶粒周围,对α(Mg)细化、球化作用明显。适量的Ho对Mg-1.9Li合金具有固溶强化作用,Mg-1.9Li-xHo系合金随Ho含量的增加,硬度增加。
     研究了稀土Ho在Mg-6.6Li基合金中的作用及机理,结果表明:稀土Ho对α(Mg)有细化、球化作用。适量的Ho对Mg-6.6Li合金具有固溶强化作用,Mg-6.6Li-xHo系合金随Ho含量的增加,硬度增加。
     研究了稀土Ho在Mg-9.7Li基合金中的作用及机理,结果表明:Ho在Mg-9.7Li合金中,Ho既对Mg-9.7Li合金有细化作用又有固溶强化作用,同时有弥散化合物HoMg2产生,硬度也随Ho含量增加而增大,抗腐蚀性也有所提高。
     研究了稀土Ho在Mg-11.9Li基合金中的作用及机理,结果表明:Ho在Mg-11.9Li合金中固溶较小,对其有较好的细化效果,硬度的增加与HoMg2的析出有关。
The application for Mg-Li alloys in the aircraft, electronics and communication industries has been expanding at a high rate due to their low density, high strength-to-weigh, rigidity-to-weigh ratio, good damping capacity and good electromagnetic shielding properties. However their commercial application has been limited because of low strength and poor corrosion resistance. Added the rare earth elements to magnesium alloy can significantly increase the high temperature strength and anti-creep capacity. Traditional producing methods of Mg-Li-RE as added into the alloy diretly, which have prepared Mg, Li and Ho before producting Mg-Li-RE alloys. This have many disadvantages such as long flow, high energy cost and the severe deflection of Li and RE.In this study, we bring forward"melting salt electrolysis method"to produce Mg-Li-RE alloy.
     In this thesis, the Mg-Li-Ho alloys were prepared through electro-codeposition method in a molten LiCl-KCl-MgCl2-HoCl3-(KF) system at 620℃. The electrodeposition mechanism of Mg, Li and Ho as well as the formation process of Mg-Li-Ho alloys were both studied. The electrolysis process parameters of Mg-Li-Ho alloys and effect of holmium on microstructure and mechanical properties of Mg-Li alloy were also investigated.
     The electrochemical behaviour of Mg2+, Li+and Ho3+were studied at the molybdenum electrodes in the molten LiCl-KCl-MgCl2-HoCl3. Cyclic voltammetry was used in order to explore the deposition mechanism of Mg, Li and Ho. The results showed that the electroreduction of Li+, Mg2+and Ho3+ proceeds via a single step at 620℃. The underpotential deposition of lithium and holmium on pre-deposited magnesium leads to the formation of liquid Mg-Li-Ho alloys, which include aMg,βLi and Mg2Ho.
     Mg-Li-Ho alloys was prepared in the molten LiCl-KCl-MgCl2-HoCl3-KF electrolyte at 620℃.The electrolysis process parameters such as current density, temperature and electrolysis time were optimized. Preparingα,α+βandβMg-Li-Ho alloys by controlling time and Ho content
     In the research about the effects and mechanisms of Ho in Mg-1.9Li alloys, the results show that, Ho was distributed a(Mg) and theα(Mg) grain boundaries. Meanwhile, Ho has the good effects of refinement and spheroidization on the a(Mg) phase, The suitable Ho content in Mg-1.9Li alloy has the effects of solid-solution strenghen, With the increase of Ho content, the hardness increase.
     In the research about the effects and mechanisms of Ho in Mg-6.6Li alloys, the results show that, Ho has also the effects of refinement and spheroidization on the a(Mg) phase, The suitable Ho content in Mg-6.6Li alloy has the effects of solid-solution strenghen, With the increase of Ho content, the hardness increase.
     In the research about the effects and mechanisms of Ho in Mg-9.7Li alloys, the results show that, The suitable Ho content in Mg-9.7Li alloy has the effects of solid-solution strenghen, refinement strenghen and the second-phase HoMg2 strenghen. With the increase of Ho content, the hardness increase and the corrosion resistance of the alloy is improved.
     In the research about the effects and mechanisms of Ho in Mg-11.9Li alloys, the results show that, Ho in the Mg-11.9Li alloy exists in the form of HoMg2. Adequate Ho content has the effects of refining and secondary-phase HoMg2 strengthening for alloys
引文
[1]钟皓,刘培英.镁及镁合金在航空航天的应用及前景[J].航空工程及维修,2002,(4):41-42页
    [2]文华里.最轻实用的镁锂合金[J].轻金属,2001,(2006):30-32页
    [3]Robert Brown. Mannesium Automotive Meeting[J].Light meralage,1992, (6):18-241P
    [4]马培华.中国盐湖资源的开发利用与科技问题[J].地球科学进展,2000,(3):365-375页
    [5]宋彭生.盐湖及相关资源开发利用进展[J].盐湖研究,1998,(8):50-68页
    [6]房灿峰,张兴国,于延浩等.镁合金的性能、成形技术及其应用研究[J].金属热处理,2006,31(3):12-16页
    [7]黄西平,张琦,郭淑元等.我国镁资源利用现状及开发前景[J].海湖盐与化工,2004,33(6):1-6页
    [8]胡庆福,刘景泽,宋丽英.中国镁资源优势及镁质化工材料发展方向[J].无机盐工业,2006,38(9):13-16页
    [9]卫爱丽,付珍,赵浩峰.镁合金的生产及应用[J].铸造设备研究,2003,(1):34-37页
    [10]訾炳涛,王辉.镁合金及其在工业中的应用[J].稀有金属,2004,28(1):229-232页
    [11]邓玉勇,朱江,李立.新型金属材料镁合金的发展前景分析[J].科技导报,2002,10:374页
    [12]Pekguleryuz M O.Magnesium alloys some potentials for alloy develop-ment[J].Light Metal,1992,12:679-686P
    [13]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002:195-207页
    [14]Avedesian Michael M, Baker Hugh. Magnesium and Magnesium Alloy[J]. ASM International,1999.
    [15]Nishikawa Y. Development of Electric Products Using Magnesium Alloy[J]. Function and Materials,1999,19(6):21-27P
    [16]许并社,李明照.镁冶炼与镁合金熔炼工艺[M].北京:化学工业出版社,2005:62-66,94-95,105-106,118-119,121-122,160-162页
    [17]艾云龙,陈乐平,刘刚强.国内外镁合金发展现状的研讨[J].铸造工程,2005,(2):17-20页
    [18]H Friedrich, S Schumann. Research for a new age of magnesium in the automotive industry[J].Journal of Materials Processing Technology,2001, 117(3):276-281P
    [19]曹富荣,崔建忠,雷方等.超轻镁合金的研究历史与发展现状[J].材料工程,1996,(9):3-5页
    [20]李劲风,郑子樵,陶光勇.超轻Mg-Li合金[J].轻合金加工技术,2004,32(10):35-38页
    [21]曹富荣,崔建忠.超轻Mg-8Li合金超塑性力学性能的研究[J].稀有金属材料与工程,1997,26(2):27-30页
    [22]R Kh Kalimullin, V B Spiridonov, A T Berdnikov, et al.Properties of alloy MA21 after laser treatment[J].Metal Science and Heat Tretment,1988, 30(5-6):338-348P
    [23]乐启炽,崔健忠.Mg-Li合金的过去、现在与将来[J].宇航材料工艺,1997,27(2):1-6页
    [24]李红斌,吉海宾,姚广春等.新型Mg-Li-Mn合金的显微组织和力学性能[J].过程工程学报,2006,6(3):491-494页
    [25]李红斌,姚广春,吉海宾等.Ca对变形Mg-9Li-2Zn合金显微组织和机械性能的影响[J].东北大学学报,2006,27(4):438-441页
    [26]冯林平,陈斌,钟皓等.p基Mg-12Li-3AI-5Zn合金的塑性变形行为[J].金属热处理,2005,30(3):36-39页
    [27]T Wang, M L Zhang, R Z Wu. Microstructure and properties of Mg-8Li-1Al-1Ce alloy[J].Materials Letters,2008,62(12-13):1846-1848P
    [28]马春江,张获,覃继宁等.镁锂基复合材料界面结构及热力学分析[J].稀有金属,1999,23(6):401-404页
    [29]M L Zhang, Y D Yan, Z.Y. Hou, L A Fan, Z Chen, D X Tang, An electrochemical method for the preparation of Mg-Li alloys at low temperature molten salt system[J].Journal of Alloys and Compounds,2007, 440(1):362-366P
    [30]M L Zhang, Y D Yan, Z Y Hou, L A Fan, Z Chen and D X Tang, Preparation of Mg-Li alloys by electrolysis in molten salt at low temperature[J].Chinese Chemical Letters,2007,18(3):329-332P
    [31]S R Agnew, M H Yoo, C N Tome. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J].Acta Mater,2001,49:4277-4289P
    [32]M Kawasaki, K Kubota, K Higashi, et al. Flow and cavitation in a quasi-superplastic two-phase magnesium-lithium alloy[J],Materials Science and Engineering A,2006,429:334-340P
    [33]徐光宪.稀土(下)[M].北京:冶金工业出版社,1995:462-463页
    [34]M O Pekguleryuz, M M Adedesina. Magnesium alloying some potentials for alloy development[J].轻金属,1992,42(12):679-686P
    [35]H Ohara. Magnesium alloys and their application[J].轻金属,1998,48(8): 422-424P
    [36]G L Soon, M Arun. Gokhale. Visualization of three-dimensional pore morphologies in a high-pressure die-cast Mg-Al-RE alloy[J].Scripta Materialia,2007,56(6):501-504P
    [37]F Rosalbino, E Angelini, S De Negri, et al. Electrochemical behaviour assessment of novel Mg-rich Mg-Al-RE alloys (RE=Ce, Er) [J].Inter- metallics,2006,14(12):1487-1492P
    [38]Y S Wang, Q D Wang, C J Ma, et al.Effects of Zn and RE additions on the solidification behavior of Mg-9A1 magnesium alloy[J].Materials Science and Engineering A,2003,342:178-182P
    [39]A I Anyanwu, Y Gokan, A Suzuki, et al.Effect of substituting cerium-rich mischmetal with lanthanum on high temperature properties of die-cast Mg-Zn-Al-Ca-RE alloys[J].Materials Science and Engineering A,2004, 380:93-99P
    [40]X F Guo,D Shechtman. Reciprocating extrusion of rapidly solidified Mg-6Zn-1Y-0.6Ce-0.6Zr alloy[J].Journal of Materials Processing Technology,2007,187-188(12):640-644P
    [41]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005:91-92页
    [42]郑伟超,李培杰,郭旭涛等.稀土元素对AZ91D合金晶粒细化的影响[J],特种铸造及有色合金,2004,(4):26-28页
    [43]刘生发,黄尚宇,徐萍.Ce对AZ91镁合金铸态组织细化的影响[J].金属学报,2006,42(4):443-448页
    [44]艾庐山,袁森,康彦.添加稀土元素Ce对AZ91D镁合金组织的影响[J].稀有金属快报,2006,25(2):31.35页
    [45]O Tanno,K Ohuchi,K Matuzawa,et al.Effect of rare-earth on structures and mechanieal properties of Mg-8%Li alloys[J].Journal of Japanese Institute of Light Metals,1992,42(1):3-9P
    [46]于化顺,闵光辉.合金元素在Mg-Li基合金中的作用[J].稀有金属材料与工程,1996,25(2):1-5页
    [47]大内清明,岩泽秀,镰土重晴.Mg-8Li合金的组织与机械性质及稀土元素的影响[J].轻金属,1992,(8):446-452P
    [48]丹野敦,大内清明,松泽和夫,Mg-8Li合金的组织与机械特性及稀土元素的影响[J],轻金属,1992,(1):3-9P
    [49]T Wang, M L Zhang, Z Y Niu, et al.Influence of rare earth elements on microstructure and mechanical properties of Mg-Li alloys[J].Journal of Rare Earths,2006,24(6):797-800P
    [50]B Liu, M L Zhang, Z Y Niu. Influence of Re on microstructure and mechanical properties of Mg-Li-Al alloys[J].Materials Science Forum, 2007,546-549:211-216P
    [51]杨重愚主编.轻金属冶金学[M].北京:冶金工业出版社,1991:113页
    [52]张永健,雷·杜诺德.铝从AlC13-NaCl-CsCl熔体中析出的电化学研究[J].中国政治学院学报,1986,48(2):37-43页
    [53]张永健,雷·杜诺德.氯化铝电解时铝的析出反应速度的测定[J].中南政治学院学报.1987,18(2):158-162页
    [54]张永健,江名喜.氯化镁电解过程中碱金属的行为[J].中南工业大学学报,1996,27(5):538-542页
    [55]张永健,罗亮明.镁从工业电解质熔体中析出的电化学研究[J].轻金属,1991,(9):37-40页
    [56]张永健,罗亮明.氯化镁电解时液镁阴极析出相过程的研究[J].中国政治学院学报,1991,22(5):529-533页
    [57]张永健,罗亮明.氯化镁电解阴极过程机理及液镁析出状态的研究[J].中南矿冶学院学报,1994,25(2):176-181页
    [58]邓伟平,曾兴蒂,池向东.熔盐电解制取镁钇合金和金属镁[J].稀土1997,18(2):57-60页
    [59]徐达峰,张文智,徐晓贤.恒电流暂态法研究镁在非水体系的电沉积[J].物理化学学报,1991,7(5):609-612页
    [60]张文智,徐达峰,吴锡尊.镁在DMF中电沉积机理的研究[J].物理化学学报,1989,5(1):103-106页
    [61]Bermejo M R, Gomez J, Medina J, et al.The electrochemistry of gadolinium in the eutectic LiCl-KCl on W and Al electrodes[J].Journal of Electro- analytical Chemistry,2006,588:253-266P
    [62]段淑珍,乔芝郁.熔盐化学原理和应用[M].北京:冶金工业出版社,1990:337-338页,393页
    [63]王金贵,王建朝,郭承育等.乙酰胺-尿素-NaBr熔体中Nd-Ni合金的电化学制备[J].青海师范大学学报,2005,4:60-63页
    [64]陈必清,王建朝,刘青等.低温熔盐中Yb-Ni合金膜的电沉积研究[J].武汉理工大学学报,2006,28(8):5-8页
    [65]王审,赵胜海,陈德海等.镍钨合金共沉积的电化学研究[J].大庆石油学院学报,1997,21(3):65-68页
    [66]曹经倩.镍铬合金共沉积的电化学研究[J].材料保护,1998,26(1):11-15页
    [67]郭乃名,熊申海,过家驹.熔盐中A1-Ti合金共沉积的电极过程[J].化工冶金,1997,18(4):318-321页
    [68]张小联,赵敏寿,官素珍.YC13-NaCl-KCl熔体中Y3+在铝和镍电极上的电极过程[J].中国稀土学报,1991,9(4):302-305页
    [69]Polyakova L P, Taxil P, Polyakov E G. Electrochemical behaviour and codeposition of titanium and niobium in chloride-fluoride melts[J].Journal of Alloys and Compounds,2003,359:244-255P
    [70]Iida T, Nohira T, Ito Y. Electrochemical formation of Sm-Co alloys by cedeposition of Sm and Co in a molten LiCl-KCl-SmC13-CoC12 systtem[J]. Ecletrochimica Acta.2003,48:2517-2521P
    [71]Ebe H, Ueda M, Ohtsuka T. Electrodeposition of Sb, Bi, Te, and their alloys in AlC13-NaCl-KCl molten salt[J].Electrochimica Acta,2007,53:100-105P
    [72]柯山,杨绮琴,刘冠昆.尿素熔体中Cu-Ti合金电沉积研究[J].电镀与涂饰,1996,15(2):1-4页
    [73]赵敏寿,冯力,唐定骧.浅谈铝电解槽制备铝-稀土合金方法[J].稀土,1986,3:48-52页
    [74]杜森林,刘应明,路连清等.直流脉冲电解A1-La合金的研究[J].稀土,1993,14(3):66-69页
    [75]戴兴福,张明杰,谭亚菊.熔盐电解法制取高浓度铝锂合金[J].轻金属,1998,1:38-41页
    [76]徐建华,陈建华,邱仕麟.电解法制取铝锶合金的研究[J].轻金属,2001,8:36-38页
    [77]B G Yang, Z X Qiu, B L Gao, et al.Electrolytic prepration of Al-Ca master alloy on liquid Al cathode[J].Transactions of Nonferrous Metals Society of China,2000,10(2):246-249P
    [78]韩学印.氯化物电解共析法制取铈镁合金.中国,发明专利,1122848,1996.5.22
    [79]Z Chen, M L Zhang, W Han, Electrodeposition of Zr and electrochemical formation of Mg-Zr alloys from the eutectic LiCl-KCl[J].Journal of Alloys and Compounds 2008,459:209-214 P
    [80]X Zhang, S Q Jiao, S J Xiao, et al.Electrochemical behaviour of magnesium and aluminium ions in alkali chloride melt[J].Materials Science Forum, 2005,488-489:811-814P
    [81]Smolinski. Electrolytic deposition and diffusion of lithium into magnes-ium[J].Journal of Appllied Chemistry,1956,6:180-186P
    [82]Smolinski J, Hannam J C,Leach A L.An electrolysic method for direct production of magnesium lithium alloys from lithium chloride[J].Journal of Appllied Chemistry,1956,6:187-196P
    [83]Y D Yan, M L Zhang, W Han, et al. Electrochemical Codeposition of Mg-Li Alloys from a Molten KCl-LiCl-MgCl2 System[J].Chemistry Letters,2008, 37(2):212-213P
    [84]颜永得,张密林,韩伟等.KCl-LiCl-MgC12熔盐体系中共电沉积制备Mg-Li合金及理论分析[J].无机化学学报,2008,24(6):902-906页
    [85]T. Iida, T. Nohira, Y. Ito, et al. Electrochemical formation of Sm-Co alloys by Li codeposition method in a molten LiCl-KCl-SmCl3 system[J]. Electrochimica Acta,2003,48:901-906P
    [86]管从胜,段淑贞,王新东.锂离子在铝电极上的电极过程机理[J].中国有色金属学报,1996,6(4):51-55页
    [87]段淑贞,管丛胜,石青荣等.LiCl-KCl熔盐中锂在铝电极上的电极过程[J].电化学,1998,4(2):205-209页
    [88]Y.Castrillejo, M.R. Bermejo, A.I.Barrado, et al. Electrochemical behaviour of dysprosium in the eutectic LiCl-KCl at W and Al electrodes[J]. Electrochimica Acta,2005,50:2047-2057P
    [89]赵敏寿,吕翔平,梁金.KCl-LiCl共晶熔体中Nd3+和Ho3+的电化学行为[J].中国稀土学报,1997,15(3):1993-1995页
    [90]Y D Yan, M L Zhang, W Han, et al. Electrochemical formation of Mg-Li alloys at solid magnesium electrode from LiCl-KCl melts[J].Electrochimica Acta,2008,53:3323-3328P
    [91]杨绮琴,方北龙,童叶翔编著应用电化学[M].广州:中山大学出版社2006:27-33页
    [92]杨绮琴,刘冠昆,苏育志.氯化物熔体中钬离子在铁电极上的电还原[J].电化学,1995,1(1):44-49
    [93]胡会利,李宁主编电化学测量[M].北京:国防工业出版社,2007:31-37页
    [94]X H Zhou, Y W Huang, Z L Wei, et al.Improvement of corrosion resistance of AZ91D magnesium alloy by holmium addition[J].Corrosion Science, 2006,48:4223-4233P
    [95]J T Guo, L Y Sheng, Y X Tian, et al. Effect of Ho on the microstructure and compressive properties of NiAl-based eutectic alloy[J].Materials Letters, 2008,62:3910-3912P
    [96]Y X Tian, J T Guo, Y C Liang, et al.Effect of Ho additions on the microstructure and mechanical properties of Nb-22Ti-16Si-7Cr-3Al-3Ta-2Hf alloys[J].international Journal of Materials Research 2007,98: 511-515P
    [97]李建弘,李全安,谢建昌等.稀土耐热镁合金的开发与应用[J].材料导报,2007,21(5):A313-A316页
    [98]宋雨来,刘耀辉,朱先勇等.Ho对AZ91镁合金显微组织和力学性能的影响[J].湖南大学学报:自然科学版,2008,35(3):67-71页
    [99]M P Qiu, W D Han, D W Li, et al. Aging behavior and mechanical properties of Mg-Gd-Ho alloys[J].MATERIALS CHARACTERIZATION, 2008,59:983-986P
    [100]张新明,彭卓凯,陈健美等.耐热镁合金及其研究进展[J].中国有色金属学报,2004,14(9):1443-1449页
    [101]崔忠圻,覃耀春主编.金属学与热处理[M].北京:机械工业出版社,2007:37-44页
    [102]杨军军,聂祚仁,金头男等.稀土铒在A1-Zn-Mg合金中的存在形式与细化机理[J].中国有色金属学报,2004,14(4):620-626页
    [103]王忠军,张彩碚,邵晓宏等.添加稀土Er于熔剂中对铸态AZ91镁合金组织与性能的影响[J].中国有色金属学报,2007,17(2):181-187页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700