镁锂系合金微合金化及外场控制凝固研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁锂合金被称为超轻镁合金,是最轻的金属结构材料,具有较高的比强度、比刚度,良好的塑性,以及优异的电磁屏蔽性能等优点,在宇航、兵器工业、汽车、电子等领域有着良好的发展前景。随着能源危机以及人们环保意识的增强,对轻质、可回收材料的需求更为迫切,镁锂合金的应用领域也将越来越广泛。
     本文主要研究了稀土元素Gd、Ce以及超声场、电磁场对镁锂合金凝固组织及其性能的影响,并利用PIV物理模拟技术,模拟了超声场对流场的影响,得到了以下结果:
     Mg-8Li-3Al合金组织由α和β两相组成,添加稀土元素Gd及元素Ce可以有效地改盖Mg-8Li-3Al合金的凝固组织。添加元素Gd后,在相界处有白色析出相,组织得到细化且相对圆整化;添加元素Ce后,在β相及相界处有Al2Ce相析出,细化了合金的显微组织。
     PIV对超声作用下流场结构的模拟结果表明,超声作用下,流场内存在左右两个环流状结构,靠近超声工具头前端位置,流场有较大的速度。随着超声振动功率的增加,流场的流速增大,在工具头前端位置速度增大效果比较明显。
     对不同温度下的Mg-8Li-3Al合金熔体施加超声场。研究表明,在液相线以上稍高温度施加超声场时,可显著改善合金的凝固组织,这说明了压强-过冷机制可能是主要的超声细化机制。超声工具头前端位置有最为细化的凝固组织,随着距超声工具头距离的增大,超声能量发生衰减,作用效果变小,凝固组织细化程度减弱。
     对Mg-8Li-3Al合金施加不同功率的超声振动。结果表明,当超声作用功率为170W时,能显著改善Mg-8Li-3Al合金的凝固组织,α相形貌从蔷薇状结构转变为细小的近球状结构,并随着超声作用时间的延长细化效果也变得越来越好。经170W超声处理90s后的合金试样,抗腐蚀性能与力学性能都有了明显提高,其中抗拉强度与伸长率分别为184MPa与18.5%,相比不经超声处理的试样,提高了9.5%与45.7%。
     初步研究了电磁场对Mg-9Li-5Al-Zn合金的影响,结果显示,施加电磁场后,凝固组织中,α相形貌由长条状结构转变为近球状结构,合金的力学性能得到明显提高。
Mg-Li series alloys are so called ultra-light magnesium based alloys, and they are the lightest metal structural material. They have high specific strength and stiffness, good damping capacity, and electromagnetic shielding properties. Mg-Li alloy has a promising application prospect in aerospace, ordnance industry, automobile, electronics etc. With energy crisis and attention of environment protection, light-weight and recyclable materials are eagerly to be demanded, and the application of Mg-Li series alloys is becoming more and more widespread.
     In this paper, the effects of Gd, Ce, ultrasonic field and electromagnetic stirring on the microstructures and properties of Mg-Li series alloys were studied, and the effect of ultrasonic field on the fluid flow was studied by Particle Image Velocimetry (PIV) technology.
     Mg-8Li-3Al alloy consist of a dual phase structure of a andβphase, Gd and Ce can effectively improve the microstructures. After adding Gd, The white phase is observed at the phase boundary, and microstructure is refined and roundness. After adding Ce, Al2Ce is observed at the phase boundary andβphase, and microstructure can be refined.
     The result of PIV simulation indicates that there are two recirculation loops in the flow field on the left and the right, and the maximum speed is obtained in the front of the ultrasonic probe. The fluid flow rate increase with increasing of ultrasonic power, the effect of the increment of velocity is obvious in the front of the ultrasonic probe.
     Mg-8Li-3Al alloy melt was treated at different temperature with ultrasonic vibration. When the melt temperature was a litter higher than its liquidus, microstructure could be effectively improved when the melt was treated by ultrasonic field. It was supposed that the pressure-supercooling may be the major mechanism of refinement. The optimum refining effect is obtained in the front of the ultrasonic probe, and the refining efficiency decreases because of loss of ultrasonic energy with the distance increase.
     Ultrasonic vibration with different powers was introduced into the Mg-8Li-3Al alloy melt during the solidification process of the alloy. The experiment results show that the morphology of a phase is modified from coarse rosette-like structure to fine globular one after the application of ultrasonic vibration. The fine globular structure is obtained especially when the power is 170W, and the refining effect also gets better with prolonging the ultrasonic treatment time. The corrosion resistance and the mechanical properties of the alloy with 170W of ultrasonic vibration for 90s are improved apparently compared with the alloy without ultrasonic vibration, and the tensile strength and elongation are 184Mpa and 18.5% respectively. Compared with the Mg-8Li-3Al alloy without ultrasonic vibration, the tensile strength increases by 9.5%, and the elongation improves by 45.7%.
     Effects of electromagnetic stirring on microstructure and mechanical properties of the Mg-9Li-5Al-Zn alloy were simply studied in this paper. The results reveal that, the morphology of the a phase changes from the long blocky structure to somewhat globular one, the mechanical properties are increased significantly with electromagnetic stirring.
引文
[1]黄西平,张琦,郭淑元,等.我国镁资源利用现状及开发前景[J].海湖盐与化工,2005,33(6):1-7.
    [2]胡庆福,刘景泽,宋丽英,等.中国镁资源优势及镁质化工材料发展方向[J].无机盐工业,2006,38(9):13-16.
    [3]向群,屈伟平.镁合金的发展趋势[J].冶金丛刊,2004,153(5):35-38.
    [4]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社,2006.
    [5]张丁非,彭建,丁培道,等.镁及镁合金的资源、应用及其发展现状[J].材料导报,2004,18(4):72-76.
    [6]刘兵.中国镁产业面临的发展机遇与挑战[J].新材料产业,2001,11(6):12-18.
    [7]黄正华,张忠明,郭学锋,等.镁合金阻燃方法与机理[J].兵器材料科学与工程,2004,27(1):63-66.
    [8]陈振华,严红革,陈吉华,等.镁合金[M].北京:化学工业出版社,2004.
    [9]MORDIKE B L, EBERT T. Magnesium properties-application-potential[J]. Materials Science and Engineering A,2001,302A(1):37-45.
    [10]王文先,张金山,许并社.镁合金材料的应用及其加工成型技术[J].太原理工大学学报,2001,32(6):599-602.
    [11]张密林,ELKIN F.镁锂超轻合金[M].北京:科学出版社,2010.
    [12]杨光昱,郝启堂,介万奇.镁锂系合金的研究现状[J].铸造技术,2004,25(1):19-21.
    [13]王建义.超轻量镁合金开发[J].工业材料杂志,1991,4(184):132-136.
    [14]曹富荣,崔建忠,雷方,等.超轻镁合金的研究历史与发展现状[J].材料工程,1996,(6):3-5.
    [15]FRIEDRICH H, SCHUMANN S. Research for a "new age of magnesium" in the automotive industry[J]. Journal of Materials Processing Technology,2001,117(3):276-281.
    [16]李劲风,郑子樵,陶光勇.超轻Mg-Li合金[J].轻合金加工技术,2004,32(10):35-38.
    [17]乐启炽,崔建忠.Mg-Li合金的过去、现在与将来[J].宇航材料工艺,1997,(2):1-6.
    [18]阿合买提·依明,黄晋.Mg-Li合金国内外研究进展[J].新疆有色金属,2008,增刊2:100-101.
    [19]陈振华,夏伟军,严红革,等.变形镁合金[M].北京:化学工业出版社,2005.
    [20]于华顺,闽光辉,陈熙琛.Mg-Li基复合材料研究现状[J].稀有金属,1996,20(5):365-368.
    [21]曹富荣,崔建忠,温景林.超轻Mg-Li合金熔铸工艺与轧制温度的研究[J].轻合金加工技术,1999,27(9):35-37.
    [22]乐启炽,崔建忠.Mg-Li合金熔铸工艺的研究[J].轻合金加工技术,1997,25(4):14-17.
    [23]张英,任智森,杨国英.镁锂合金的组织结构及熔炼加工[J].有色金属加工,2007,36(4):14-16.
    [24]于化顺,闵光辉.合金元素在Mg-Li基合金中的作用[J].稀有金属材料与工程,1996,25(2):1-5.
    [25]乐启炽,李洪晓,崔建忠.稀土和银对Mg-Li合金显微组织及力学性能的影响[J].兵器材料科学与工程,1997,20(4):9-13.
    [26]李红斌,姚广春,吉海宾,等.Ca对超轻Mg-Li-Al合金显微组织和力学性能的影响[J].铸造,2005,54(12):1276-1279.
    [27]余琨,黎文献,张世军.Ce对镁及镁合金中晶粒的细化机理[J].稀有金属材料与工程,2005,34(7):328-331.
    [28]马洪波,赵平.Y和混合稀土对Mg-Li-Al合金力学性能的影响[J].材料热处理技术,2008,37(2):34-38.
    [29]白晓清.超声波作用下液体中夹杂物迁移行为[D].沈阳:东北大学,2002.
    [30]冯若.超声手册[M].南京:南京大学出版社,1999.
    [31]KUIJPERS M, VAN E, KEMMERE M, et al. Cavitation-Induced Reactions in High-Pressure Carbon Dioxide[J]. Science,2002,298(6):1969-1971.
    [32]ESKIN G. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys[J]. Ultrasonics Sonochemistry,2001,8(3):319-325.
    [33]张海锋.镁合金熔体15kHz超声净化工艺及超声凝固的物理模拟[D].沈阳:东北大学,2009.
    [34]郭峰.镁合金凝固组织的超声细化机制及工艺研究[D].南昌:南昌大学,2008.
    [35]郭峰,罗沛兰,毕秋,等.金属熔体超声细化处理技术的研究进展[J].金属材料与冶金工程,2008,36(1):59-64.
    [36]刘清梅,龚永勇,侯旭,等.侧部导入超声处理对共晶Al-Si合金凝固特性的影响[J].中国有色金属学报,2007,17(2):309-312.
    [37]刘清梅.超声波对金属凝固特性及组织影响的研究[D].上海:上海大学,2007.
    [38]JIAN X, XU H, MEEK T. T, et al. Effect of power ultrasound on solidification of aluminum A356 alloy[J].Materials Letters,2005,59(2-3):190-193.
    [39]LI X, LI T, LI X, et al. Study of ultrasonic melt treatment on the quality of horizontal continuously cast Al-l%Si alloy[J]. Ultrasonics Sonochemistry,2006,13(2):121-125.
    [40]高学鹏,李新涛,李廷举,等.超声场对Al-1%Si合金水平连铸坯显微组织及力学性能的影响[J].金属学报,2007,43(1):17-22.
    [41]胡志,闫洪,陈国香,等.超声波作用下半固态AZ61镁合金的制备和理论研究[J].铸造,2008,57(6):561-564.
    [42]GAO D, LI Z, HAN Q, et al. Effect of ultrasonic power on microstructure and mechanical properties of AZ91 alloy[J]. Materials Science and Engineering A,2009,502(1-2):2-5.
    [43]张军,傅恒志,谢发勤等.金属熔体的电磁成形与凝固[J].材料研究学报,1997,11(6):612-622.
    [44]詹美燕,李元元,陈维平.电磁搅拌铸造及其在镁合金上的应用[J].轻合金加工技术,2007,35(8):6-10.
    [45]张殿彬,安东,张艳国.电磁搅拌在铝熔铸行业中的应用[J].世界有色金属,2005,1:39-40.
    [46]李同杰.电磁搅拌技术在铝熔铸中的应用[J].有色金属加工,2006,35(4):42-44.
    [47]姜琳,王翠梅.浅谈电磁搅拌在铝熔体铸造中的晶粒细化作用[J].黑龙江科技信息,2007,3:38.
    [48]YU J, REN Z, REN W, et al. Effects of electromagnetic vibration on the structure and mechanical properties of Al-6%Si alloy during directional solidification[J]. Acta Metallurgica sinica,2009,22(1):35-39.
    [49]LI M, TAMURA T, MIWA K. Controlling microstructures of AZ31 magnesium alloys by an electromagnetic vibration technique during solidification:From experimental observation to theoretical understanding[J]. Acta Materialia,2007,55(14):4635-4643.
    [50]马蕾娟,郝海,姚磊,等.电磁搅拌对Mg-8Li-3Al合金显微组织和力学性能的影响[J].特种铸造及有色合金,2009,29(12):1144-1147.
    [51]刘斌,张密林.Ce对Mg-Li-Al合金组织及力学性能的影响[J].特种铸造及有色合,2007,27(5):329-331.
    [52]王渠东,吕宜振,曾小勤.稀土在铸造镁合金中的应用[J].特种铸造及有色合金,1999,(1):40-44.
    [53]郝鹏飞,何枫,王健,等.利用PIV研究超声波引起的微流动现象[J].机械工程学报,2005,41(3):64-66.
    [54]徐萱.铝合金板坯连铸PIV模拟及工艺优化[D].大连:大连理工大学,2007.
    [55]冯旺聪,郑士琴.粒子图像测速(PIV)技术的发展[J].仪器仪表用户,2003,10(6):1-3.
    [56]粒子图像分析系统使用手册.北京立方天地科技发展有限公司,北京:2006.
    [57]FAN L, YANG G, LEE D, et al. Some aspects of high-pressure phenomena of bubbles in liquids and liquid-solid suspensions [J]. Chemical Engineering Science,1999,54(21):4681-4709.
    [58]LABORDE J, HITA A, GERARD A. Fluid dynamics phenomena induced by power ultrasounds [J]. Ultrasonics,2000,38(1-8):297-300.
    [59]MADELIN G, GRUEKER D, FRANCONIC J, et al. Magnetic resonance imaging of acoustic streaming:absorption coefficient and acoustic field shape estimation[J]. Ultrasonics, 2006,44(3):272-278.
    [60]杨运猛.超声场对铝合金凝固作用机制试验研究[D].长沙:中南大学,2009。
    [61]PAMIREZ A, MA Q. Grain refinement of magnesium alloys by ultrasonic vibration[C]. TMS 2007 Annual Meeting and Exhibition:Linking Science and Technology for Global Solutions, Orlando, Florida, U. S. A,2007:127-132.
    [62]LI Y, XU G, ZHENG J, et al. Distribution of solute elements in AZ61 magnesium alloys under electromagnetic fields[J]. Materials Science and Engineering A,2007,457(1-2): 58-62.
    [63]ZHANG Q, JIN J, WANG T, et al. Analysis of molten metal flow in rotating magnetic field[J].The Chinese Journal of Nonferrous Metals,2007,17(1):98-103.
    [64]ZHANG S, DENG K, LI W, et al. Effect of electromagnetically continuous casting on structure and mechanical properties of magnesium alloy AZ31[J].The Chinese Journal of Nonferrous Metals,2007,17(1):106-110.
    [65]赵红岩,石广新,翁康荣,等.电磁场对AZ91镁合金凝固态组织的影响[J].轻合金加工技术,2006,34(8):14-16.
    [66]WU R, ZHANG M, LIU B. Influences of misch metal on microstructure and mechanical properties of Mg-10Li-4Al alloy[J]. Journal of Rare Earths,2007, S1:547-549.
    [67]LI J, ZHENG Z, LI S. Effect of heat treatment on mechanical properties of Mg-10.02Li-3.86Zn-2.54A1-1.76Cu alloy [J]. Rare Metal Materials and Engineering,2005, 34(11):1770-1773.
    [68]LIU T, ZHANG W, WU S. D, et al. Mechanical properties of a two-phase alloy Mg-8%Li-1%Al processed by equal channel angular pressing[J]. Materials Science and Engineering A, 2003,360(1-2):345-349.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700