用户名: 密码: 验证码:
低水胶比大掺量矿物掺合料水泥基材料的收缩及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
收缩变形特性一直是水泥基材料性能研究中的关键技术问题之一,收缩引起的开裂已经成为当代混凝土工程界触目惊心的普遍现象。低水胶比高性能水泥基材料的发展,以及矿物掺合料深层次研制开发和可持续发展的社会需求,给传统的理论框架体系带来了困惑与挑战。在各种收缩的区分、测试方法、机理、数值模拟以及抑制方法上存在着的种种问题,严重制约了该领域的研究进展。矿物掺合料对收缩的影响规律及机理也存在着较大的争议。
     本文的研究立足于低水胶比的大掺量矿物掺合料水泥基材料(Cement-based material at low water to binder ratio incorporating high volume mineral admixtures,以下简称HMLWBM),针对上述问题应用现代测试技术,采用学科交叉的方法,研究分析各种收缩过程的热力学变化。采用宏观测试与微观分析相结合的研究方法,将理论与工程实践相结合,并借助现代的计算机数值技术进行了分析研究。
     在总结现有的国内外关于各种收缩的定义及测试方法的基础之上,明确了几种收缩的定义,明确了自收缩与自干燥收缩、自收缩(表观体积的减小)与化学减缩(绝对体积的减小)定义的区别与联系。研制了一种新的早龄期自收缩自动化测试系统,采用非接触传感器和立式测量方式,对水泥基材及混凝土的自收缩实现了分阶段、全过程的自动测试,使得自收缩的测量初始时间可以提早到浇筑成型后即开始。该系统有效避免了模具的约束和外界震动的干扰,测试过程中毋须拆模及搬动试件,实现了数据的自动化采集及分析。试验结果与定义相符,长期测试结果稳定可靠,试验结果具有很好的重复性。
     采用新的测试手段和方法,对HMLWBM的收缩变形行为进行了分阶段、全过程的分析,研究了矿粉和I级粉煤灰对自收缩及干燥收缩的影响规律。粉煤灰的大量掺入对于自收缩具有明显的抑制作用,并随掺量的增加效果更加明显;但是增加了干燥收缩,尤其是干燥初期的收缩,随着粉煤灰掺量继续加大(从30%增加至50%),增加干缩的程度减小。比表面积为439m2/kg的矿粉大量替代水泥后,明显增加了硬化混凝土的自干燥收缩,随着掺量的增加而更加显著;在50%掺量以内干缩随矿粉掺量增加而减小,继续增加掺量干缩加大。粉煤灰与矿粉复掺可以在较大的掺量下综合抑制其自收缩与干燥条件下的失水收缩,是提高大掺量矿物掺合料高性能水泥基材料收缩体积稳定性的重要技术途径。同时,研究表明HMLWBM的收缩发展符合ε( t )=ε∞(1?Aeat +Bebt)的规律。
     总结相关文献资料,对已有的收缩数学模型进行了分析与比较,从热力学角度探讨了毛细管张力理论模型存在的问题,并对毛细管负压的作用面积系数进行了修正。通过对自干燥收缩过程的热力学分析,证明了自干燥收缩的机理是化学减缩,而不是自干燥(或者说通常意义的蒸发)。在此基础之上建立了基于机理的自收缩预测模型。通过对扩散方程在时间域和空间域上的离散,并采用有限差分法,结合孔径分布模型,实现了对水泥石水分迁移的数值模拟。同时结合改进后的毛细管张力理论,建立了基于机理的水泥石干缩预测模型。根据复合材料特性,建立了普通集料混凝土的干缩和自收缩的数学模型。在所建立的模型的基础之上,
Shrinkage deformation is always one of the key properties in the research field of cement materials. The crack phenomenon due to shrinkage has become amazingly common nowadays in the concrete engineering. With the development of high performance cement materials at low water to binder ratio (W/B) and the requirement of deep-level exploitation of the mineral admixtures for the sustainable development society, the traditional theory frame system in this field confronts many new obfuscations and challenges. Those existing problems, such as the distinguishing of different shrinkage types, testing methods, mechanisms, numerical modeling and controlling measure greatly restrict the research effort in this field. The influence of the mineral admixtures on the shrinkage of the cement-based material and the behind mechanism is still controversial.
     The study in this thesis focused on the cement-based material at low water to binder ratio incorporating high volume mineral admixtures (HMLWBM). Specialized research was carried out on the above-mentioned problems of such materials by means of modern computer numerical technology and the combinations of macrocosmic and microcosmic measures. The modern testing techniques and research methods of intersection of different subjects were employed to reference. The thermodynamic changes of various shrinkages were investigated.
     First of all, the definitions of the several types of shrinkage were explicated, which demonstrated the distinction and relation of autogenous shrinkage vs. self-desiccation shrinkage as well as autogenous shrinkage (reduction in apparent volume) vs. chemical shrinkage (reduction in absolute volume). The full course of the autogenous shrinkage was investigated by stages with the development of a new automatic measuring system. The initial time of the testing for autogenous shrinkage could be advanced from the casting owing to the incorporation of perpendicular testing and non-contact sensor. The new system took effective measures to avoid the restraining of the mould and the turbulence of the outer trembling. There was no need of demoulding and moving of the specimen in the experiment. The testing course realized the automatic data input and processing. The testing results accorded with the definition very well and exhibited good long-term reliability and repetitiveness.
     The newly-developed testing methods and system were adopted to study the whole-course of shrinkage of HMLWBM by stages and investigate the effects of the ground blast furnace slag (Sl) and type I fly ash (Fa) on the autogenous shrinkage and drying shrinkage. The addition of high volume Fa reduced the autogenous shrinkage effectively. This reducing effect increased with the content of the Fa. The high-ratio replacement of the Sl with 439m2/kg specific area for cement increased the self-desiccation shrinkage of hardened concrete obviously. While for the drying shrinkage, high volume fly ash enhanced the shrinkage under drying condition, especially at the initial stages of drying. However, the drying shrinkage lowered when the Fa content increased from 30% to 50%. The drying shrinkage decreased with the Sl content up to 50% replacing ratio and began to increase a little with further increasing of Sl content to 70%. The composition of Fa and Sl could restrain the autogenous shrinkage and drying shrinkage synthetically in a relatively high level of replacing ratio, which should be an important technical approach to improve the shrinkage volume stability of HMLWBM. The shrinkage evolution of HMLWBM agreed well with the function ofε( t )=ε∞(1?Aeat +Bebt).
引文
1. 唐明述. 提高重大混凝土工程耐久性对节约资源能源、保护环境意义重大[C].见:周光召,朱光亚主编,《共同走向科学》——百名院士科技系列报告集.北京,2001.
    2. 沈荣熹. 论推进我国墙体材料绿色化的技术决策[C]. 见:跨世纪新型建筑材料发展讨论会论文集. 北京,1997
    3. 吴中伟. 绿色高性能混凝土-混凝土的发展方向[J].混凝土与水泥制品,1998,(1):3-6
    4. Mehta P K. Greening of the concrete industry for sustainable development[J]. Concrete International, 2002: 22-38
    5. Aitcin Pierre Claude. Cement of yeseaearday & today, concrete of tomorrow. Cement and Concrete Research, 2000, 30:1349-1359
    6. Litvan G, Bickley J. Durability of parking structures: analysis of field survey, Concrete Durability[C]. In: Scanlon J M, ed., Katharine and Bryant Mather International Conference, SP-100, American Concrete Institute, Farmington Hills, Michigan, 1987: 1503-1526.
    7. Gerwick B C. A Holistic approach to concrete technology for major bridges[C], In: Mehta P K, ed., Concrete Technology . Past, Present, and Future, Malhotra V M Symposium, SP-144 , American Concrete Institute, Farmington Hills, Michigan, 1994: 41-59.
    8. Krauss P D, Rogalla E A, Transverse cracking in newly constructed bridge decks[C]. In: NCHRP Report 380, Transportation Research Board, Washington, D.C., 1996: 126.
    9. Mehta P K. and Burrows R W. Building Durable Structures in The 21st Century. Concrete International. 2001, 23(3): 57-63.
    10. 唐明述,二十一世纪水泥混凝土发展远景,内部资料,1998
    11. BURROWS R W. The visible and invisible cracking of concrete[J], ACI Monograph, 1998, No.
    11, American Concrete Institute, Farmington Hills, Michigan. 78.
    12. Bazant Z P, Wittmann. Creep and shrinkage in concrete structures. New York: John Wiley & Sons Ltd. 1982: 163-258
    13. 早龄期混凝土的性能、试验方法和检测手段,冶金部建筑研究总院,建筑技术情报室. 1987
    14. Bazant Z P, Carol I. Guidelines and recommendations for characterising creep and shrinkage in structural design codes, CONCREEP 5, London: E&FN Spon, 1995: 805-829.
    15. Lura P. Autogenous deformation and internal curing of concrete [D]. Delft: univ of Delft. 2003. 63~75.
    16. Weiss J. Experimental determination of the “time zero” t0(maturity M0) [C]. In: Kovler. K and Bentur. A. eds. International RILEM Conference on Early Age Cracking in Cementitious Systems- EAC'01. Haifa: RILEM TC 181-EAS. 2001.195~206
    17. Toutanji H A, EI-Korchi T,Tensile and Compressive Strength of Silica Fume-Cement Pastes and Mortars[J]. Cement, Concrete & Aggregates, 1998, 18(2):
    18. Carette G. G., Malhotra V M. Mechanical properties, durability and drying shrinkage of portland cement concrete incorporating silica fume[J]. Cement, Concrete, and Aggregates 1983, 5 (1): 3-13
    19. ACI Committee 226. Silica fume in concrete: Preliminary report[G]. ACI Materials Journal, 1987, March-April: 158-66.
    20. 姜德民,硅灰对高性能混凝土强度的作用机理研究. 建筑技术开发,23(4). 2001.44-46
    21. Persson B P, Bertil. Chemical Shrinkage and Self-Desiccation in Portland Cement Based Mortars[J]. Concrete Science and Engineering, 1999, Vol.1: 228-237
    22. Branch J, Hannant D J, Mulheron M. Factors affecting the plastic shrinkage cracking of high-strength concrete[J]. Magazine of concrete research, 2005, 54(5): 347-354
    23. Hammer T A. Effect of silica fume on the plastic shrinkage and pore water pressure of high-strength concretes[C]. In: Baroghel-Bouny V, A?tcin P C, eds. International RILEM Workshop on Shrinkage of Concrete - 'Shrinkage 2000'. Paris: The Publishing Company of RILEM, 2000. -
    24. 安明喆等,高性能混凝土的自收缩问题,矿渣微粉研究和应用论文集,上篢抖霭嫔纾?2002,154-159
    25. 高小建,高性能混凝土早期开裂机理与评价方法,博士论文,哈尔滨工业大学,2003 年 8月,72-74
    26. Hooton R D, Stanish K, Prusinski. The effect of granulated blast furnace slag (slag cement) on the drying shrinkage of concrete-a critical review of the literature[C]. In: Eighth CANMENT/ACI international conference on fly ash, silica fume, slag and natural pozzolans in concrete.
    27. 吴中伟,廉慧珍. 高性能混凝土,北京:中国铁道出版社,1999: 270
    28. 沈旦申. 粉煤灰混凝土,北京:中国铁道出版社,1989: 210
    29. M.N.Haque, O.Kayali. Properties of high-strength concrete using fine fly ash[J]. Cement and Concrete Research.1998, 28(10): 1445~1452
    30. 秦鸿根等, 掺粉煤灰高性能桥用混凝土变形性能研究, 东南大学学报:自然科学版.2002.032(005): 779-782
    31. 惠荣炎等. 安康工程粉煤灰混凝土依时性变形的试验研究. 水利水电科学研究院论文集,1985
    32. 黄国兴. 混凝土的收缩,北京:中国铁道出版社,1990. 21-23
    33. 蔡安兰, 李顺凯, 严生等,养护温度对高掺量粉煤灰硅酸盐水泥砂浆干缩性能的影响. 硅酸盐学报. 33(1),2005.100-105
    34. Steven H. Gebler and Paul Klieger. Effect of Fly Ash on Some of the Physical Properties of Concrete[M]. PCA, 1986.
    35. Mihashi H, Sato Y. Prediction and Control of Shrinkage Cracking in Concrete Structures[J]. Concrete Journal, Japan Concrete Institute. 2005, Vol.43, No.5: 1-8
    36. Wittmamn F H, Schwesinger P. High performance concrete Materials properties and design. 冯乃谦译. 北京:中国铁道出版社,1998. 1-8
    37. Tetsuya ISHIDA, Rajesh CHAUBE, Toshiharu KISHI et al.. Micro-physical approach to coupled autogenous and drying shrinkage of concrete[C], In: Ei-ichi Tazawa eds. Autogenous Shrinkage of Concrete, E&FN SPON, 1998. 319-330
    38. Charron J P,Marchand J, Bissonnette B et al.. Microstructural models[C].In: Kovler K and Bentur A. eds. International RILEM Conference on Early Age Cracking in Cementitious Systems- EAC'01. Haifa: RILEM TC 181-EAS. 2002.151~168.
    39. 袁勇. 混凝土结构早期裂缝控制[M]. 北京:科学出版社,2004. 173-196
    40. 中国工程院土木水利与建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[M]. 北京:中国建筑工业出版社,2004. 9-10
    41. Rawhouser C. Cracking and temperature control of mass concrete[J], Journal of American Concrete Institute. 1945, 16(4): 306-346
    42. Emborg M. Models and methods for computation of thermal stresses and cracking risks. State –of-the-art-report, RILEM TC 119, Munich, 1994, 47-56
    43. Le Chatelier, H., Sur les changements de volume qui accompagnent le durcissement des ciments, Bulletin de la Societe d'Encouragement pour l'Industrie Nationale, 1900, 54-57
    44. Lynam C G, Growth and Movement in Portland Cement Concrete[M]. London: Oxford Univ. Press, 1934. 26–27.
    45. Tazawa et al., Autogenous Shrinkage of Concrete, London: Taylor & Francis Books Ltd, 1999, 1~67.
    46. Bentur A, Terminologys and definitions, In: Kovler. K and Bentur. A, eds. International RILEM Conference on Early Age Cracking in Cementitious Systems- EAC'01. Haifa: RILEM TC 181-EAS, 2002.13~15
    47. 吴中伟,廉慧珍. 高性能混凝土,北京:中国铁道出版社,1999. 263~281
    48. 马冬花,尚建丽, 高性能混凝土的自收缩.西安建筑科技大学学报.2003, 35(1): 82~84
    49. 朱金铨,覃维祖.高性能混凝土的自收缩问题.建筑材料学报.2001, 4(2):159~166
    50. Preface, In: Baroghel-Bouny V, A?tcin P C, eds. International RILEM Workshop on Shrinkage of Concrete - 'Shrinkage 2000'. Paris: The Publishing Company of RILEM, 2000.1~1.
    51. Barcelo L, Boivin S, Rigaud Set al. Linear vs. volumetric autogenous shrinkage measurement: Material behaviour or experimental artefact? In: Persson B, Fagerlund G, eds. Proceedings of the second International Research Seminar on Self-desiccation and its Importance in Concrete Technology. Lund: Lund Institute of Technology,1997.109~125.
    52. Setter, D.M. Roy, Mechanical features of chemical shrinkage of cement paste, Cement and Concrete Research. 1979, 8(5), 623-634
    53. M. Buil, Contribution a l’etude du retrait de la pate de ciment durcissante, Rapport de recherche des Laboratoire des Ponts et Chaussées (LPC). 1979, 92
    54. Y. Yamazaki, T. Monji, K. Sugiura. Early age expanding behaviour of mortars and concretes using expansive additives of CaO-CaSO4-4CaO?3Al2O3?SO3 system. 6th Int. Cong. On the Chemistry of Cement, Moscow, September 1974, Stroyizdat, Moscow Ⅲ-5:192~195
    55. H. Justnes et al., Influence of measuring method on bleeding and chemical shrinkage values of cement pastes, Proceedings of the 10th international congress on the chemistry of cement, Gothenburg, Sweden, 1997, June 2-6, Vol. 2, paper 2ii069
    56. Charron J. P., Marchand J., Bissonnette B., Early-age deformations of hydrating cement systems, systematic comparison of linear and volumetric shrinkage measurements, Concrete Science and Engineering, 3 (2001): 168~173
    57. O.M.Jensen, P.F. Hansen, A dilatometer for measuring autogenous deformation in hardening Portland cement paste, Materials and Structures, 1995 28(181): 406~409
    58. Lura P, Breugel K V, Maruyama I . Effect of curing temperature and type of cement on early-age shrinkage of high-performance concrete[J]. Cement and Concrete Research, 2001, 31: 1867–1872
    59. Morioka M, Hori A, Hagiwara et al. Measurement of autogenous length changes by laser sensors equipped with digital computer systems[C]. In: Tazawa E I ed, Proc. Int. Workshop Autoshrink’98, Hiroshima, Japan: E & FN SPON, Londen, 1999. 191-200
    60. Jesen O M. HETEK-Control of early age cracking in concrete-Phase 2: Shrinkage of mortar and concrete, Report No.110, Danish Road Directorate, Demark,1997.
    61. Lokhorst S J. Deformational behaviour of concrete influenced by hydration related changes of the microstructure[R]. Research report, Delft: Delft University of Technology, The Netherlands. 1998
    62. Holt E E, Leivo M T. Autogenous shrinkage at very early ages[C]. In: Tazawa E I ed, Proc. Int. Workshop Autoshrink’98, Hiroshima, Japan: E & FN SPON, Londen, 1999. 133-140
    63. Bentur A, Igarashi S, Kovler K. Control of autogenous shrinkage stresses and cracking in high strength concretes[C]. In: Proc. 5th Int. Symp. on Utilization of High Strength/High Performance Concrete, Sandefjord, 1999. 1017–1026.
    64. Bjontegaard ?. Thermal dilation and autogenous deformation as driving forces to self-induced stresses in high performance concrete[D], Doctoral thesis, Norway, Trondheim: NTNU Division of Structural Engineering, 1999.
    65. Tazawa E, Matsuoka Y, Miyazawa S et al.. Effect of autogenous shrinkage on self stress in hardening concrete[C]. In: Proc. Int. RILEM Symp. Thermal Cracking in Concrete at early Ages, London: E&FN, 1995. 221–228.
    66. Hanehara S, Hirao H, Uchikawa H, Relationship between autogenous shrinkage and the microstructure and humidity changes at inner part of hardened cement pastes at early ages[C].In:Proc. Autoshrink ’98, Int. Workshop on Autogenous Shrinkage of Concrete. Hiroshima, London: E&FN, 1998. 89– 100.
    67. Miao B. A new method to measure the early-age deformation of cement based materials[C]. In: Proc. Shrinkage 2000—Int. RILEM Workshop on Shrinkage of Concrete. Paris: RILEM Publications S.A.R.L., 2000. 381– 386.
    68. Brooks J J, Wainwright P J, Boukendakji M. Influence of Slag Type and Replacement Level on Strength, Elasticity, Shrinkage, and Creep of Concrete[C]. In: ACI SP 132 : Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Proceedings Fourth International Conference, Istanbul, Turkey, 1992: 1325- 1366.
    69. Chan Y W, Liu C Y, Lu Y S. Effects of Slag and Fly Ash on the Autogenous Shrinkage of High Performance concrete[C]. In: Tazawa E ed. Autogenous Shrinkage of Concrete, E&FN Spon, London, 1999: 221-228.
    70. Chern J C, Chan Y W. Deformations of Concrete Made with Blast-Furnace Slag Cement and Ordinary Portland Cement[J]. ACI Materials Journal, 1989, 86(4): 372-382.
    71. Cook D J, Hinczak I, Duggan R. Volume Changes in Portland-Blast Furnace Slag Cement Concrete[C]. In: ACI SP-91, Second International Conference on the Use of Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Madrid, Spain –Volume of Supplementary Papers, 1986: 1-14.
    72. Khatri R P, Sirivivatnanon V, Gross W. Effect of Different Supplementary Cementitious Materials on Mechanical Properties of High Performance Concrete,” Cement and Concrete Research, 1995, Vol. 25, No. 1: 209-220.
    73. Kleiger P. Isberner A W. Laboratory Studies of Blended Cements—Portland Blast-Furnace Slag Cements[J]. Journal of the PCA Research and Development Laboratories, 1967, 9(3): 2-22.
    74. Malhotra V M. Mechanical Properties and Freezing and Thawing Durability of Concrete Incorporating A Ground Granulated Blast-Furnace Slag[C]. In: Proceedings, International Workshop on Granulated Blast-Furnace Slag in Concrete, Toronto, 1987: 231-274.
    75. Ravindrarajah R S, Mercer C M, Toth J. Moisture-Induced Volume Changes in High-Strength Concrete. ACI SP-149[M], High Performance Concrete, 1995. 475-490.
    76. Ryan W G, Hinczak I, Cook D J. Engineering Properties of Slag Concretes in Australia, Evolution Over Twenty Years[C]. In:Supplemental Paper Volume, Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Third International Conference, Trondheim, Norway: 667-681.
    77. Tazawa E, Yonekura A, Tanaka S. Drying Shrinkage and Creep of Concrete Containing Granulated Blast Furnace Slag[C]. In: ACI SP-114 Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete: Proceedings Third International Conference, Trondheim, Norway, 1989: 1325-1368.
    78. Hogan F J, Meusel J W. Evaluation for Durability and Strength Development of a Ground Granulated Blast Furnace Slag[J]. Cement, Concrete and Aggregates, 1981,Vol. 3, No.1: 40-52.
    79. 梁文泉等,矿渣微粉掺量对混凝土收缩开裂的影响,武汉大学学报:工学版,2004, 037(001):77-81
    80. 安明喆. 高性能混凝土的自收缩[D]. 博士学位论文. 北京:清华大学. 1999
    81. 吴中伟,廉慧珍. 高性能混凝土[M]. 北京:中国铁道出版社,1999: 279
    82. Tazawa E. Autogenous shrinkage by self-desiccation in cementitious material. In: proceedings of 9th international conference on chemistry of cement, New Delhi, 1992
    83. Tazawa E,Miyazawa. Influence of cement and admixture on autogenous shrinkage of cementpaste[J]. Cement and Concrete Research, 1995, 25(2):281-287
    84. 森本博昭,高井茂信,棚桥和夫等. 高炉スラダ微粉末を混入したコンクリ—トの自己收缩. セメント. コンクリ—ト论文集, 1995, No.49:600-603
    85. 关英俊. 混凝土自身体积变形试验研究. 见:中国水电科学研究院编,水利水电科学研究论文集. 北京:中国水电科学研究院,1982. 第9集
    86. 严捍东. 废渣特性及其多元复合对水泥基材料高性能的贡献与机理[D]. 博士学位论文. 南京:东南大学. 2001
    87. 何真,祝雯,张丽君等. 粉煤灰对水泥砂浆早期电学行为与开裂敏感性影响研究[J]. 长江科学院院报,2005年4月,22(2):
    88. 蒋正武等. 高性能混凝土中自干燥效应的研究, 建筑材料学报.2004.007(001):19-24
    89. Kolluru V S, Roman G, Shah S P et al. Influence of Ultrafine Fly Ash on the Early Age Response and the Shrinkage Cracking Potential of Concrete[J]. Journal of Materials in Civil Engineering, 2005, 17(1): 45-53
    90. Lee H K, Lee K M, Kimy B G.. Autogenous shrinkage of high-performance concrete containing fly ash[J]. Magazine of Concrete Research, 2005, 55(6): 507-515
    91. Mehta P K. HIGH-PERFORMANCE, HIGH-VOLUME FLY ASH CONCRETE FOR SUSTAINABLE DEVELOPMENT[C]. In: International Workshop on Sustainable Development and Concrete Technology. Beijing, China, 2004:
    92. Malhotra, V.M. “High-Performance, High-Volume Fly Ash Concrete.” Concrete International 24(7), 2002, pp. 30-34.
    93. Naik, T.R., B.W. Ramme, R.N. Kraus, and R. Siddique. “Long Term Performance of High-Volume Fly Ash Concrete Pavements.” ACI Materials Journal 100(2), 2003, pp. 150-155.
    94. Jensen O M, Thermodynamic limitation of self-desiccation. Cement and Concrete Research, (25)1, 1995.
    95. Neville A.M., “Properties of Concrete” Forth and Final Edition, 1995, Addison Wesley, L ongman Limited.
    96. Tazawa E, Miyazawa S. Influence of cement and admixture on autogenous shrinkage of cement paste[J]. Cement and Concrete Research. 1995, 25(2): 281-287
    97. Charron J P, Marchand J, Bissonnette B, et al. Empirical models describing the behavior of concrete at early age[C]. In: Kovler. K and Bentur. A. eds. International RILEM Conference on Early Age Cracking in Cementitious Systems- EAC'01. Haifa: RILEM TC 181-EAS. 2002.179~192
    98. LeRoy R, DeLarrard F, Pons G. The AFERM code type model for creep and shrinkage of high performance concrete[C]. In: F. de Larrard and R.Lacroix. eds. 4th International symposium on utilization of high-strength/high-performance concrete. Paris. 1996. 387-396
    99. Van Breugel K. Simulation of hydration and formation of structure in hardening cement-based materials[D]. Ph.D. thesis, Delft: Delft University of Technology. The Netherlands. 1991
    100. Van Breugel K. Numerical modeling of volume changes at early ages-potential, pitfalls and challenges[J], Mater Struct, 2001, 34(239): 293-301.
    101. Garboczi E J. Computational materials science of cement-based materials[J]. Materials and Structures, 1993, 26: 191-195.
    102. Bentz D P, Garboczi E J. Percolation of phases in a three-dimensional cement paste microstructural model[J]. Cement and Concrete Research, 1991, 21(2/3): 325-344
    103. Bentz D P, Schlangen E, Garboczi E J. Computer simulation of interfacial zone microstructure and its effect on the properties of cement-based composites[J]. Materials Science of Concrete, 1995: 155-200
    104. Bentz D P., CEMHYD3D: A Three-Dimensional Cement Hydration and Microstructure Development Modeling Package. Version 3.0", National Institute of Standards and Technology Interagency Report 7232, Technology Administration, U.S. Department of Commerce, June 2005.
    105. Bentz D P. Modelling cement microstructure: pixels, particles, and property prediction[J]. Materials and Structures, 1999, Vol.32: 187-195
    106. Bentz D P, Jesen O M, Hansen K K, et al. Influence of cement particle-size distribution on the early age autogenous strains and stresses in cement-based materials[J]. Journal of the America Ceramic Society, 2001, 84(1): 129-135
    107. Maekawa K, Chaube R, Kishi T. Modelling of concrete performance[C]. E& FN spon, 1999
    108. Ishida T, Chaube R, Kishi T, et al. Micro-physical approach to coupled autogenous and drying shrinkage of concrete[C]. In: E.Tazawa eds. Proceedings of International workshop on Autogenous Shrinkage of Concrete. Hirishima, Japan, June 13-14, 1998. 271-280
    109. Hua C, Acker P, Ehrlacher A. Analyses and models of the autogenous shrinkage of hardening cement paste: I. Modelling at macroscopic scale[J]. Cement and Concrete Research, 1995, 25(7): 1457-1468
    110. Hua C, Acker P, Ehrlacher A. Analyses and models of the autogenous shrinkage of hardening cement paste: II. Modelling at scale of hydrating grains[J]. Cement and Concrete Research, 1997, 27(2): 245-258
    111. Bentz D P, Garboczi E J, Quenard D A. Modelling drying shrinkage in reconstructed porous materials: application to porous Vycor glass[J]. Modelling Simul Mater Sci Eng, 1998 (6): 211-236.
    112. Powers T C, Brownyard T L. Studies of the physical properties of hardened portland cement paste[J]. Research Laboratories of the Portland Cement Association, PCA Bulletin 1948, 22.
    113. Locher F W, Richartz W, Sprung S. Rrstarren von Zement (in German)[J]. Zement Kalk Gips, 1976, 29(10): 435-442.
    114. Powers T C, Copeland L E, Mann H M. Capillary continuity or discontinuityin cement pastes[J]. PCA Bulletin, 1959, 110(1): 2-12.
    115. Mindess S, Young J F. Concrete. Prentice-Hall, Englewood Cliffs, 1981.
    116. Jennings H M. Colloid model of C-S-H and implications to the problem of creep and shrinkage. Materials and Structure, 2004, in press.
    117. Feldman R F, Beaodoin J J. Microstrcture and Strength of Hydrated Cement[J]. Cement and Concrete Research,1976(7)
    118. 吴中伟,廉慧珍. 高性能混凝土[M]. 北京:中国铁道出版社,1999. 51-60
    119. Hagymassy J, Brunauer J R, Mikhail R S. Pore structure analysis by water vapor adsorption. Journal of Colloid and Interface Science, 1969, 29(3): 485-491.
    120. Setzer M J. Einfluss des Wassergehals auf die Eigenschaften des erh?rteten Betons (in German). Deutscher Ausschuss für Stahlbeton, 1977, 280: 43-79.
    121. Badmann R, Stoikhausen N, Setzer M J. The Statistical Thickness and the Chemical Potential of Adsorbed Water Films. Journal of Colloid and Interface Science, 1981, 82(2): 534-542.
    122. 傅献彩,沈文霞,姚天扬. 物理化学. 第四版. 北京:高等教育出版社,2003.
    123. Adamson A W. 表面的物理化学. 北京:科学出版社,1985.
    124. 陈惠发, 萨里普 A F. 弹性与塑性力学. 余天庆, 王勋文, 刘再华译. 北京:中国建筑工业出版社,2004.
    125. Bazant Z P. Mathematical modeling of creep and shrinkage of concrete(RILEM Series). London:John Wiley & Sons,1982.
    126. Neville A M, Dilger W H, Brooks J J. Creep of Plain and Structural Concrete. Construction Press, 1983.
    127. Gilbert R I. Time effects in concrete structures. Series: Developments in civil engineering 23, Elsevier, 1988.
    128. Bazant Z P, Prasannan S. Solidification theory for concrete creep. Part I: Formulation. J. Eng. Mechanics, 1989, 115(8): 1691-1703.
    129. Bazant Z P, Hauggaard A B, Baweja S. Microprestress-Solidification theory for ageing and during creep of concrete. InL Advances in Building Materials Science. Festschrift Prof. Wittmann, AEDIFICATIO Publishers, 111-130.
    130. Bazant Z P. Constitutice equation for concrete creep and shrinkage vased on thermodynamics of multiphase systems. Materiaus et Construction, 1970, 3(13): 3-36.
    131. Feldman R F. Mechanism of creep of hydrated Portland cement paste. Cement & Conceete Research, 1972, 2(5): 521-540.
    132. Klug P, Wittmann F. Activation energy of creep of hardened cement paste. Materiaux et Construction, 1969, 2(7): 11-16.
    133. Bazant Z P, Chern J C. Triple power law for concrete creep. Journal of Engineering Materials, 1985, 4(4): 63-83.
    134. Emborg M. Development of mechanical behaviour at early ages including mathematical models. State-of-the-art report(draft), RILEM TC 119, Munich.
    135. Breugel K van. Relaxation of young concrete. Res. Report 5-80-D8, Delft University of Technology.
    136. Acker P. Micromechanical analysis of creeo and schrinkage mechanisms’. In: Proc. 6th Int. Conf. Creep, Schrinkage and Durability Mechanics of Concrete and Other Quasi-Brittle materials, eds. F.-J. Ulm, Z.P. Bazant & F.H. Wittmann, Cambridge, MA, August 20-22, 2001, Elsevier Science Ltd,, 15-26.
    137. Bangham D H, Fakhoury N. The swelling of charcoal. Royal Society of London, CXXX(Series A). 81-89.
    138. Neubauer, C.M., Jennings, H.M. and Garboczi, E.J., "Mapping drying shrinkage deformations in cement-based materials," Cement and Concrete Research 27, 1603-1612 (1997).
    139. Neubauer, C.M., Bergstrom, T.B., Sujata, K., Xi, Y., Garboczi, E.J. and Jennings, H.M., "Drying shrinkage of cement paste as measured in an ESEM and comparison to microstructural models," Journal of Materials Science 32, 6415-6427
    140. 袁勇. 混凝土结构早期裂缝控制. 北京:科学出版社. 2004.
    141. Bazant Z P. Mathematical Modelling of Creep and Shrinkage of Concrete (RILEM Series). London: John Wiley & Sons, 1982.
    142. Shimomura T, Maekawa K. Analysis of the drying shrinkage behaviour of concrete using a micromechanical model based on the micropore structure of concrete. Magazine of Concrete Research, 1997, 49(181):303-322.
    143. 王劲,秦耀东. 土壤物理学,北京:高等教育出版社.
    144. Weiss J. Experimental determination of the “time zero” t0(maturity M0) [C]. In: Kovler. K and Bentur. A. eds. International RILEM Conference on Early Age Cracking in Cementitious Systems- EAC'01. Haifa: RILEM TC 181-EAS. 2001.195~206
    145. Mindess S, Young J F. Concrete[M]. Prentice-Hall, Englewood, N.J., 1981.671-673
    146. Powers T C, Brownyard T L. Studies on the physical properties of hardened Portland cement paste[J]. PCA Builletin 22, Chicago, Illinois.1948
    147. Prez-Pena M, Roy D M, Tamas F D. Influence on chemical composition and inorganicadmixtures on the electrical conductivity of hydrating cement pastes[J]. Journal of Materials Research, 1989, 4(1): 245-256
    148. Casson R B J, Domone P I J. Ultrasonic monitoring of the early-age properties of concrete[C]. In: International conference on concrete at early-ages. Vol.1, RILEM, Paris, 1982.12-136
    149. Boumiz A, Vernet C, Tenoudji F C. Mechanical Properties of Cement Pastes and Mortars at Early Ages - Evolution with Time and Degree of Hydration[J]. J.of Advanced Cement-Based Materials, 1996(3): 94-106
    150. Ozturk T, Rapoport J, Popovics J S, et al. Monitoring the setting and hardening of cement based materials with ultrasound[J]. Concrete Science and Engineering. 1999(1): 83-91
    151. VALIC M I. Hydration of cementitious materials by pulse echo USWR Method, apparatus and application examples[J], Cement and Concrete Research, 2000, 30: 1-8
    152. 郑克仁, 孙伟, 贾艳涛等. 水泥矿渣粉煤灰体系中矿渣和粉煤灰反应程度测定方法[J]. 东南大学学报( 自然科学版), 2004年5月, 第34卷第3期: 361-365.
    153. Olken P, Rostasy F S. A practical planning tool for the simulation of thermal stresses and for the prediction of early thermal cracks in massive concrete structures[C]. In: Springenschmid eds. Proceedings of the International RILEM Symposium on Thermal Cracking in Concrete at Early Ages. London, 1995. 289-296.
    154. 蒋正武,孙振平,王培铭等. 高性能混凝土中自干燥效应的研究[J]. 建筑材料学报, 2004, 7(1): 19-24
    155. 张亚梅. 高掺量粉煤灰水泥浆体的水化、细观结构及其对GRC改性的机理[D]: 博士学位论文. 南京:东南大学材料科学与工程学院,1998
    156. 蒋林华. 高掺量粉煤灰混凝土的水化、微结构和机理的研究[D]:博士学位论文. 南京:河海大学,1998
    157. Marsh B K, Day R L. Pozzolanic and Cementitious Reactions of fly ash in blended cement pastes[J]. Cem. And Concr.Res.. 1998, 28: 301-310
    158. Berry E E, Hemmings R T. Mechanisms of hydration reactions in high volume fly ash pastes and mortars[J]. Cement and Concrete Composites, 1990, 20: 253-261
    159. Li S Q, Roy D M. Quantitative determination of pozzolans in hydrated systems of cement or Ca(OH)2 with fly ash or silica fume[J]. Cement and Concrete Research, 1985, 15: 1079-1086
    160. Mehta P K. Properties of Portland cement concrete contaning fly ash and condensed ssilica fume[J]. Cement and Concrete Research, 1982, 12: 301-310
    161. Fraay A L A, Bijen J M. Reaction of fly ash in concrete-A critical examination[J]. Cement and Concrete Research, 1989, 19: 235-246
    162. Feldman R F, Gerette G. G., Malhotra V M. Studies on mechanism of development of physical and mechanical properties of high-volume fly ash cement pastes[J]. Cement and Concrete Composites. 1990, 20: 245-251
    163. Escalantea J I., Go′meza L Y, Johal K K, et al. Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions[J], Cement and Concrete Research 2001, 31: 1403~1409
    164. Hinrichs W, Odler I. Investigation of the hydration of Portland blast furnace slag cement: Hydration kinetics[J], Adv. Cem. Res. 1989, 2: 9~13.
    165. Lam L, Wong Y L, Poon C S. Degree of hydration and gel/space ratio of high-volume fly ash/cement systems[J], Cement and Concrete Research, 2000, 30: 747~756
    166. Glasser F P. Chemical, Mineralogical, and Microstructural Changes Occurring in Hydrated slag-cement Blends[C]. In: Sidney Mindess and Jan P. Skalny eds. Materials Science of Concrete II, American Ceramic Society, Westerville, OH, 1991.
    167. 吴中伟,廉慧珍. 高性能混凝土[M]. 北京:中国铁道出版社,1999. 276-277
    168. 高小建,高性能混凝土早期开裂机理与评价方法[D]:博士学位论文,哈尔滨:哈尔滨工业大学,2003年8月.
    169. 赵庆新,孙伟,郑克仁等. 水泥、矿粉、粉煤灰颗粒弹性模量的比较[J]. 硅酸盐学报, 2005.7, 33(7): 837-841
    170. 崔雪华,邓敏,唐明述. 水泥中MgO的膨胀机理[C],见:氧化镁混凝土筑坝技术文集,1994.1,34-36
    171. 游宝坤,席耀忠. 钙矾石的物理化学性能与混凝土的耐久性[C],见:游宝坤主编,建筑物裂渗控制新技术. 北京:中国建材工业出版社,1994.5. 77-85
    172. Mehta P K. Mechanism of Sulfate Attack on Portland Cement Concrete[J]. Cement and Concrete Research. 1973,Vol.13.
    173. Ivan O, Michael G. Mechanism of Sulfate Expansion in Hydrated Portland Cement[J]. Journal of the American Ceramic Society. 1988, 71 (11): 1015-1020.
    174. 游宝坤,U型混凝土膨胀剂[C],见:建筑物裂渗控制新技术. 北京:中国建材工业出版社,1994. 21-26
    175. Yamazaki Y, Kamiaka H, Koboyashi S et al Expansion mechanism and hydration of expansive cement[J]. CAJ Review of the 34th General Meeting, 1980, Vol.34. 59-61.
    176. Nagataki S, Gomi H, Expansive admixtures (mainly ettringite)[J], Cement and Concrete Composites , 1998,Vol.20. 163-170.
    177. Bentz D P, Hansen K K. Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars [J]. Cement and Concrete Research, 2001, 31(7): 1075-1085.
    178. 卞荣兵. 减缩剂的合成与试验[J]. 化学建材, 2002, (5): 43-46.
    179. D’Ambrosia M.D, Altoubat S.A, Park C et al. Early Age Tensile Creep and Shrinkage of Concrete with Shrinkage Reducing Admixtures[C]. IN: Ulm F, Bazant Z, Wittman F H. ed, Creep, Shrinkage and Durability Mechanics of Concrete and other Quasi-Brittle Materials (Proc. of CONCREEP ’01, Boston, Aug 13-15), 2001. 685-690
    180. Folliard K J, Berke N S, Properties of high-performance concrete containing shrinkage-reducing admixture, Cement and Concrete Research, 1997, 27(9): 1357-1364
    181. Fujiwara, Maekawa, Kusakabe et al. Study on the dyrability of concrete using shrinkage-reducing admixture[C]. In: Proceedings of the Japan Concrete Institute,1989.379-384
    182. Bae J, Berke N S, R.J. Hoopes, Malone J, Freezing and thawing resistance of concretes with shrinkage reducing admixtures[C]. In: Proceedings of Frost Resistance of Concrete - From Nano-Structure and Pore Solution to Macroscopic Behaviour and Testing – Contents. Essen (Ruhr), Germany, 2002.
    183. 杨全兵,水中养护两年高性能混凝土的自干燥问题的研究[J]。建筑材料学报,1998.001(003): 215~222.
    184. Jensen O M, Hansen P F, Water-entrained cement-based materials I. Principles and theoretical background[J], Cement and Concrete Research, 2001, Vol. 31: 647~654.
    185. Jensen O M, Hansen P F, Water-entrained cement-based materials II. Implementation and Experimental Results[J], Cement and Concrete Research, 2002, 32(6): 973~978.
    186. 叶华 赵建青 张宇, 吸水树脂水泥基材料自养护外加剂的研究[J], 华南理工大学学报:自然科学版,2003.031(011):41-44
    187. Philleo R, Concrete science and reality[C]. In: Skalny J P, Mindess S eds. Materials Science of Concrete II, American Ceramic Society, Westerville, OH, 1991: 1~8.
    188. Weber S, Reinhardt H W. A new generation of high performance concrete: Concrete with autogenous curing[J]. Adv. Cem.-Based Mater., 1997, 6: 59~68
    189. Bentur A, Igarashi S, Kovler K, Prevention of Autogenous Shrinkage in High Strength Concrete by Internal Curing Using Wet Lightweight Aggregates[J]. Cem. Concr. Res. 2001, 31 (11) :1587-1591.
    190. Bentz D P, Snyder K A. Protected paste volume in concrete Extension to internal curing using saturated lightweight fine aggregate[J], Cement and Concrete Research 1999, Vol.29: 1863~1867
    191. Geiker M, Bentz D P, Jensen O M, Mitigating Autogenous Shrinkage by Internal Curing[EB/OL].http://ciks.cbt.nist.gov/―garbocz/acif2002/ACIF2002.htm. 2002.
    192. Bent D P. On the mitigation of early age cracking[C]. In: Proc.3rd Int. Sem. On Self-desiccation and Its Importance in Concrete Technology, Lund, Sweden. 195~204
    193. Bentz, D P, Jensen O M. Mitigation Strategies for Autogenous Shrinkage Cracking, to appear in Cement and Concrete Composites, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700