用户名: 密码: 验证码:
基于RS/GIS/DEM/NDVI的重庆植被动态、格局与碳汇研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变暖是国际社会公认的全球性环境问题,由此引起的气候变化和剧烈波动将对人类的生存、经济和社会发展等方面产生极其深远的影响。植被由于能够吸收和存贮导致全球变暖的温室气体——C02,并表现出巨大的碳汇作用,因而在减缓全球变化中具有不可替代的重要作用,其面积的任何增减、植被组成和质量状况、分布格局和碳汇潜力等,均会对区域环境和全球变化影响很大,因此,研究植被动态变化、格局与碳汇能力,具有重要的理论价值和现实意义。重庆位于三峡库区的心腹地带,是全国重要的水资源战略贮备库,又是中国西南重要碳库区的组成部分;重庆缙云山国家自然保护区是重庆,也是亚热带地区典型的植被资源丰富区域;此外,重庆直辖和三峡库区形成以来,重庆的经济发展和“森林重庆”建设取得了瞩目的成就,所以关注重庆和缙云山植被及其碳储量动态和格局,对于以“增汇减排”和减缓全球变暖为目标的植被和碳汇经营与管理,均具有重要的战略意义,也可以为重庆的发展与规划提供理论和数据上的有益帮助。
     分别以重庆市和重庆主城区为研究对象,通过重庆市Pathfinder AVHRR NDVI和SPOTVGA NDVI序列数据集及重庆主城区1978、1988、2000和2007年的Landsat卫星遥感影像提取的NDVI,分别对重庆市及主城区近30年植被状况进行水平格局和动态分析。结果显示,重庆市植被有明显的年际变化特征,每年的12月至第二年的2月,植被的生长和活动最不旺盛,而绿期表现在每年的5~10月。近10年来,重庆植被总体处于良好生长状态,增长最明显的区域集中在方斗山、精华山和假角山等渝中北的山脉及渝东南的广大山地区域,负增长主要为重庆主城区、长寿及万州等的城市中心区域。巫溪、城口和綦江三区县植被无退化现象,而重庆主城区植被恶化面积最大,达到了近420km2,其次为长寿和奉节等区县。对重庆主城区近30年的植被动态研究结果显示,主城区的植被生长良好区域集中在东北部及南部地区,主要表现在北部的缙云山、华蓥山、铜锣山和南部的子荡山及圣灯山等山脉,而在西部城市化最为明显的广大城区,植被退化或消失现象较为明显。研究结果表明,重庆市的植被处于良好的增长状态,弥补了城市化过程中局部植被退化或消失的不利影响。而保护好植被发育较好的山区和较大的山脉,以及控制好城市发展过程中对植被的负面影响,是继续保持和提高重庆植被质量、使其处于良好发展态势的关键举措。
     以重庆缙云山为例,通过面向对象多层次分类的方法介绍和使用,结合对1:10000地形图数字化生产的DEM,建立分类规则对重庆市缙云山自然保护区2010年9月的WorldView-2遥感影像进行解译,提取了研究区域的植被信息,并将其分为常绿阔叶林、针阔混交林、针叶林、针竹(慈竹)混交林、毛竹林、慈竹林和灌木林,分类的初步结果在ArcGIS中进行进—步人工解译、拓扑处理和统计分析。结果显示,基于面向对象多层次图像分类方法并结合人工解译,对缙云山植被具有很高的识别和分类精度,总精度高于89.22%以上,分类的植被结果有明显的边界和均一的内部同质性;研究区域的总面积为3468.41hm2,植被以针叶林为和灌木林为主,面积分别达到了1048.56hm2和729.64hm2,两者占到研究区面积的51%,其次是针阔混交林,面积为537.26hm2,农田、水体、道路和房屋等非植被占7%,面积为242.32hm2。由此可知,高分辨率的遥感影像、高分辨率的地形图,是研究较大尺度上植被空间特征的最有效的工具;结合DEM和基于面向对象的图像解译和分类的方法,及其生产的植被专题图,可以为缙云山植被的空间分布和碳储量研究提供数据和基础技术支持。
     以重庆缙云山为例,利用高分辨率影像(、VorldView-2)解译植被专题图和1:10000地形图生成数字高程模型,结合野外样方调查、文献中植被生物量回归(经验)模型和碳含量数据资料,在ArcGIS支持下对缙云山自然保护区植被和碳储量密度空间分布进行研究。研究显示,缙云山植被以针叶林为主(30%),人为干扰程度较高的灌木林也占有相当大的比例(21%),地带性顶极植被——常绿阔叶林面积较小(6%);碳储量密度为针阔混交林(74.23MgC/hm2)>针叶林(62.97MgC/hm2)>常绿阔叶林(62.65MgC/hm2)>针竹混交林(59.84MgC/hm2)>慈竹林(48.72MgC/hm2)>毛竹林(47.88MgC/hm2)>灌木林(10.66MgC/hm2),平均碳储量密度高于全国和同地区的平均值,达到了50.45MgC/hm2;在空间分布上,针叶林在中高海拔(>500m)和斜坡(>15。)以上优势明显,灌木林则相反,针阔混交林、常绿阔叶林的优势随着海拔升高或坡度增大而增加,植被的碳储量密度也随海拔的增高或坡度增大而增势明显。结果表明缙云山积累和存贮了较多的碳,“库”的功能强;而处于演替阶段初期的针叶林及灌木林明显占优,表明其在碳的积累上还有很大的提升空间,具有“汇”的潜能。此外,在较高海拔和较大坡度上的高碳储量密度,与人类的活动频度较小和对植被干扰较轻相关。因此可以推测,随着自然演替和保护区的封育改造、退耕还林及择伐补阔等森林管理措施的进行,将利于森林植被的保护、发育和更新,促使缙云山森林生态系统的碳储量密度进一步增大,碳“汇”潜能进一步增强,生态服务功能和价值得到进一步提高。
     以重庆缙云山国家自然保护区内亚热带森林演替系列中的灌木林、针叶林、针阔混交林、常绿阔叶林为研究对象,通过分别对各林型生态系统的植被、枯落物和土壤的碳储量密度进行研究,明确不同演替类型植被生态系统的碳储量密度和分配格局特征,并对森林演替过程中碳汇的特点和潜能行进探讨。结果表明:(1)4种演替序列上的植被生态系统碳储量密度与演替序列一致,即常绿阔叶林(347.96MgC/hm2)>针阔混交林(140.19MgC/hm2)>针叶林(107.92MgC/hm2)>灌木林(51.28MgC/hm2);(2)组成生态系统的植被和枯落物碳储量密度在演替序列上变化一致,均呈增大的趋势,均值从灌木林的10.57MgC/hm2和4.55MgC/hm2分别增加到处于地带性顶极植被——常绿阔叶林的95.55MgC/hm2和191.33MgC/hm2;而针阔混交林、针叶林和灌木林的土壤碳储量密度的均值较为接近,分别为33.31MgC/hm2、32.48MgC/hm2和36.45MgC/hm2,均低于常绿阔叶林的61.03MgC/hm2;(3)生态系统碳储量在各组分格局上差别很大,在演替序列上,除演替顶极的常绿阔叶林外,地上植被所占的比例逐渐增大;土壤碳储量密度所占的比例,随着演替序列呈下降的趋势,其中灌木林土壤碳储量密度所占的比例最高,接近其生态系统的2/3,针叶林约占1/3,针阔混交约为1/4,常绿阔叶林约为1/5;但对不同林型的枯落物而言,在演替序列上增势非常明显,从灌木林的不足1/10到常绿阔叶林的1/2以上。由此可知,缙云山的常绿阔叶林维持着最大的碳储量,枯落物在缙云山的碳库中有着重要的作用;缙云山的植被在今后的发育和演替过程中,有很大的增汇潜能,将主要集中在生态系统的植被和枯落物碳库部分,因此在保护现存植被而增加碳汇的经营和管理中,植被形成的枯落物也是重点保护和管理的对象。
     根据1km×1km重庆植被专题图,结合数字高程模型(DEM)和文献中不同植被类型的碳储量密度数据,在ArcGIS的空间分析模块中,对重庆市植被及其碳储量密度进行空间格局分析。结果显示,重庆的植被有着明显的空间分异特征,森林植被以常绿阔叶林、针阔混交林为主,两者面积之和达到了31899.38km2,占到了重庆总面积的37.04%,主要集中在渝北和渝南地区,渝中和渝西的条形山脉森林植被也较为丰富;被条形山脉分割的渝中北、渝中和渝西地区地势较低,是重要的农业种植区,农业种植总面积达到了45629.41km2,占到了重庆总面积的52%;灌木林的面积也较大,为5732.49km2。重庆碳储量密度和重庆植被的分布相一致,高密度区集中在渝北和渝南海拔较高的地区,各区县的平均碳储量密度在4.39~54.76MgC/hm2,城口和巫溪有着最高的碳储量密度,分别达到了54.76MgC/hm2和42.31MgC/hm2,渝西的潼南最低,仅为4.39MgC/hm2,全市碳储量密度平均值为21.40MgC/hm2;重庆碳储量密度有明显的垂直分异特征,碳储量密度随着海拔的增加而增势明显,在2000~2200m达到极值(53.29MgC/hm2),然后略有下降,在海拔2600m以上为41.37MgC/hm2。结果表明,常绿阔叶林、针阔混交林和农作物是重庆最主要的植被,对重庆碳储量有着重要的贡献;提高农作物的生产量、合理的利用作物的秸秆等,以及加大灌木林更新和改造将利于重庆地区碳汇功能的提高;在区域格局上对渝北和渝南的植被进行有效的保护和管理,同时对渝中及渝西植被相对薄弱地区适当造林,是重庆地区增加碳汇的最有效措施。
     综上所述,本论文通过遥感、归一化植被指数数据集和数字高程模型,在地理信息系统的支持下,结合野外实地测量和文献中的数据资料,以及对高分辨率遥感影像的解译和分类,对重庆市、重庆市主城区和重庆缙云山国家自然保护区的植被及其碳储量的动态变化、格局进行了研究,结果表明:近30年来,重庆市的植被总体上处于良好的生长和发展状态,弥补了都市中心区在城市化过程中对植被的负面影响;重庆及缙云山森林植被以针阔混交林和常绿阔叶林为主,且具有较高的碳储量密度,低碳储量密度的灌木林、草丛等也占有重要的比重,重庆的农作物耕种区域主要集中在渝中北、渝中和渝西海拔相对较低的区域,且占有相当大的比重;碳储量密度较高的区域集中海拔较高和人为干扰较轻的区域,如渝北和渝南的广大山区,渝中北、渝中和渝西的条形山脉,且随着海拔梯度的增高呈增加趋势。因此,保护和管理好渝北、渝南广大地区和渝中及渝西主要山脉的森林植被,加快退耕还林、择伐补阔的实施,加速森林发育和更新,以提高森林的质量而起到增加碳汇的目的;在森林植被相对较为薄弱的地区,如渝中和渝西地区,增加人工林的种植面积,并提高农作物的产量和秸秆的利用率,起到进一步增加碳汇的功能。总之,重庆植被已经存贮了较多碳,是西南地区重要的碳库区组成部分;重庆的植被和碳储量动态、格局和碳汇能的特点意味着在未来很长的一段时间内,仍具有重要的碳汇增加潜力。
Global warming, one environmental problem recognized by the international community, has resulted in climate fluctuation which would produce a far-reaching impact on human survival, economic and social development. Since plants could absorb and store CO2, one of the main greenhouse gases caused global warming, and the plantation was regarded as a huge carbon sink, the plants play an important and irreplaceable role in global change mitigation. The change of vegetation areas, plantation composition and quality condition, distribution pattern, and potential for carbon sequestration, will impact the regional environment and global change. Therefore, it is essential for theoretical and practical research on dynamics, distribution pattern, and carbon sink capacity of vegetation. Chongqing located in the key zone of the Three Gorges reservoir area, and is the major water resources strategic reserve library in China and an integral part of the important carbon reservoir area in southwest China. The national nature reserve region of Jinyun Mountain is a typical area with rich-resource vegetation in Chongqing and sub-tropical region. In addition, since Chongqing has become direct controlled municipality, the establishments of Three Gorges Reservoir and Chongqing economic development and "foresting Chongqing" construction have made remarkable achievements. Hence, concerning about Chongqing and Jinyun Mountain vegetation, their dynamics and patterns of carbon stocks would have strategic significance to vegetation and carbon sequestration business and management aiming to increase sequestration and slow down global warming, and would provide useful theory and data for the planning and development of Chongqing.
     Vegetation dynamics of Chongqing and its metropolitan region based on RS,GIS and NDVI
     Vegetation characteristics of the horizontal pattern and dynamic about nearly30years in Chongqing and its metropolitan region were analyzed through the NDVI of Pathfinder AVHRR and SPOTVGA, The NDVIs were extracted from Landsat satellite remote sensing image at1978a,1988a,2000a and2007a to analyzed vegetation change in the metropolitan region of Chongqing City. The results showed that the Chongqing vegetation had a significant interannual variation. From December to next February, the vegetation growth and metabolism were inactive, and its activity was presented from May to October in each year. Chongqing vegetation was well-grown in the past10years as a whole. Areas of vegetation growing in an obviously good condition were concentrated in the center-north of Chongqing, such as Fangdou mountain, Jinghua mountain and Jiajiao mountain, and mountain regions of southeastern Chongqing. The negative vegetation growing region appeared in the metropolitan region of Chongqing City, Changshou and Wanzhou District, etc., which were the city center area. Vegetation did not degrade in Wuxi, Chengkou and the Qijiang county. Additionally, the largest area of vegetation deterioration appeared in the metropolitan region of Chongqing City, reached nearly420km, followed by the Changshou and Fengjie county. Study about vegetation dynamics of Chongqing metropolis in nearly30years showed that the vegetation growing area were appeared in northeast and south regions, such as Jinyun mountain, Huaying mountain, Tongluo mountain in the north, and Zidang mountain, Shengden mountain in the south of Chongqing metropolis. On the contrary, the vegetation in west of metropolitan region was more degraded or disappeared. In conclusion, vegetation of Chongqing was in a good condition and compensated for the adverse effects of degradation or disappearance vegetation in the process of urbanization. Protecting the well-developed vegetation in mountain area, as well as controlling the negative impact of urban development on the vegetation, is the key measures to maintaining and improving Chongqing vegetation quality.
     The vegetation classification using high resolution remote sensing, digital elevation model, geographical information system and object-oriented image classification in Chongqing——a case study on Jinyun Mountain
     In the vegetation classification study, object oriented multi-level classification was used in interpreting Jinyun vegetation from the high-resolution remote sensing image and1:10000relief maps were used to generate digital elevation model respectively. Then vegetation of study area were exacted from the WorldView-2remote sensing image acquired in September2010. The vegetation types were divided into broad-leaved evergreen, mixed coniferous and broadleaved evergreen, coniferous forest, mixed coniferous and neosinocalsms stand, moso bamboo stand, neosinocalams stand and shrubbery. The preliminary classification results were interpreted, topology pocessed and statistical analyzed in ArcGlS. The results of classification of Jinyun vegetation showed a high recognition and classification accuracy based on object-oriented image multi-level classification approach with manual interpretation. Its overall accuracy was higher than89.22%and the classification results of vegetation had the obvious borders and homogeneous internal homogeneity. The results showed that the study area was3468.41hm2. Coniferous forest and shrubbery stands were dominated vegetation and their areas were reached1048.56hm2and729.64hm2respectively, the ratio of their areas accounted for51%of the study area, followed by mixed coniferous and broad forest, which area is537.26hm2. Water bodies, roads and other artificial surface were accounted for7%, and the total areas are242.32hm2. Therefore, high-resolution remote sensing images, high-resolution topographic maps, are efficient tools for researching large-scale forest vegetation spatial characteristics. Combined with the DEM and based on object-oriented classification and interpretation methods, and using the thematic maps of vegetation, can provide basic technology and useful data to support the researching of spatial distribution vegetation and carbon storage in Jinyun Mountain.
     Spatial distribution of vegetation and carbon density in Chongqing based on RS/GIS——a case study on Jinyun Mountain
     In this study, high-resolution remote sensing image and1:10000relief maps were used to generate Jinyun vegetation map and digital elevation model respectively, combining with a non-destructive method to acquire forest biomass by field investigation and the data of carbon content and biomass regression models from the published papers. And then, the spatial characteristics of vegetation and carbon density in Jinyun Mountain Natural Reserve were analyzed by ArcGIS. The results showed that CF was the dominating forest stand, followed by SH (shrub). The vegetation area ranged as CF (coniferous forest,30%)> SH (21%)> MCB (evergreen broad-leaved forest,16%)> NS (neosinocalams stand,11%)> EBF (evergreen broad-leaved, forest6%)> MCN (mixed coniferous and neosinocalsms stand,5%)> MBS (moso bamboo stand,4%). The average vegetation carbon density in Jinyun Mountain was50.45MgC/hm2, which was higher than the average level in China, ranged as MCB (74.23MgC/hm2)> CF (62.97MgC/hm2)> EBF (62.65MgC/hm2)> MCN (59.84MgC/hm2)> NS (48.72MgC/hm2)> MBS (47.88MgC/hm2)> SH (10.66MgC/hm2). Moreover, vegetation and carbon density had clear spatial variations with altitude, slope and aspect. CF dominated in altitude higher than500m and slope>15°, but the shrub was the other way around. The carbon density of MCB and EBF increased with the increasing of altitude and slope. EBF had a large area in the northwest aspect, and MCB had a large distribution in the north, northwest, east and southeast aspects. NS and MCN were the dominating forest stand in the south relatively. CF, dominated with Pinus massoniana, and SH were at the primary stage of forest recovery succession in the Jinyun Mountain. The results indicate that the actual carbon sequestration of Jinyun Mountain is still much lower than the potential value of the zonal climax vegetation in this subtropical area. As we find the carbon storage and density are negatively correlated with human disturbance, forest reserve managements, such as enclosure of forest region, might contribute to conserve and sequester carbon in Jinyun Mountain.
     The vegetation carbon density of different successional stages in Jinyun Mountain
     In this study, the different forest ecosystems carbon densities were researched through calculating vegetation, litter and soil carbon density. And the carbon density and its distribution pattern characteristic of different successional series of vegetation ecosystems were also discussed. It was researched that potential carbon stock and its characteristic in succession process as well. The results showed that,(1) carbon density in the four successional vegetation ecosystems were consistent with its sequence of successional stages, ranged by broadleaved evergreen(347.96MgC/hm2)> needle-broadleaved evergreen(140.19MgC/hm2)> coniferous forest(107.92MgC/hm2)> shrubbery(51.28MgC/hm2).(2) As the main ecosystem constituents of ecosystem carbon sinks, vegetation and litter carbon density in the succession sequence showed an increasing tendency with the successional times. The mean value of vegetation and litter carbon density increased from10.57MgC/hm2and4.55MgC/hm2of shrub to95.55MgC/hm2and191.33MgC/hm2of the broadleaved evergreen respectively. And soil carbon density of needle-broadleaved evergreen, coniferous forest and shrubbery were closed, ranged as33.31MgC/hm2,32.48MgC/hm2and36.45MgC/hm2respectively, and were much lower than that of broadleaved evergreen(61.03MgC/hm2).(3) Ecosystem carbon density pattern of vegetation were very different. The proportion of the vegetation carbon storage above the ground gradually increased with succession sequence, except for the zonal top forest and broadleaved forest evergreen. The proportion of soil carbon storage density showed a downward trend with the succession sequence. The proportion of shrub soil carbon density, closed to2/3of the ecosystem, was the highest. And that of the coniferous forest was about1/3of its ecosystem and that of the needle-broadleaved evergreen was closed1/4, and then that of the broadleaf evergreen was about1/5. On the contrary, the litter carbon storage proportion was increased obviously with the successional sequence, and the ratio increased from less than1/10of the shrubbery to1/2of the broad-leaved evergreen. Therefore, the broadleaved evergreen in Jinyun Mountain maintained the largest carbon reserves, and litter carbon storage played an important role in the carbon pools in this region. The vegetation in Jinyun Mountain would have a great potential increasing carbon storage in the future development and succession process, and its increasing carbon sink will mainly lead to increasing of vegetation and litter carbon pool of the ecosystem. The result also showed that the litter transformed from vegetation should be protected and managed effectively.
     The spatial distribution of Chongqing vegetation and carbon density based on GIS/DEM/RS
     In the study, Chongqing vegetation and carbon density spatial pattern were analyzed by using1km×1km Chongqing vegetation map, combined with the data of different vegetation carbon density from the published papers and DEM, and with the ArcGIS spatial analysis module. The results showed that vegetation in Chongqing were obviously spatial distributing, with the main forest vegetation type of broadleaved evergreen and needle-leaved evergreen. These two types accounted for37.04%of the total area of Chongqing. Their areas were31899.38km2and mainly distributed in the north and south region of Chongqing, and some strip-mountains of the west and center Chongqing. West, center and north-center regions, segmented by the strip-mountains, were major agricultural areas. The total planted area reached to45629.41km2, accounting for52%of the total Chongqing area. The shrubbery area was also very large-about5732.49km2. The spatial distribution of carbon density was similar to Chongqing vegetation. High carbon density areas were concentrated in the higher elevation of north and south region. The average carbon density values of counties were from4.39MgC/hm2to54.76MgC/hm2. Chengkou and Wuxi had the highest carbon density and its mean values were54.76MgC/hm2and42.31MgC/hm2respectively. Tongnan, one county of Chongqing west, had only4.39MgC/hm2, and Chongqing average carbon density value was21.40MgC/hm2. Moreover. Chongqing carbon density had a vertical differentiation characteristic. The values of carbon density increased with increasing altitude remarkably and reached peak(53.29MgC/hm2) at2000~2200m and then decreased slightly. At an altitude of above2600m, the value was41.37MgC/hm2. The results showed that the broadleaved evergreen, needle-leaved evergreen and crops, dominated vegetation in Chongqing, made an important contribution to carbon storage. Increasing crop production and rational utilization of crop straw, as well as updating and transforming the shrubbery to the forest would be advantageous to the improvement carbon sink in Chongqing. Effectively protecting and managing forest in north and south of Chongqing, and afforesting in the west and center region timely should be the effective measures for the increasing Chongqing carbon sink.
     In summary, this paper aimed to study the vegetation dynamics, pattern and spatial distribution of its carbon density in Chongqing, metropolitan area of Chongqing City and national nature reserve of Jinyun Mountain, using RS, NDVI, DEM, GIS, and the data from field surveying and published papers, as well as interpreting and classifying the vegetation from the high-resolution remote sensing images. The results showed that:in the past30years, Chongqing vegetation has been in good growing and developing condition, and has been made up for the negative impact of the vegetation decreasing in the urban central area in the process of urbanization. The broadleaved evergreen and needle-broadleaved evergreen were the dominated vegetation in Chongqing and had a higher carbon density. Shrubs and herbaceous held the relatively low carbon density accounted for an important proportion. The crop cultivation area in Chongqing was mainly distributed in the low altitude area of the east and west of Chong, and occupied a large area. High carbon density areas were appeared on higher elevations where was disturbed lightly, such as the vast mountain in the north and south of Chongqing, and the strip-mountains in the center-north, center and west of Chongqing. Carbon density was increased with the increasing of elevation.Therefore, protecting and managing the forest in the north and south of Chongqing and in the mountains of the center-north, center and west of Chongqing can increase the carbon sinks effectiveness, with the measures of returning farmland to forests, replacing low carbon density plants with broadleaved evergreen and accelerating forest development rate and improving forest quality. In relatively fewer vegetation areas, such as east and west of Chongqing, afforestation, enhancing crop yield and using straw effectively would increase carbon sinks. In conclusion, carbon has been stored more by Chongqing vegetation, and it has been an important carbon pool in southwestern China. The features of Chongqing vegetation and carbon storage changing dynamics, patterns and variation tendency of carbon density present that Chongqing would still have an important carbon sink potential in the future for a long time.
引文
[1]Fankhauser S. Valuing Climate Change.1995, London:Earthscan Publications Ltd.
    [2]John F. B. Mitchell. The "Greenhouse" effect and climate change. Reviews of Geophysics,1989, 27(01):115-139.
    [3]Bate A K. Climate in Crisis:The greenhouse effect and what we can do(气候危机:温度效应与我们的对策).苗润生,成志勤译.1992,北京:中国环境科学出版社.
    [4]Martin Parry, Nigel Arnell, Pam Berry, David dodman, Samuel Fankhauser, Chris Hope, Sari Kovats, Robert Nicholls, David Satterthwaite, Richard Tiffin, Tim Wheeler. Assessing the costs of adaptation to climate change:A review of the UNFCCC and other recent estimates.2009, Imperial College London (UK):The International Institute for Environment and Development (UK) and the Grantham Institute for Climate Change.
    [5]Markandya A., Chiabai A. Valuing climate change impacts on human health:Empirical evidence from the literature. International Journal Environ Res Public Health,2009,6(02):759-86.
    [6]UNFCCC. Background on the UNFCCC:The international response to climate change.2012; Available from:http://unfccc.int/essential_background/items/6031.php.
    [7]UNFCCC. Kyoto Protocol.1997; Available from:http://unfccc.int/kyoto_protocol/items/283O.php.
    [8]UNFCCC. Bali climate change conference 2007; Available from:http://unfccc.int/meetings/bali_dec_2007 /meeting/6319.php.
    [9]UNFCCC. CDM Project Cycle.1997; Available from:http://cdm.unfccc.int/Projects/diagram.html.
    [10]胡会峰,刘国华.森林管理在全球C02减排中的作用.应用生态学报,2006,17(04):709-714.
    [11]杨玉坡.全球气候变化与森林碳汇作用.四川林业科技,2010,31(01):14-17.
    [12]Houghton J. T, Ding Y, Griggs D. J., Noguer M., Linden P. J. van der, Dai X., Maskell K., Johnson C. A. Climate change 2001:The scientific basis.2001, Cambridge, United Kingdom:The Press Syndicate of the University of Cambridge.
    [13]张萍,张进.森林生物量与碳储量研究综述.中国林业,2009(05):3A 56.
    [14]刘世荣,王晖,栾军伟.中国森林土壤碳储量与土壤碳过程研究进展.生态学报.2011,31(19):5437-5448.
    [15]王效科,冯宗炜.森林生态系统中生物量和碳储量的研究历史.1995,北京:中国科学与技术出版社.
    [16]于贵瑞,李海涛,王绍强.全球变化与陆地生态系统碳循环和碳蓄积.2003,北京:气象出版社.
    [17]Dixon R. K., Brown S., Houghton R. A., Solomon A. M., Trexler M. C, Wisniewski J. Carbon pools and flux of global forest ecosystems. Science,1994,263(5144):185-190.
    [18]国家林业局应对气候变暖课题组.高度重视发挥林业在应对气候变暖中的重大作用.绿色中国:综合版,2007(03):46-49.
    [19]冯宗伟,王效科,吴刚.中国森林生态系统的生物量和生产力.1999,北京:科学出版社.
    [20]Joanna I House, I Colin Prentice, Corinne Le Quere. Maximum impacts of future reforestation or deforestation on atmospheric CO2. Global Change Biology,2002,8(11):1047-1052.
    [21]Keeling Ralph F., Piper Stephen C., Heimann Martin. Global and hemispheric CO2 sinks deduced from changes in atmospheric 02 concentration. Nature,1996,381(6579):218-221.
    [22]Tans Pieter P., Fung Inez Y., Takahashi Taro. Observational contrains on the global atmospheric CO2 budget. Science,1990,247(4949):1431-1438.
    [23]Wofsy S. C., Goulden M. L., Munger J. W., Fan S. M., Bakwin P. S., Daube B. C., Bassow S. L. Bazzaz F. A. Net exchange of CO2 in a mid-Latitude forest. Science,1993,260(5112):1314-1317.
    [24]Fang Jingyun, Chen An ping, Peng Changhui, Zhao Shuqing, Ci Longjun. Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001,292(5525):2320-2322.
    [25]Fang JingYun, Guo ZhaoDi, Piao ShiLong, Chen AnPing. Terrestrial vegetation carbon sinks in China,1981-2000. Science in China Series D:Earth Sciences,2007,50(09):1341-1350.
    [26]方精云,陈平安,赵淑清,慈龙骏.中国森林生物量的估算:对Fang等Science一文(Science,2001.291:2320—2322)的若干说明.植物生态学报,2002,26(02):243-249.
    [27]Kasischke Eric S., Melack John M., Craig Dobson M. The use of imaging radars for ecological applications--A review. Remote Sensing of Environment,1997,59(02):141-156.
    [28]Thenkabail Prasad S., Enclona Eden A., Ashton Mark S., Legg Christopher, De Dieu Minko Jean. Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sensing of Environment,2004, 90(01):23-43.
    [29]Zheng Daolan, Rademacher John, Chen Jiquan, Crow Thomas, Bresee Mary, Le Moine James, Ryu Soung Ryoul. Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sensing of Environment,2004,93(03):402-411.
    [30]Steven Michael D., Malthus Timothy J., Baret Frederic, Xu Hui, Chopping Mark J. Intercalibration of vegetation indices from different sensor systems. Remote Sensing of Environment,2003,88(04):412-422.
    [31]程鹏飞,王金亮,王雪梅,徐申.森林生态系统碳储量估算方法研究进展.林业调查规划,2009,34(06):39-44.
    [32]朱光良.Ⅰkonos等高分辨率遥感技术的发展与应用分析.地球信息科学,2004,6(03):108-110.
    [33]梅安新,彭望琭,秦其明,刘慧平.遥感导论.2011,北京:高等教育出版社.
    [34]李崇贵,赵宪文,李春干.森林蓄积量遥感估测理论与实现.2006,北京:科学出版社.
    [35]张慧芳,张晓丽,黄瑜.遥感技术支持下的森林生物量研究进展.世界林业研究,2007,20(04):30-34.
    [36]Gemmell Fraser, Varjo Jari, Strandstrom Mikael, Kuusk Andres. Comparison of measured boreal forest characteristics with estimates from TM data and limited ancillary information using reflectance model inversion. Remote Sensing of Environment,2002,81(02-03):365-377.
    [37]徐新良,曹明奎.森林生物量遥感估算与应用分析.地球信息科学,2006,8(04):122-128.
    [38]王淑君,管东生.神经网络模型森林生物量遥感估测方法的研究.生态环境,2007,16(01):108-111.
    [39]Boyd D. S., Foody G. M. An overview of recent remote sensing and GIS based research in ecological informatics. Ecological Informatics,2011,6(01):25-36.
    [40]Dong Jiarui, Kaufmann Robert K., Myneni Ranga B., Tucker Compton J., Kauppi Pekka E., Liski Jari, Buermann Wolfgang, Alexeyev V., Hughes Malcolm K. Remote sensing estimates of boreal and temperate forest woody biomass:carbon pools, sources, and sinks. Remote Sensing of Environment,2003, 84(03):393-410.
    [41]Fuchs Hans, Magdon Paul, Kleinn Christoph, Flessa Heiner. Estimating aboveground carbon in a catchment of the Siberian forest tundra:Combining satellite imagery and field inventory. Remote Sensing of Environment,2009,113(03):518-531.
    [42]Holben Brent N. Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing,1986,7(11):1417-1434.
    [43]Zhang Y., Tian Y., Myneni R. B., Knyazikhin Y., Woodcock C. E. Assessing the information content of multiangle satellite data for mapping biomes:Ⅰ. Statistical analysis. Remote Sensing of Environment,2002, 80(03):418-434.
    [44]Wilson Emily Hoffhine, Sader Steven A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment,2002,80(03):385-396.
    [45]Tan Kun, Piao Shilong, Peng Changhui, Fang Jingyun. Satellite-based estimation of biomass carbon stocks for northeast China's forests between 1982 and 1999. Forest Ecology and Management,2007, 240(01-03):114-121.
    [46]方精云,朴世龙,贺金生,马文红.近20年来中国植被活动在增强.中国科学(C辑:生命科学),2003,33(06):554-565.
    [47]黄杏元,马劲松,汤勤.地理信息系统概论.2001,北京:高等教育出版社.
    [48]黄从德,张健,杨万勤,唐宵.四川森林植被碳储量的时空变化.应用生态学报,2007,18(12):2687-2692.
    [49]黄从德,张健,杨万勤,唐宵,张国庆.四川省森林植被碳储量的空间分异特征.生态学报,2009,29(09):5115-5121.
    [50]Siart Christoph, Bubenzer Olaf, Eitel Bernhard. Combining digital elevation data (SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for geomorphological mapping:A multi-component case study on Mediterranean karst in Central Crete. Geomorphology,2009,112(01-02):106-121.
    [51]Gonzalez Patrick, Asner Gregory P., Battles John J., Lefsky Michael A., Waring Kristen M., Palace Michael. Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California. Remote Sensing of Environment,2010,114(07):1561-1575.
    [52]Song Conghe, Dickinson Matthew B., Su Lihong, Zhang Su, Daniel Yaussey. Estimating average tree crown size using spatial information from Ikonos and QuickBird images:Across-sensor and across-site comparisons. Remote Sensing of Environment,2010,114(05):1099-1107.
    [53]Benz Ursula C., Hofmann Peter, Willhauck Gregor, Lingenfelder Iris, Heynen Markus. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. International Society for Photogrammetry and Remote Sensing Journal of Photogrammetry and Remote Sensing,2004, 58(3-4):239-258.
    [54]罗云建,张小全,王效科,朱建华,侯振宏,张治军.森林生物量的估算方法及其研究进展.林业科学,2009,45(08):129-134.
    [55]邢艳秋.基于RS和GIS东北天然林区域森林生物量及碳贮量估测研究:[博士学位论文].2005,东北林业大学:哈尔滨
    [56]Brown Sandra, Lugo ariel E. Biomass of tropical forests:A new estimate based on forest volumes. Science, 1984,223(4642):1290-1293.
    [57]李海奎,雷渊才.中国森林植被生物量和碳储量评估.2010,北京:中国林业出版社.
    [58]杨万勤,张健,胡庭兴,孙辉.森林土壤生态学.2006,成都:四川科学出版社.
    [1]Philip B Duffy. NOAA and NASA:Warm Temperatures Continue 2011; Available from: http://globalchange.gov/whats-new/646.
    [2]Martin Parry, Nigel Arnell, Pam Berry, David dodman, Samuel Fankhauser, Chris Hope, Sari Kovats, Robert Nicholls, David Satterthwaite, Richard Tiffin, Tim Wheeler. Assessing the costs of adaptation to climate change:A review of the UNFCCC and other recent estimates.2009, Imperial College London (UK):The International Institute for Environment and Development (UK) and the Grantham Institute for Climate Change.
    [3]IPCC政府间气候变化专门委员会第四次评估报告第一、第二和第三工作组的报告[核心,R.K和Reisinger撰写组Pachauri, A.].气候变化2007:综合报告.2008,IPCC:瑞士,日内瓦
    [4]CHARLES D. KEELING. Climate change and carbon dioxide:An introduction. Proceedings of the National Academy of Science,1997,94(16):8273-8274.
    [5]John F. B. Mitchell. The "Greenhouse" effect and climate change. Reviews of Geophysics,1989, 27(01):115-139.
    [6]UNFCCC. Background on the UNFCCC:The international response to climate change.2012; Available from:http://unfccc.int/essential_background/items/6031.php.
    [7]Ding ZhongLi, Duan XiaoNan, Ge QuanSheng, Zhang ZhiQiang. Control of atmospheric CO2 concentrations by 2050:A calculation on the emission rights of different countries. Science in China Series D:Earth Sciences,2009,52(10):1447-1469.
    [8]UNFCCC. Bali climate change conference 2007; Available from:http://unfccc.int/meetings/bali_dec_2007/ meeting/6319.php.
    [9]UNFCCC. CDM Project Cycle.1997; Available from:http://cdm.unfccc.int/Projects/diagram.html.
    [10]胡会峰,刘国华.森林管理在全球CO2减排中的作用.应用生态学报,2006,17(04):709-714.
    [11]Overpeck Jonathan T., Rind David, Goldberg Richard. Climate-induced changes in forest disturbance and vegetation. Nature,1990,343(6253):51-53.
    [12]Sedjo R.A., Cairns M. Temperate forest ecosystems in the global carbon cycle. Ambio,1992,21:274-277.
    [13]Wofsy S. C., Goulden M. L., Munger J. W., Fan S. M., Bakwin P. S., Daube B. C., Bassow S. L. Bazzaz F. A. Net exchange of CO2 in a mid-Latitude forest. Science,1993,260(5112):1314-1317.
    [14]Zhang Peichang, Shao Guofan, Zhao Guang, Le Master Dennis C., Parker George R., Dunning John B., Li Qinglin. China's Forest Policy for the 21st Century. Science,2000,288(5474):2135-2136.
    [15]Miko U.F. Kirschbaum, Rowena Mueller. Net Ecosystem Exchange.2001, CANBERRA ACT 2601, Australia.:The Communications Office CRC for Greenhouse Accounting.
    [16]杨玉坡.全球气候变化与森林碳汇作用.四川林业科技,2010,31(01):14-17.
    [17]Dixon R. K, Brown S., Houghton R. A., Solomon A. M., Trexler M. C., Wisniewski J. Carbon pools and flux of global forest ecosystems. Science,1994,263(5144):185-190.
    [18]李顺龙.森林碳汇经济问题研究:[博士论文].2005,东北林业大学:哈尔滨
    [19]Prentice Katharine C, Fung Inez Y. The sensitivity of terrestrial carbon storage to climate change. Nature, 1990,346(6279):48-51.
    [20]Schimel David, Melillo Jerry, Tian Hanqin, McGuire A. David, Kicklighter David, Kittel Timothy, Rosenbloom Nan, Running Steven, Thornton Peter, Ojima Dennis, Parton William, Kelly Robin, Sykes Martin, Neilson Ron, Rizzo Brian. Contribution of Increasing CO2 and Climate to Carbon Storage by Ecosystems in the United States. Science,2000,287(5460):2004-2006.
    [21]郭娜,刘剑秋.植物生物量研究概述(综述).亚热带植物科学,2011,40(02):83-88.
    [22]Ebermeyr E. Die gesamte Lehre der Waldstreu mit Rucksicht auf die chemische statik des Waldbaues[M]. 1876, J Springer:Berlin
    [23]方精云,陈平安,赵淑清,慈龙骏.中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320-2322)的若干说明.植物生态学报,2002,26(02):243-249.
    [24]Fang JingYun, Guo ZhaoDi, Piao ShiLong, Chen AnPing. Terrestrial vegetation carbon sinks in China,1981-2000. Science in China Series D:Earth Sciences,2007,50(09):1341-1350.
    [25]冯宗伟,王效科,吴刚.中国森林生态系统的生物量和生产力.1999,北京:科学出版社.
    [26]徐新良,曹明奎,李克让.中国森林生态系统植被碳储量时空动态变化研究.地理科学进展,2007,26(06):1-10.
    [27]方精云,王襄平,沈泽吴,唐志尧,贺金生,于丹,江源,王志恒,郑成洋,朱江玲,郭兆迪.植物群落清查的主要内容、方法和技术规范.生物多样性,2009,17(06):533-548.
    [28]Fang Jingyun, Chen An ping, Peng Changhui, Zhao Shuqing, Ci Longjun. Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001,292(5525):2320-2322.
    [29]李海奎,雷渊才.中国森林植被生物量和碳储量评估.2010,北京:中国林业出版社.
    [30]程鹏飞,王金亮,王雪梅,徐申.森林生态系统碳储量估算方法研究进展.林业调查规划,2009,34(06):39-44.
    [31]Moncrieff J.B., Massheder J.M., Bruin de H., Elbers J., Friborg T., Heusinkveld B., Kabat P., Scott S., Soegaard H., Verhoef A. A system to measure surface fluxes of momentum,sensible heat,water vapour and carbon dioxide. Journal of Hydrology,1997,189(1/4):589-611.
    [32]Lieth, Helmut. Primary productivity of the biosphere.1975, New York:Springer.
    [33]周广胜,张新时.自然植被净第一性生产力模型初探.植物生态学报,1995,19(03):193-200.
    [34]黄忠良.运用Century模型模拟管理对鼎湖山森林生产力的影响.植物生态学报,2000,24(02):175-179.
    [35]Gonzalez Patrick, Asner Gregory P., Battles John J., Lefsky Michael A., Waring Kristen M., Palace Michael. Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California. Remote Sensing of Environment,2010,114(07):1561-1575.
    [36]Boyd D. S., Foody G. M. An overview of recent remote sensing and GIS based research in ecological informatics. Ecological Informatics,2011,6(01):25-36.
    [37]郑元润,周广胜.基于NDVI的中国天然森林植被净第一性生产力模型.植物生态学报,2000,24(01):9-12.
    [38]Martin P. Global CO2 monitoring network. Science,1998,281:1805.
    [39]Valentini R., Matteucci G., Dolman A. J., Schulze E. D., Rebmann C., Moors E. J., Granier A., Gross P., Jensen N. O., Pilegaard K., Lindroth A., Grelle A., Bernhofer C., Grunwald T., Aubinet M., Ceulemans R., Kowalski A. S., Vesala T., Rannik U., Berbigier P., Loustau D., Gumundsson J., Thorgeirsson H., Ibrom A., Morgenstern K., Clement R., Moncrieff J., Montagnani L., Minerbi S., Jarvis P. G.. Respiration as the main determinant of carbon balance in European forests. Nature,2000,404(6780):861-865.
    [40]Kauppi Pekka E., Mielikainen Kari, Kuusela Kullervo. Biomass and Carbon Budget of European Forests, 1971 to 1990. Science,1992,256(5053):70-74.
    [41]Ciais P., Tans P. P., Trolier M., White J. W. C, Francey R. J. A large northern hemisphere terrestrial CO, sink indicated by the 13C/12C ratio of atmospheric CO,. Science,1995,269(5227):1098-1102.
    [42]Keeling C. D., Chin J. F. S., Whorf T. P. Increased activity of northern vegetation inferred from atmospheric CO, measurements. Nature,1996,382(6587):146-149.
    [43]Battle M., Bender M. L., Tans P. P., White J. W. C., Ellis J. T., Conway T., Francey R. J. Global carbon sinks and their variability inferred from atmospheric O, and δ13C. Science,2000,287(5462):2467-2470.
    [44]Tans Pieter P., Fung Inez Y., Takahashi Taro. Observational contrains on the global atmospheric CO2 budget. Science,1990,247(4949):1431-1438.
    [45]Keeling Ralph F., Piper Stephen C., Heimann Martin. Global and hemispheric CO2 sinks deduced from changes in atmospheric O, concentration. Nature,1996,381(6579):218-221.
    [46]Cao Mingkui, Woodward F. IaN. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology,1998,4(02):185-198.
    [47]Holland Elisabeth A., Brown Sandra. North American Carbon Sink. Science,1999,283(5409):1815a.
    [48]Schimel David S. Terrestrial ecosystems and the carbon cycle. Global Change Biology,1995,1 (01):77-91.
    [49]Myneni R. B., Keeling C. D., Tucker C. J., Asrar G., Nemani R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature,1997,386(6626):698-702.
    [50]梅安新,彭望碌,秦其明,刘慧平.遥感导论.2011,北京:高等教育出版社.
    [51]中国西部环境与生态科学数据中心.数据产品与服务NDVI.2006; Available from: http://westdc.westgis.ac.cn/data/tag/NDVI.
    [52]Olson J. S. Primary productivity:Temperate forest.especially American deciduous type. IN:Productivity of forest ecosystems. Ecology and Conservation,1971,4:235-258.
    [53]Maclean D. A., Wein R. W. Biomass of jack pine and mixed hardwood stands in southern New Brunswich. Canadian Journal of Forest Research,1976,6(04):441-447.
    [54]Anderson F. Ecological studies in a Scandian woodland and meadow area, Southern Sweden.Plant biomass,primary production and turnover of organic matter. Botany Notiser,1970,123:8-51.
    [55]Jordan C. F. Amazon rain forest. American Scientist,1982,70:394-401.
    [56]Ogawa H., Kira T. Methods of estimating forest biomass.In:Primary productivity of Japanese forest-productivity of terrestrial communities.1977, Tokyo:University of Tokyo Press.15-25.
    [57]Kira T, Ogawa H. Assessment of primary production in tropical and equatorial ecosystems,In:Productivity of forest ecosystems. Ecology and Conservation,1971,4:319-321.
    [58]Leith H., Whittaker R. H. Primary Productivity of Biosphere.1975, Springer-Verlag:Berlin.
    [59]Holben Brent N. Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing,1986,7(11):1417-1434.
    [60]Kasischke Eric S.,Melack John M., Craig Dobson M. The use of imaging radars for ecological applications--A review. Remote Sensing of Environment,1997,59(02):141-156.
    [61]Wilson Emily Hoffhine, Sader Steven A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment,2002,80(03):385-396.
    [62]Dong Jiarui, Kaufmann Robert K., Myneni Ranga B., Tucker Compton J., Kauppi Pekka E., Liski Jari, Buermann Wolfgang, Alexeyev V., Hughes Malcolm K. Remote sensing estimates of boreal and temperate forest woody biomass:carbon pools, sources, and sinks. Remote Sensing of Environment,2003, 84(03):393-410.
    [63]Thenkabail Prasad S., Enclona Eden A., Ashton Mark S., Legg Christopher, De Dieu Minko Jean. Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sensing of Environment,2004, 90(01):23-43.
    [64]王正兴,索玉霞,林昕,石瑞香AVHRR全球时间序列研究进展PAL-GIMMS-LTDR资源科学,2008,30(08):1252-1260.
    [65]Cohen Warren B., Maiersperger Thomas K., Yang Zhiqiang, Gower Stith T, Turner David P., Ritts William D., Berterretche Mercedes, Running Steven W. Comparisons of land cover and LAI estimates derived from ETM+and MODIS for four sites in North America:A quality assessment of 2000/2001 provisional MODIS products. Remote Sensing of Environment,2003,88(03):233-255.
    [66]Wang Shaoqing, Tian Hanqin, Lou Jiyuan, Zhuang Dafang, Zhang Shuwen, Hu Wenyan. Chracterization of changes in land cover and carbon storate in Northeastern China:An analysis based on Landsat TM data. Science in China (Series C),2002,45(supp.):40-47.
    [67]Knorn Jan, Rabe Andreas, Radeloff Volker C., Kuemmerle Tobias, Kozak Jacek, Hostert Patrick. Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Remote Sensing of Environment,2009,113(05):957-964.
    [68]Eklundh Lars, Harrie Lars, Kuusk Andres. Investigating relationships between Landsat ETM+ sensor data and leaf area index in a boreal conifer forest. Remote Sensing of Environment,2001,78(03):239-251.
    [69]Broadbent Eben N., Asner Gregory P., Pena-Claros Marielos, Palace Michael, Soriano Marlene. Spatial partitioning of biomass and diversity in a lowland Bolivian forest:Linking field and remote sensing measurements. Forest Ecology and Management,2008,255(07):2602-2616.
    [70]冯益明,李增元,张旭.基于高空间分辩率影像的林分冠幅估计.林业科学,2006,42(05):110-113.
    [71]李崇贵,赵宪文,李春干.森林蓄积量遥感估测理论与实现.2006,北京:科学出版社.
    [72]张慧芳,张晓丽,黄瑜.遥感技术支持下的森林生物量研究进展.世界林业研究,2007,20(04):30-34.
    [73]Ouma Yashon O., Tateishi R. Urban-trees extraction from Quickbird imagery using multiscale spectex-filtering and non-parametric classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2008,63(03):333-351.
    [74]Song Conghe, Dickinson Matthew B., Su Lihong, Zhang Su, Daniel Yaussey. Estimating average tree crown size using spatial information from Ikonos and QuickBird images:Across-sensor and across-site comparisons. Remote Sensing of Environment,2010,114(05):1099-1107.
    [75]Robinson D.J., Redding N.J., Crisp D.J. Implementation of a fast algorithm for segmenting SAR imagery. 2002; Available from:http://hdl.handle.net/1947/4162
    [76]潘维俦,李利村,高正衡.两个不同地域类型杉木林的生物产量和营养元素分布.湖南林业科技,1980(02):1-4.
    [77]冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定.林业科学,1982,18(02):127-134.
    [78]李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究.森林生态系统研究(试刊),1981:34-50.
    [79]林鹏,卢昌义,林光辉,陈荣华,苏辚.九龙江口红树林研究——Ⅰ.秋茄群落的生物量和生产力.厦门大学学报(自然科学版),1985,24(04):114-120.
    [80]钟章成.常绿阔叶林生态学研究.1988,重庆北碚:西南师范大学出版社.
    [81]陈传国,郭杏芳.阔叶红松林生物量的研究(续).林业勘查设计,1984(03).
    [82]陈传国,郭杏芬.阔叶红松林生物量的研究.林业勘查设计,1984(02).
    [83]鲍显诚,陈灵芝,陈清朗,任继凯,胡肄慧,李扬.栓皮栎林的生物量.植物生态学与地植物学丛刊,1984(04).
    [84]钟章成.植物生态学研究进展—钟章成论文选.1997,重庆北碚:西南师范大学出版社.
    [85]党承林,吴兆录.元江栲群落的生物量研究.云南大学学报(自然科学版),1994,16(03):195-199.
    [86]党承林,吴兆录,张泽.黄毛青冈群落的生物量研究.云南大学学报(自然科学版),1994,16(03):205-209.
    [87]张祝平,丁明憋.鼎湖山亚热带季风常绿阔叶林的生物量和光能利用效率.生态学报,1996,16(05):525-534.
    [88]陈章和,张宏达,王伯荪.黑石顶自然保护区南亚热带常绿阔叶林生物量与生产量研究——生物量增量及第一性生产量.生态学报,1992,12(04):377-386.
    [89]王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力.生态学杂志,2000,19(04):518-522.
    [90]黄从德,张健,杨万勤,唐宵.四川森林植被碳储量的时空变化.应用生态学报,2007,18(12):2687-2692.
    [91]黄从德,张健,杨万勤,唐宵,赵安玖.四川省及重庆地区森林植被碳储量动态,生态学报,2008,28(03):966-975.
    [92]黄从德,张健,杨万勤,张国庆,王永军.四川森林土壤有机碳储量的空间分布特征.生态学报,2009,29(03):1217-1225.
    [93]邢艳秋,王立海.基于森林调查数据的长白山天然林森林生物量相容性模型.应用生态学报,2007,18(01):1-8.
    [94]李海涛,王姗娜,高鲁鹏,于贵瑞.赣中亚热带森林植被碳储量.生态学报,2007,27(02):693-704.
    [95]程堂仁,马钦彦,冯仲科,罗旭.甘肃小陇山森林生物量研究.北京林业大学学报,2007,29(01):31-36.
    [96]曾立雄,王鹏程,肖文发,万睿,黄志霖,潘磊.三峡库区植被生物量和生产力的估算及分布格局.生态学报,2008,28(08):3808-3816.
    [97]张骏,袁位高,葛滢,江波,朱锦茹,沈爱华,常杰.浙江省生态公益林碳储量和固碳现状及潜力.生态学报,2010,30(14):3839-3848.
    [98]光增云.河南森林生物量与生产力研究.河南农业大学学报,2006,40(05):493-497.
    [99]王淑君,管东生.神经网络模型森林生物量遥感估测方法的研究.生态环境,2007,16(01):108-111.
    [100]李妍,李海涛,金冬梅,孙书存.Wbe模型及其在生态学中的应用:研究概述.生态学报,2007,27(07):3018-3031.
    [101]徐天蜀,张王菲,岳彩荣.基于pca的森林生物量遥感信息模型研究.生态环境,2007,16(06):1759-1762.
    [102]胡会峰,刘国华.中国天然林保护工程的固碳能力估算.生态学报,2006,26(01):291-296.
    [103]李海奎,雷渊才,曾伟生.基于森林清查资料的中国森林植被碳储量.林业科学,2011,47(07):7-12.
    [104]刘世荣,王晖,栾军伟.中国森林土壤碳储量与土壤碳过程研究进展.生态学报,2011,31(19):5437-5448.
    [105]宫超,汪思龙,曾掌权,邓仕坚,陈建平,龙康寿.中亚热带常绿阔叶林不同演替阶段碳储量与格局特征.生态学杂志,2011,30(09):1935-1941.
    [106]方运霆,莫江明,彭少麟,李德军.森林演替在南亚热带森林生态系统碳吸存中的作用.生态学报,2003,23(09):1685-1694.
    [107]Post Wilfred M., Emanuel William R., Zinke Paul J., Stangenberger Alan G. Soil carbon pools and world life zones. Nature,1982,298(5870):156-159.
    [108]Olson J.S., Watts J. A., Allison L.J. Carbon in live vegetation of major world ecosystems.1983,
    [109]Mark Rees, Rick Condit, Mick Crawley, Steve Pacala, Dave Tilman. Long-term studies of vegetation dynamics. Science in China Series D:Earth Sciences,2001,293:650-655.
    [110]Emily Matthews, Richard Payne, Mark Rohweder, Siobhan Murray. Pilot analysis of global ecosystems: Forest ecosystems.2000, World Resources institution:Washington
    [111]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报,2001,12(01):13-16.
    [112]黄从德,张健,杨万勤,唐宵,张国庆.四川省森林植被碳储量的空间分异特征.生态学报,2009,29(09):5115-5121.
    [113]Steven Michael D., Malthus Timothy J., Baret Frederic, Xu Hui, Chopping Mark J. Intercalibration of vegetation indices from different sensor systems. Remote Sensing of Environment,2003,88(04):412-422.
    [114]Hyde Peter, Dubayah Ralph, Walker Wayne, Blair J. Bryan, Hofton Michelle, Hunsaker Carolyn. Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy. Remote Sensing of Environment,2006,102(01-02):63-73.
    [1]于贵瑞,李海涛,王绍强.全球变化与陆地生态系统碳循环和碳蓄积.2003,北京:气象出版社.
    [2]Keeling Ralph F., Piper Stephen C., Heimann Martin. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature,1996,381 (6579):218-221.
    [3]Martin Parry, Nigel Arnell, Pam Berry, David dodman, Samuel Fankhauser, Chris Hope, Sari Kovats, Robert Nicholls, David Satterthwaite, Richard Tiffin, Tim Wheeler. Assessing the costs of adaptation to climate change:A review of the UNFCCC and other recent estimates.2009, Imperial College London (UK):The International Institute for Environment and Development (UK) and the Grantham Institute for Climate Change.
    [4]UNFCCC. Kyoto Protocol.1997; Available from:http://unfccc.int/kyoto_protocol/items/2830.php.
    [5]UNFCCC. Background on the UNFCCC:The international response to climate change.2012; Available from:http://unfccc.int/essential_background/items/6031.php.
    [6]傅伯杰,牛栋,赵士洞.全球变化与陆地生态系统研究:回顾与展望.地球科学进展,2005,20(05):556-560.
    [7]Schimel David S. Terrestrial ecosystems and the carbon cycle. Global Change Biology,1995, 1(01):77-91.
    [8]Dixon R. K., Brown S., Houghton R. A., Solomon A. M., Trexler M. C, Wisniewski J. Carbon pools and flux of global forest ecosystems. Science,1994,263(5144):185-190.
    [9]Emily Matthews, Richard Payne, Mark Rohweder, Siobhan Murray. Pilot analysis of global ecosystems: Forest ecosystems.2000, World Resources institution:Washington
    [10]Sedjo R.A., Cairns M. Temperate forest ecosystems in the global carbon cycle. Ambio,1992,21:274-277.
    [11]Yanai R. D., Battles J. J., Richardson A. D., Blodgett C. A., Wood D. M., Rastetter E. B. Estimating uncertainty in ecosystem budget calculations. Ecosystems,2010,13(02):239-248.
    [12]Olson J.S., Watts J.A., Allison L.J. Carbon in live vegetation of major world ecosystems.1983,
    [13]胡会峰,刘国华.森林管理在全球CO2减排中的作用.应用生态学报,2006,17(04):709-714.
    [14]Brown Sandra, Lugo ariel E. Biomass of tropical forests:A new estimate based on forest volumes. Science, 1984,223(4642):1290-1293.
    [15]Fang Jingyun, Chen An ping, Peng Changhui, Zhao Shuqing, Ci Longjun. Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001,292(5525):2320-2322.
    [16]Wang Quan, Adiku Samuel, Tenhunen John, Granier Andre. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sensing of Environment,2005,94(02):244-255.
    [17]Wilson Emily Hoffhine, Sader Steven A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment,2002,80(03):385-396.
    [18]Hasegawa Kouiti, Matsuyama Hiroshi, Tsuzuki Hayato, Sweda Tatsuo. Improving the estimation of leaf area index by using remotely sensed NDVI with BRDF signatures. Remote Sensing of Environment,2010, 114(03):514-519.
    [19]李崇贵,赵宪文,李春干.森林蓄积量遥感估测理论与实现.2006,北京:科学出版社.
    [20]李辉霞,刘国华,傅伯杰.基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究.生态学报,2011,31(19):5495-5504.
    [21]Boyd D. S., Foody G. M. An overview of recent remote sensing and GIS based research in ecological informatics. Ecological Informatics,2011,6(01):25-36.
    [22]Thenkabail Prasad S., Enclona Eden A., Ashton Mark S., Legg Christopher, De Dieu Minko Jean. Hyperion, IKONOS, ALI, and ETM+sensors in the study of African rainforests. Remote Sensing of Environment,2004, 90(01):23-43.
    [23]陈巧,陈永富QuickBird遥感数据监测植被覆盖度的研究.林业科学研究,2005,18(04):375-380.
    [24]杨武年,濮国梁,郑平元,F.Cauneau, T.Ranchin, J.P.Paris长江三峡库区多类型、多时相遥感图像数字处理和地质构造信息提取.成都理工大学学报(自然科学版),2003,30(04):378-385.
    [25]孙红雨,王长耀,牛铮,布和敖斯尔,李兵.中国地表植被覆盖变化及其与气候因子关系——基于NOAA时间序列数据分析.遥感学报,1998,2(03):204-210.
    [26]梅安新,彭望琭,秦其明,刘慧平.遥感导论.2011,北京:高等教育出版社.
    [27]杨培玉,陈圣波,吴琼,吕乐婷,李明军.城市地区etm和quickbird影像ndvi值比较研究.遥感技术与应用,2008,23(05):533-536.
    [28]Dong Jiarui, Kaufmann Robert K., Myneni Ranga B., Tucker Compton J., Kauppi Pekka E., Liski Jari, Buermann Wolfgang, Alexeyev V., Hughes Malcolm K. Remote sensing estimates of boreal and temperate forest woody biomass:carbon pools, sources, and sinks. Remote Sensing of Environment,2003, 84(03):393-410.
    [29]Tan Kun, Piao Shilong, Peng Changhui, Fang Jingyun. Satellite-based estimation of biomass carbon stocks for northeast China's forests between 1982 and 1999. Forest Ecology and Management,2007, 240(01-03):114-121.
    [30]蒋蕊竹,李秀启,朱永安,张治国.基于MODIS黄河三角洲湿地NPP与NDVI相关性的时空变化特征.生态学报,2011,31(22):6708-6716.
    [31]熊春妮,魏虹,兰明娟.重庆市都市区绿地景观的连通性.生态学报,2008,28(05):2237-2242.
    [32]陈巧,陈永富.应用高分辨率卫星影像监测退耕地植被的覆盖度.林业科学,2006,42(增刊1):5-9.
    [33]Fang JingYun, Guo ZhaoDi, Piao ShiLong, Chen AnPing. Terrestrial vegetation carbon sinks in China,1981-2000. Science in China Series D:Earth Sciences,2007,50(09):1341-1350.
    [34]Fang Jing-yun, Wang G. Geoff, Liu Guo-hua, Xu Song-ling. Forest biomass of China:an edtimate based on the bilmass-bolume relationship Ecological Applications,1998,8(04):1084-1091.
    [35]方精云,陈平安,赵淑清,慈龙骏.中国森林生物量的估算:对Fang等Science—文(Science,2001,291:2320-2322)的若干说明.植物生态学报,2002,26(02):243-249.
    [36]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报,2000,20(05):733-740.
    [37]方精云,郭兆迪.寻找失去的陆地碳汇.自然杂志,2007,29(01):1-6.
    [38]冯宗伟,王效科,吴刚.中国森林生态系统的生物量和生产力.1999,北京:科学出版社.
    [39]李海奎,雷渊才.中国森林植被生物量和碳储量评估.2010,北京:中国林业出版社.
    [40]Siart Christoph, Bubenzer Olaf, Eitel Bernhard. Combining digital elevation data (SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for geomorphological mapping:A multi-component case study on Mediterranean karst in Central Crete. Geomorphology,2009,112(01-02):106-121.
    [41]邢艳秋.基于RS和GIS东北天然林区域森林生物量及碳贮量估测研究:[博士学位论文].2005,东北林业大学:哈尔滨
    [1]Boyd D. S., Foody G. M. An overview of recent remote sensing and GIS based research in ecological informatics. Ecological Informatics,2011,6(01):25-36.
    [2]Deroin Jean-Paul, Tereygeol Florian, Heckes Jurgen. Evaluation of very high to medium resolution multispectral satellite imagery for geoarchaeology in arid regions-Case study from Jabali, Yemen. Journal of Archaeological Science,2011,38(01):101-114.
    [3]Thenkabail Prasad S., Enclona Eden A., Ashton Mark S., Legg Christopher, De Dieu Minko Jean. Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sensing of Environment,2004, 90(01):23-43.
    [4]Pan Gang, Sun Guo-Jun, Li Feng-Min. Using QuickBird imagery and a production efficiency model to improve crop yield estimation in the semi-arid hilly Loess Plateau, China. Environmental Modelling & Software,2009,24(04):510-516.
    [5]Broadbent Eben N., Asner Gregory P., Pena-Claros Marielos, Palace Michael, Soriano Marlene. Spatial partitioning of biomass and diversity in a lowland Bolivian forest:Linking field and remote sensing measurements. Forest Ecology and Management,2008,255(07):2602-2616.
    [6]Wang Le, Sousa Wayne P., Gong Peng, Biging Gregory S. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sensing of Environment,2004, 91(03-04):432-440.
    [7]Ouma Yashon O., Tateishi R. Urban-trees extraction from Quickbird imagery using multiscale spectex-filtering and non-parametric classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2008,63(03):333-351.
    [8]Cook Bruce D., Bolstad Paul V., Naesset Erik, Anderson Ryan S., Garrigues Sebastian, Morisette Jeffrey T., Nickeson Jaime, Davis Kenneth J. Using LiDAR and quickbird data to model plant production and quantify uncertainties associated with wetland detection and land cover generalizations. Remote Sensing of Environment,2009,113(11):2366-2379.
    [9]陈巧,陈永富QuickBird遥感数据监测植被覆盖度的研究.林业科学研究,2005,18(04):375-380.
    [10]陈旭,徐佐荣,余世孝.基于对象的QuickBird遥感图像多层次森林分类.遥感技术与应用,2009,24(01):22-26.
    [11]党安荣,贾海峰,陈晓峰,张建宝,王晓栋,沈涛,陈玉荣,李京伟,沈莎,袁辉,杨晓明ERDAS IMAGEINE遥感图像处理教程.2010,北京:清华大学出版社.
    [12]Benz Ursula C., Hofmann Peter, Willhauck Gregor, Lingenfelder Iris, Heynen Markus. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. International Society for Photogrammetry and Remote Sensing Journal of Photogrammetry and Remote Sensing,2004, 58(3-4):239-258.
    [13]Elisabeth A. Addink, Steven M. de Jong, Edzer J. Pebesma. The Importance of scale in object-based mapping of vegetation parameters with hyperspectral imagery. Photogrammetric Engineering & Remote Sensing,2007, 73(08):905-912.
    [14]Bhaskaran Sunil, Paramananda Shanka, Ramnarayan Maria. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Applied Geography,2010,30(04):650-665.
    [15]Xiaoying Jin, Scott Paswaters. A fuzzy rule base system for object-based feature extraction and classification. 2007, Signal Processing:USA
    [16]Mallinis Georgios, Koutsias Nikos, Tsakiri-Strati Maria, Karteris Michael. Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS Journal of Photogrammetry and Remote Sensing,2008,63(02):237-250.
    [17]邓书斌.ENVI遥感处理方法.2010,北京:科学出版社.
    [18]Wulder Michael A., Seemann David. Forest inventory height update through the integration of lidar data with segmented Landsat imagery. Canadian Journal of Remote Sensing,2003,29(05):536-543.
    [19]Hall Ola, Hay Geoffrey J., Bouchard Andre, Marceau Danielle J. Detecting dominant landscape objects through multiple scales:An integration of object-specific methods and watershed segmentation. Landscape Ecology,2004,19(01):59-76.
    [20]Donald G.Leckie, Francois A.Gougeon, Nicholas Walsworth, Dennis Paradine. Stand delineation and composition estimation using semi-automated individual tree crown analysis. Remote Sensing of Environment,2003,85(03):355-369.
    [21]徐新刚,李强子,周万村,吴炳方.应用高分辨率遥感影像提取作物种植面积.遥感技术与应用,2008,23(01):17-23.
    [22]李春华,徐涵秋.高分辨率遥感图像融合的光谱保真问题.地球信息科学,2008,10(04):520-526.
    [23]林瑶,田捷.医学图像分割方法综述.模式识别与人工智能,2002,15(02):192-204.
    [24]Robinson D.J., Redding N.J., Crisp D.J. Implementation of a fast algorithm for segmenting SAR imagery. 2002; Available from:http://hdl.handle.net/1947/4162
    [25]钟章成.植物生态学研究进展—钟章成论文选.1997,重庆北碚:西南师范大学出版社.
    [26]钟章成.常绿阔叶林生态学研究.1988,重庆北碚:西南师范大学出版社.
    [27]熊利民,钟章成.四川缙云山森林群落演替机理初探.西南师范大学学报:自然科学版,1991,16(01):89-95.
    [1]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报,2000,20(05):733-740.
    [2]Dixon R. K., Brown S., Houghton R. A., Solomon A. M., Trexler M. C., Wisniewski J. Carbon pools and flux of global forest ecosystems. Science,1994,263(5144):185-190.
    [3]胡会峰,刘国华.森林管理在全球C02减排中的作用.应用生态学报,2006,17(04):709-714.
    [4]田汉勤,万师强,马克平.全球变化生态学:全球变化与陆地生态系统.植物生态学报,2007,31(02):173-174.
    [5]傅伯杰,牛栋,赵士洞.全球变化与陆地生态系统研究:回顾与展望.地球科学进展,2005,20(05):556-560.
    [6]余新晓,鲁绍伟,靳芳,陈丽华,饶良懿,陆贵巧.中国森林生态系统服务功能价值评估.生态学报,2005,25(08):2096-2102.
    [7]方精云,郭兆迪,朴世龙,陈安平.1981-2000年中国陆地植被碳汇的估算.中国科学(D辑:地球科学),2007,37(06):1-9.
    [8]黄从德,张健,杨万勤,唐宵,张国庆.四川省森林植被碳储量的空间分异特征.生态学报,2009,29(09):5115-5121.
    [9]方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学报,2001,43(09):967-973.
    [10]方精云,陈平安,赵淑清,慈龙骏.中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320—2322)的若干说明.植物生态学报,2002,26(02):243-249.
    [11]Fang Jingyun, Chen An ping, Peng Changhui, Zhao Shuqing, Ci Longjun. Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001,292(5525):2320-2322.
    [12]冯宗伟,王效科,吴刚.中国森林生态系统的生物量和生产力.1999,北京:科学出版社.
    [13]李海奎,雷渊才.中国森林植被生物量和碳储量评估.2010,北京:中国林业出版社.
    [14]黄从德,张健,杨万勤,唐宵,赵安玖.四川省及重庆地区森林植被碳储量动态.生态学报,2008,28(03):966-975.
    [15]李锦业,吴炳方,周月敏,张磊.三峡库区植被生物量遥感估算方法研究.遥感技术与应用,2009,24(06):784-787.
    [16]陈巧,陈永富.应用高分辨率卫星影像监测退耕地植被的覆盖度.林业科学,2006,42(增刊1):5-9.
    [17]Dong Jiarui, Kaufmann Robert K., Myneni Ranga B., Tucker Compton J., Kauppi Pekka E., Liski Jari, Buermann Wolfgang, Alexeyev V., Hughes Malcolm K. Remote sensing estimates of boreal and temperate forest woody biomass:carbon pools, sources, and sinks. Remote Sensing of Environment,2003, 84(03):393-410.
    [18]Boyd D. S., Foody G. M. An overview of recent remote sensing and GIS based research in ecological informatics. Ecological Informatics,2011,6(01):25-36.
    [19]李海涛,杨柳春,严茂超,董孝斌,胡聃,张照喜,杜化堂.鸡公山自然保护区森林生物量动态模拟及其宏观价值评估.资源科学,2005,27(04):154-159.
    [20]陈章和,张宏达,王伯荪.黑石顶自然保护区南亚热带常绿阔叶林生物量与生产量研究——生物量增量及第一性生产量.生态学报,1992,12(04):377-386.
    [21]钟章成.常绿阔叶林生态学研究.1988,重庆北碚:西南师范大学出版社.
    [22]钟章成.植物生态学研究进展—钟章成论文选.1997,重庆北碚:西南师范大学出版社.
    [23]苏智先,钟章成.缙云山慈竹种群生物量结构研究.植物生态学与地植物学学报,1991,15(03):240-252.
    [24]黎曦.赣南毛竹、硬头黄竹、坭竹等竹林生物量的研究[M].2007,南京林业大学:
    [25]杨同辉,宋坤,达良俊,李修鹏,吴健平.中国东部木荷-米槠林的生物量和地上净初级生产力.中国科学:生命科学,2010,40(07):610-619.
    [26]石培礼,钟章成,李旭光.四川桤柏混交林生物量的研究.植物生态学报,1996,20(06):524-533.
    [27]刘其霞,常杰,江波,袁位高,戚连忠,朱锦茹,葛滢,沈琪.浙江省常绿阔叶生态公益林生物量.生态学报,2005,25(09):2139-2144.
    [28]袁位高,江波,葛永金,朱锦茹,沈爱华.浙江省重点公益林生物量模型研究.浙江林业科技,2009,29(02):1-5.
    [29]于贵瑞,李海涛,王绍强.全球变化与陆地生态系统碳循环和碳蓄积.2003,北京:气象出版社.
    [30]王向雨,胡东,贺金生.神农架地区米心水青冈林和锐齿槲栎林生物量的研究.首都师范大学学报(自然科学版),2007,28(02):62-67.
    [31]陈启瑺,沈琪.浙江次生青冈林林木层的生物量模型及其分析.植物生态学与地植物学学报,1993,]7(01):3847.
    [32]Carmel Yohay, Kadmon Ronen. Effects of grazing and topography on long-term vegetation changes in a Mediterranean ecosystem in Israel. Plant Ecology,1999,145(02):243-254.
    [33]王鹏程,姚婧,肖文发,张守攻,黄志霖,曾立雄,潘磊.三峡库区森林植被分布的地形分异特征.长江流域资源与环境,2009,18(06):528-534.
    [34]Florinsky Igor V., Kuryakova Galina A. Influence of topography on some vegetation cover properties. CATENA,1996,27(02):123-141.
    [35]王永健,陶建平,李嫒,余小红,席一.华西箭竹对卧龙亚高山森林不同演替阶段物种多样性与乔木更新的影响.林业科学,2007,43(02):1-7.
    [36]陈辉,洪伟,兰斌,郑郁善,何东进.闽北毛竹生物量与生产力的研究.林业科学,1998,34(专刊1).
    [37]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报,2001,12(01):13-16.
    [38]李海涛,王姗娜,高鲁鹏,于贵瑞.赣中亚热带森林植被碳储量.生态学报,2007,27(02):693-704.
    [39]黄从德,张健,杨万勤,唐宵.四川森林植被碳储量的时空变化.应用生态学报,2007,18(12):2687-2692.
    [40]方运霆,莫江明,彭少麟,李德军.森林演替在南亚热带森林生态系统碳吸存中的作用.生态学报,2003,23(09):1685-1694.
    [41]Peter B. Reich, Jean Knops, David Tilman, Joseph Craine, David Ellsworth, Mark Tjoelker, Tali Lee, David Wedin, Shahid Naeem, Dan Bahauddin, George Hendrey, Shibu Jose, Keith Wrage, Jenny Goth, Wendy Bengston. Plant diversity enhances ecosystem responses to elevated C02 and nitrogen deposition. Nature, 2001,410(6830):809-812.
    [42]Reich P. B., Tilman D., Naeem S., Ellsworth D. S., Knops J., Craine J., Wedin D., Trost J. Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proceedings of the National Academy of Sciences,2004,101 (27):10101-10106.
    [43]Loreau M., Naeem S., Inchausti P., Bengtsson J., Grime J. P., Hector A., Hooper D. U., Huston M. A., Raffaelli D., Schmid B., Tilman D., Wardle D. A. Biodiversity and ecosystem functioning:Current knowledge andfuture challenges. Science,2001,294(5543):804-808.
    [44]IGBP, Terestial Carbon Working Group. CLIMATE:the terestrial carbon cycle: implications for the Kyoto Protocal. Science,1998,280(5368):1393-1394.
    [1]CHARLES D. KEELING. Climate change and carbon dioxide:An introduction. Proceedings of the National Academy of Science,1997,94(16):8273-8274.
    [2]John F. B. Mitchell. The "Greenhouse" effect and climate change. Reviews of Geophysics,1989, 27(01):115-139.
    [3]CO2now-org. What the world needs to watch.2012; Available from:http://co2now.org/.
    [4]IPCC,政府间气候变化专门委员会第四次评估报告第一、第二和第三工作组的报告[核心,R.K和Reisinger撰写组Pachauri, A.]气候变化2007:综合报告.2008,IPCC:瑞士,日内瓦
    [5]Ding ZhongLi, Duan XiaoNan, Ge QuanSheng, Zhang ZhiQiang. Control of atmospheric CO2 concentrations by 2050:A calculation on the emission rights of different countries. Science in China Series D:Earth Sciences,2009,52(10):1447-1469.
    [6]Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007:The Physical Science Basis. 2007, New York:Cambridge University Press.
    [7]Organisation for Economic Co-operation and Development (OECD). Environmental Outlook to 2030.2008, Paris:OECD Publishing.
    [8]United Nations Development Programme (UNDP). Human Development Report 2007/2008-Fighting Climate Change:Human Solidarity in a Divided World.2008, New York:Palgrave Macmillan.399.
    [9]UNFCCC. CDM Project Cycle.1997; Available from:http://cdm.unfccc.int/Projects/diagram.html.
    [10]G.M. Woodwell, R.H. Whitaker, W.A. Reiners, G.E. Likens, C.C. Delwich, D.B. Botkin. Biota and the World carbon budget. Journal Name:Science; (United States); Journal Volume:199:4325,1978:Medium:X; Size: Pages:141-146.
    [11]Olson J.S., Watts J.A., Allison L.J. Carbon in live vegetation of major world ecosystems.1983,
    [12]Post Wilfred M., Emanuel William R., Zinke Paul J., Stangenberger Alan G. Soil carbon pools and world life zones. Nature,1982,298(5870):156-159.
    [13]Cao Mingkui, Woodward F. IaN. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology,1998,4(02):185-198.
    [14]Dixon R. K., Brown S., Houghton R. A., Solomon A. M., Trexler M. C., Wisniewski J. Carbon pools and flux of global forest ecosystems. Science,1994,263(5144):185-190.
    [15]Overpeck Jonathan T., Rind David, Goldberg Richard. Climate-induced changes in forest disturbance and vegetation. Nature,1990,343(6253):51-53.
    [16]方精云,郭兆迪,朴世龙,陈安平.1981~2000年中国陆地植被碳汇的估算.中国科学(D辑:地球科学),2007,37(06):1-9.
    [17]Sedjo R.A., Cairns M. Temperate forest ecosystems in the global carbon cycle. Ambio,1992,21:274-277.
    [18]胡会峰,刘国华.森林管理在全球CO2减排中的作用.应用生态学报,2006,17(04):709-714.
    [19]Houghton R. A., Skole D. L., Nobre Carlos A., Hackler J. L., Lawrence K. T., Chomentowsk W. H. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature,2000,403:301-304.
    [20]Bolin Bert. Changes of land biota and theirimportance for the carbon cycle. Science, i 977, 196(4290):613-615.
    [21]Peter B. Reich, Jean Knops, David Tilman, Joseph Craine, David Ellsworth, Mark Tjoelker, Tali Lee, David Wedin, Shahid Naeem, Dan Bahauddin, George Hendrey, Shibu Jose, Keith Wrage, Jenny Goth, Wendy Bengston. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature, 2001,410(6830):809-812.
    [22]李海涛,王姗娜,高鲁鹏,于贵瑞.赣中亚热带森林植被碳储量.生态学报,2007,27(02):693-704.
    [23]宫超,汪思龙,曾掌权,邓仕坚,陈建玉,龙康寿.中亚热带常绿阔叶林不同演替阶段碳储量与格局特征.生态学杂志,2011,30(09):1935-1941.
    [24]方运霆,莫江明,彭少麟,李德军.森林演替在南亚热带森林生态系统碳吸存中的作用生态学报,2003,23(09):1685-1694.
    [25]钟章成.常绿阔叶林生态学研究.1988,重庆北碚:西南师范大学出版社.
    [26]钟章成.植物生态学研究进展—钟章成论文选.1997,重庆北碚:西南师范大学出版社.
    [27]熊济华.重庆缙云山植物志.2005,重庆:西南师范大学出版社.
    [28]周先容,刘玉成,尚进,江波.缙云山自然保护区木本植物区系特征.东北林业大学学报,2008,36(12):32-35.
    [29]李海奎,雷渊才.中国森林植被生物量和碳储量评估.2010,北京:中国林业出版社.
    [30]Brown Sandra, Lugo ariel E. Biomass of tropical forests:A new estimate based on forest volumes. Science, 1984,223(4642):1290-1293.
    [31]杨万勤,张健,胡庭兴,孙辉.森林土壤生态学.2006,成都:四川科学出版社.
    [32]吕超群,孙书存.陆地生态系统碳密度格局研究概述.植物生态学报,2004,28(05):692-703.
    [33]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡.植物生态学报,2000,24(05):518-522.
    [34]Miko U.F. Kirschbaum, Rowena Mueller. Net Ecosystem Exchange.2001, CANBERRA ACT 2601, Australia.:The Communications Office CRC for Greenhouse Accounting.
    [35]Robin White, Siobhan Murray, Mark Rohweder. Pilot analysis of global ecosystems:Grassland ecosystems. 2000, World Resources Institute:Washington, DC
    [36]Emily Matthews, Richard Payne, Mark Rohweder, Siobhan Murray. Pilot analysis of global ecosystems: Forest ecosystems.2000, World Resources institution:Washington
    [37]马少杰,李正才,周本智,格日乐图,孔维健,安艳飞.北亚热带天然次生林群落演替对土壤有机碳的影响.林业科学研究,2010,23(06):845-849.
    [38]黄从德,张健,杨万勤,张国庆,王永军.四川森林土壤有机碳储量的空间分布特征.生态学报,2009,29(03):1217-1225.
    [39]黄从德,张健,杨万勤,唐宵,张国庆.四川省森林植被碳储量的空间分异特征.生态学报,2009,29(09):5115-5121.
    [40]解宪丽,孙波,周慧珍,李忠佩,李安波.中国土壤有机碳密度和储量的估算与空间分布分析.土壤学报,2004,41(01):35-43.
    [41]王祖华,刘红梅,关庆伟,王晓杰,郝俊鹏,凌宁,石聪.南京城市森林生态系统的碳储量和碳密度.南京林业大学学报(自然科学版),2011,35(04):18-22.
    [42]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报,2001,12(01):13-16.
    [43]刘楠,王玉杰,王毅力,储小院,齐娜,吴云,陈林.重庆缙云山典型林分土壤有机碳密度特征.生态环境学报,2009,18(04):1492-1496.
    [44]Fang Jing-yun, Wang G. Geoff, Liu Guo-hua, Xu Song-ling. Forest biomass of China:an edtimate based on the bilmass-bolume relationship Ecological Applications,1998,8(04):1084-1091.
    [45]李博,杨持,林鹏.生态学.2000,北京:高等教育出版社.
    [46]方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学报,2001,43(09):967-973.
    [47]Zhang Peichang, Shao Guofan, Zhao Guang, Le Master Dennis C., Parker George R., Dunning John B., Li Qinglin. China's Forest Policy for the 21st Century. Science,2000,288(5474):2135-2136.
    [48]王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力.生态学杂志,2000,19(04):518-522.
    [1]Philip B Duffy. NOAA and NASA:Warm Temperatures Continue 2011; Available from: http://globalchange.gov/whats-new/646.
    [2]Martin Parry, Nigel Arnell, Pam Berry, David dodman, Samuel Fankhauser, Chris Hope, Sari Kovats, Robert Nicholls, David Satterthwaite, Richard Tiffin, Tim Wheeler. Assessing the costs of adaptation to climate change:A review of the UNFCCC and other recent estimates.2009, Imperial College London (UK):The International Institute for Environment and Development (UK) and the Grantham Institute for Climate Change.
    [3]UNFCCC. Background on the UNFCCC:The international response to climate change.2012; Available from:http://unfccc.int/essential_background/items/6031.php.
    [4]R. K. Dixon, A. M. Solomon, S. Brown, R. A. Houghton, M. C. Trexier, J. Wisniewski. Carbon Pools and Flux of Global Forest Ecosystems. Science,1994,263(5144):185-190.
    [5]Fang Jingyun, Chen An ping, Peng Changhui, Zhao Shuqing, Ci Longjun. Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001,292(5525):2320-2322.
    [6]UNFCCC. CDM Project Cycle.1997; Available from:http://cdm.unfccc.int/Projects/diagram.html.
    [7]李海奎,雷渊才.中国森林植被生物量和碳储量评估.2010,北京:中国林业出版社.
    [8]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报,2001,12(01):13-16.
    [9]冯宗伟,王效科,吴刚.中国森林生态系统的生物量和生产力.1999,北京:科学出版社.
    [10]胡会峰,刘国华.森林管理在全球CO2减排中的作用.应用生态学报,2006,17(04):709-714.
    [11]王鑫,何娟.低碳经济背景下的五个重庆建设.西部论坛,2011,21(03):83-88.
    [12]Gonzalez Patrick, Asner Gregory P., Battles John J., Lefsky Michael A., Waring Kristen M., Palace Michael. Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California. Remote Sensing of Environment,2010,114(07):1561-1575.
    [13]Broadbent Eben N., Asner Gregory P., Pena-Claros Marielos, Palace Michael, Soriano Marlene. Spatial partitioning of biomass and diversity in a lowland Bolivian forest:Linking field and remote sensing measurements. Forest Ecology and Management,2008,255(07):2602-2616.
    [14]Siart Christoph, Bubenzer Olaf, Eitel Bernhard. Combining digital elevation data (SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for geomorphological mapping:A multi-component case study on Mediterranean karst in Central Crete. Geomorphology,2009,112(01-02):106-121.
    [15]Boyd D. S., Foody G. M. An overview of recent remote sensing and GIS based research in ecological informatics. Ecological Informatics,2011,6(01):25-36.
    [16]张慧芳,张晓丽,黄瑜.遥感技术支持下的森林生物量研究进展.世界林业研究,2007,20(04):30-34.
    [17]李崇贵,赵宪文,李春干.森林蓄积量遥感估测理论与实现.2006,北京:科学出版社.
    [18]方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学报,2001,43(09):967-973.
    [19]方精云,郭兆迪,朴世龙,陈安平.1981-2000年中国陆地植被碳汇的估算.中国科学(D辑:地球科学),2007,37(06):1-9.
    [20]方精云,杨元合,马文红,安尼瓦尔·买买提,沈海花.中国草地生态系统碳库及其变化.中国科学:生命科学,2010,40(07):566-576.
    [21]刘世荣,王晖,栾军伟.中国森林土壤碳储量与土壤碳过程研究进展.生态学报,2011,31(19):5437-5448.
    [22]王效科,冯宗炜.森林生态系统中生物量和碳储量的研究历史.1995,北京:中国科学与技术出版社.
    [23]胡会峰,王志恒,刘国华,傅伯杰.中国主要灌从植被碳储量.植物生态学报,2006,30(04):539-544.
    [24]曾立雄,王鹏程,肖文发,万睿,黄志霖,潘磊.三峡库区植被生物量和生产力的估算及分布格局.生态学报,2008,28(8):3805-3815.
    [25]朴世龙,方精云,贺金生,肖玉.中国草地植被生物量及其空间分布格局.植物生态学报,2007,28(04):491-498.
    [26]张剑,罗贵生,王小国,朱波.长江上游地区农作物碳储量估算及固碳潜力分析.西南农业学报,2009,22(02):402-408.
    [27]黄从德,张健,杨万勤,唐宵.四川森林植被碳储量的时空变化.应用生态学报,2007,18(12):2687-2692.
    [28]黄从德,张健,杨万勤,唐宵,张国庆.四川省森林植被碳储量的空间分异特征.生态学报,2009,29(09):5115-5121.
    [29]黄从德,张健,杨万勤,唐宵,赵安玖.四川省及重庆地区森林植被碳储量动态.生态学报,2008,28(03):966-975.
    [30]吕超群,孙书存.陆地生态系统碳密度格局研究概述.植物生态学报,2004,28(05):692-703.
    [31]Dong Jiarui, Kaufmann Robert K., Myneni Ranga B., Tucker Compton J., Kauppi Pekka E., Liski Jari, Buermann Wolfgang, Alexeyev V., Hughes Malcolm K. Remote sensing estimates of boreal and temperate forest woody biomass:carbon pools, sources, and sinks. Remote Sensing of Environment,2003, 84(03):393-410.
    [32]Cao Mingkui, Woodward F. IaN. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology,1998,4(02):185-198.
    [33]Houghton R. A., Skole D. L., Nobre Carlos A., Hackler J. L., Lawrence K. T., Chomentowsk W. H. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature,2000,403:301-304.
    [34]李海奎,雷渊才,曾伟生.基于森林清查资料的中国森林植被碳储量.林业科学,2011,47(07):7-12.
    中国西部环境与生态科学数据中心,Environmental & Ecological Science Data Center for West China, National Natural Science Foundation of China, http://westdc.westgis.ac.cn

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700