用户名: 密码: 验证码:
高真空多层绝热低温容器完全真空丧失实验及传热机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高真空多层绝热低温容器发生突然、完全的真空丧失(下称“低温容器真空丧失”),是其在使用过程中遇到的一种极端工况。发生该类事故后,其绝热夹层内部的传热过程复杂,对低温液体贮存的影响也非常大。以往针对低温容器发生真空丧失事故后的研究大多是验证设备的安全性与可靠性,研究结果的通用性较差,难以推广应用;同时以往研究的重点集中在低温容器真空丧失后宏观量(容器的蒸发率、漏热量、升压速度等)的获取上,对其内在传热机理的分析与研究很少。为了全面了解发生完全真空丧失事故对高真空多层绝热低温容器绝热夹层绝热及低温液体贮存过程的影响规律,本论文对这一可能引发重大安全事故的极限工况采用实验研究与理论分析、数值模拟相结合的方法进行更系统、更深入的研究,主要完成了以下研究内容:
     (1)提出了低温容器真空丧失后绝热夹层的非冷凝逐层传热计算模型。全面讨论了可能影响低温容器绝热夹层传热的各项参数对其真空丧失后绝热夹层传热造成的影响。结果表明,低温容器外筒体壁面温度、绝热材料层数、破空气体性质以及绝热材料包扎密度都是影响其完全真空丧失后绝热夹层传热的关键因素;间隔物导热系数对低温容器真空丧失后绝热夹层传热的影响较小;低温容器的高度则对真空丧失后低温容器绝热夹层的传热没有影响。
     (2)实验研究了低温容器初始充满率及绝热材料层数对低温容器真空丧失后绝热夹层传热的影响。结果表明,绝热材料层数对低温容器真空丧失后液相区内筒体外壁面的热流密度有重要影响,而低温容器初始充满率对其却没有显著影响。实验结果与本文建立的传热模型所得到计算结果的变化趋势完全一致,验证了计算模型的正确性。
     (3)实验研究了不凝结气体、可凝结气体、可凝华气体及混合气体分别作为破空介质时,对低温容器真空丧失后绝热夹层传热的影响。结果表明,可凝结气体、可凝华气体及混合气体进入低温容器的绝热夹层后从两个方面影响夹层内的传热:一是气体的凝结和凝华放热使绝热夹层的传热在真空丧失初始阶段急剧增强;二是由凝结和凝华生成的液体和固体附着于容器的内筒体和绝热材料上而加强了真空丧失稳定后的传热。提出了凝结和凝华气体进入低温容器绝热夹层后传热过程中综合导热系数(λcom)的概念,根据实验结果获取了二氧化碳和氧气进入液氮容器绝热夹层后,λcom随时间及绝热材料层数的变化关系式。
     (4)实验研究了低温容器初始充满率及绝热材料层数对其真空丧失后贮存过程的影响。结果表明,低温容器初始充满率和绝热材料层数都是影响低温容器真空丧失后贮存过程的重要因素。结合实验结果对АгафоновИ.М.提出的低温容器升压计算模型进行了拓展,使其适用于较高热流密度(180~220W/m2及280~320W/m2)条件下的低温容器无排放升压过程计算。拓展后的计算模型可以较好的计算出低温容器真空丧失后的升压过程(两者间的最大相对误差低于23%)。
     (5)采用双流体模型对低温容器真空丧失后贮存过程中的液体流动及温度分层现象进行了数值模拟。利用该模型获得的计算结果与实验结果有较好的吻合度(两者间的最大相对误差低于3%),能够较为准确的描述低温容器真空丧失后贮存介质的瞬时流动及温度分层现象,弥补了实验测量技术的不足,为更深入的研究低温容器真空丧失后液体的流动传热过程提供了新的方法和手段。
The sudden, catastrophic loss of insulating vacuum (SCLIV) is one of the most extremely severe conditions that may be encountered during the using process of a HVMLI cryogenic tank. When it occurs, heat transfer across the insulation jacket is very complicated and has significant effects on the thermal performance of the tank. Previous studies focused mainly on the security and reliability of SCLIV cryogenic tanks, and their conclusions were poor in universality and had little practical value in the industrial applications. At the same time, most of previous studies were aimed at obtaining macro-scale parameters such as the evaporation rate, heat flux and pressure increase, but focused rarely on the heat-transfer mechanisms. For the purpose of pursuing an in-depth understanding of the heat transfer process across the insulation jacket with SCLIV and its impact on the stored cryogenic liquid, the present study takes synthetic methods including experimental measurements, theoretical analyses and numerical simulations to investigate HVMLI cryogenic tanks with SCLIV. The main research activities include:
     (1) A heat transfer model is proposed for heat transfer analysis of HVMLI cryogenic tank with SCLIV. Some important parameters affecting heat transfer across the insulation jacket are comprehensively discussed. The results show that the outer wall temperature, the number of insulating layers, the leaking gas and the package density of the insulating layers are key factors affecting heat transfer across insulation jacket after SCLIV. The thermal conductivity of spacer mateials has little effect on the heat transfer process and the height of the tank has no visible effects on it.
     (2) The effects of the initial liquid level and the insulation layer number on the HVMLI cryogenic tank with SCLIV are experimentally investigated. The results demonstrate that the insulation layer number play an important role in impacting the heat transfer process in the HVMLI cryogenic tank with SCLIV, whereas the initial liquid level rarely affects the heat transfer process. The calculated results using the heat transfer model agree well with the experimental data, which verifies the effectiveness of the model.
     (3) The effects of different gases, including non-condensable gas, condensable gas, sublimated gas and mixed gas on the HVMLI cryogenic tank with SCLIV are experimentally investigated. The results proved that the heat transfer process is significantly affected by two major factors: one is gas condensation and sublimation make heat flux increase sharply at the initial stage of the SCLIV; the other is the liquid or solid adhering to the inner vessel and insulation materials makes the heat transfer enhanced. The composited thermal conductivityλcom has been proposed for the heat transfer process of insulation jacket with condesable and sublimated gases. According to the experimental results from the insulation jacket with carbon dioxide and oxygen, the correlation ofλcom changing with time and the number of insulating layers has been proposed.
     (4) The effects of the initial liquid level and insulation layer number on liquid storage of the HVMLI cryogenic tank with SCLIV are experimentally investigated. The results show that the both factors significantly affect the liquid storage. TheАгафоновИ.М. calculation model has been improved so that it can calculate accurately the pressurization process under high heat flux conditions (180~220W/m2 and 280~320W/m2). The calculated results agree well with the experimental data (the maximum relative error is less than 23%).
     (5) The liquid flow and temperature stratification in the HVMLI cryogenic tank with SCLIV are numerically simulated using the two-fluid model. The predicted results agree well with the experimental data (the maximum relative error is less than 3%), especially for the instantaneous flow of cryogenic liquid and its temperature stratification was described in detail. The simulated results make up for the lack of experimental techniques and provide a new methods and means to the study of the liquid flow and heat transfer after SCLIV deeply.
引文
[1]毕龙生.低温容器应用进展及发展前景(一).真空与低温, 1999, 5(3):125-134.
    [2]毕龙生.低温容器应用进展及发展前景(二).真空与低温, 1999, 5(4) : 187-192.
    [3]毕龙生.低温容器应用进展及发展前景(三).真空与低温, 2000, 6(1) : 1-7.
    [4]汪荣顺.抗强冲击低温储罐研究. [博士论文],上海,上海交通大学, 2001.
    [5]徐烈.低温绝热与贮运技术.北京:机械工业出版社, 1999, 6-8.
    [6]陈国邦,张鹏.低温绝热与传热技术.北京:科学出版社, 2004, 106-113.
    [7]王如竹,汪荣顺.低温系统.上海,上海交通大学出版社, 2000.
    [8]徐烈.我国低温绝热与贮运技术的发展与应用.低温工程, 2001, (2): 1-8.
    [9]符锡理.真空多层绝热液氢容器夹层真空度变化对蒸发率影响的计算.低温与特气,1994, (2): 14-16.
    [10]符锡理.活性碳与5A分子筛的吸附特性及其在真空获得中的作用.低温工程,1994, 77(1):11-16.
    [11]周充,汪荣顺,鲁雪生等.高真空多层绝热的主要影响因素.真空与低温, 1998, 4(1): 5-8.
    [12]吴同文,杨磊,刘大群,郭伊成,章慧华.低温下真空多层绝热材料导热系数的测试.低温与超导, 1996, 24(2):39-40.
    [13]杨磊.高真空多层绝热低温容器真空丧失试验研究[硕士学位论文].上海:上海交通大学, 2008.
    [14]鞠鹏,李祥东,杨磊,汪荣顺.立式低温容器真空丧失热分层现象数值模拟研究.低温与超导, 2008, 36(6): 16-21.
    [15]杨磊,汪荣顺.高真空多层绝热低温容器真空丧失试验研究.压力容器, 2007, 24(11): 1-5.
    [16]娄旭耀,闫军政,邵利军,王巍.低温槽车的安全性设计及其定期检验. 2008'危险品运输国际论坛论文集, 2008.
    [17] http://www.safety.com.cn/anlifx/fileview.asp?title=山西祁县液氮罐车爆炸事故&filename=ns038939.txt
    [18] http://news.163.com/2004w01/12435/2004w01_1074432382823.html
    [19] http://www.119.cn/qxjy/txt/2007-03/14/content_1528441.htm
    [20] http://zjqtw.cngspw.com/aqsg/show.asp?DocID=Y2007M09D24H09m29s51
    [21] http://zjqtw.cngspw.com/aqsg/show.asp?DocID=Y2007M09D06H09m45s17
    [22] http://news.eastday.com/eastday/node81741/node81763/node176882/u1a2507798.html
    [23] http://www.gxsafety.cn/news.aspx?id=1287
    [24] http://www.zjaqzb.gov.cn/doc_show.jsp?id=1355
    [25] http://www.yn.xinhuanet.com/newscenter/2004-01/10/content_1481856.htm
    [26] http://www.sei.sd.cn/fynews/fynews166p.htm
    [27]姚小静,衣粟,韩伟,朱元东.一起焊接绝热气瓶爆炸性质的分析.低温与特气, 2010, 28(1): 44-46+50.
    [28] C.K. Liu, L.G. Naes, A.F. Manikowski, Jr. Catastrophic heat load on a solid hydrogen dewar. Journal of Spacecraft and Rockets, 1986, 23: 428-435.
    [29] Stephen M Harrison. Loss of vacuum experiments on a superfluid helium vessel. IEEE Trans Appl Supercond, 2002, 12 (1): 1343–1346.
    [30] G. Cavallari, I. Gorine, D. Gusewll, R. Stierlin. Pressure protection against vacuum failures on the cryostats for LEP SC cavities. CERN internal note AT-CR/90-09, 1989.
    [31] M. Wiseman, R. Bundy, J.P. Kelley, W. Schneider. CEBAF cryounit loss of vacuum experiment. Applications of cryogenic technology, 1991, 10: 287-303.
    [32] M. Wiseman, K. Crawford, M. Drury, K. Jordan, J. Preble, Q. Saulter, W. Schneider. Loss of cavity vacuum experiment at CEBAF. Advances in cryogenic engineering, 1994, 39: 997-1003.
    [33] K.C. Wu, D.P. Brown, P.J. Sondericker, D. Zantopp. An experimental study of catastrophic loss of vacuum for RHIC DRD-009 MAGCOOL. RHIC Project, Tech. Note AD/RHIC/RD-50, 1992.
    [34] K.C. Wu, D.P. Brown, J. Sondericker, D. Zantopp. An experimental study using helium to produce a catastrophic loss of vacuum in a RHIC Dipole magnet cryostat. RHIC Project, Tech. Note AD/RHIC/RD-54, 1993.
    [35] P. Lebrun, B. Szeless, L. Tavian, L.R. Williams. Experimental investigation of accidental loss of insulation vacuum in an LHC prototype dipole cryostat. Advances in cryogenic engineering, 1996, 41: 799-804.
    [36] L.X. Jia et al. Cryogenic transient heat transfer in the g-2 cryostats at thermal insulating vacuum loss. Advances in cryogenic engineering, 1998, 43: 621.
    [37] A.V. Belonogov, O.K. Tabunshchikova, V.L. Morgunov. Heat transfer with a breakdown of the insulating vacuum in vessels with cryogenic liquids, Chem Petrol Eng, 1978, 14(3): 243–245.
    [38] W. Lehmann, G. Zahn. Safety aspects for LHe cryostats and LHe transport containers. Advances in cryogenic engineering, 1978, 23: 569-579.
    [39] V.D. Bartenev, V.I. Datskov, Y.A. Shishov, A.G.Zel’dovich. Study of the processes of insulation vacuum failure in helium cryostats. Cryogenics, 1986, 26: 293-296.
    [40] J.M. Jurns, G.M. Pease, R.R. Tison, R.J. Sprafka, R.F. Nigro. Testing of a buried LNG tank. Advances in cryogenic engineering, 1998, 43: 1215-1221.
    [41] M.A. Green. Heat transfer through a multilayer insulation system as a function of pressure in the cryostat vacuum space. Advances in cryogenic engineering, 1998, 43: 1313-1318.
    [42] J.A. Demko, R.C. Duckworth, M. Roden, M. Gouge. Testing of vacuum insulated flexible line with flowing liquid nitrogen during the loss of insulating vacuum, Advances in cryogenic engineering, 2008, 53: 160-167.
    [43]沈飚,喻力弘,张鹏,王如竹.真空丧失条件下液氦容器安全性试验.低温与超导, 2007, 35(3): 193-196.
    [44] S. Gursu, S.A. Sherif, T.N. Veziroglu, J.W. Sheffield.Analysis and optimization of thermal stratification and self pressurization effects in liquid hydrogen storage systems. Part 1: model development. Journal of Energy Resource Technology, 1993, 115: 221–227.
    [45]王晶晶,马晓茜.热侵袭下液化天然气储罐升压的突变机理.安全与环境学报.2006, 6(3): 9-12.
    [46] M. Seo, S. Jeong. Analysis of self-pressurization phenomenon of cryogenic fluid storage tank with thermal diffusion model. Cryogenics, 2010.
    [47] Q.S. Chen, J. Wegrzyn, V. Prasad. Analysis of temperature and pressure changes in lique?ed natural gas (LNG) cryogenic tanks. Cryogenics, 2002, 44(10): 701-709.
    [48] G.F. Gary, L.F. Alfredo, C. Frank. CFD Modeling of Helium Pressurant Effects on Cryogenic Tank Pressure Rise Rates in Normal Gravity. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 8-11 July 2007, Cincinnati, Ohio.
    [49] V. Ahuja et al. Computational Analyses of Pressurization in Cryogenic Tanks. 44rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 21-23 July 2008, Hartford, CT.
    [50] A. Hofmann. Determination of the pressurising period for stored cryogenic fluids. Cryogenics, 2006, 46(11): 825–830.
    [51] A.O. William. Experimental and analytical investigation of interfacial heat and mass transfer in a pressurized tank containing liquid hydrogen. National aeronautica and space administration.
    [52] S.P. Kumar et al. I?nuence of surface evaporation on strati?cation in liquid hydrogen tanks of different aspect ratios. International Journal of Hydrogen Energy, 2007, 32(12): 1954– 1960.
    [53] S. BATES et al. Modelling the behaviour of stratified liquid natural gas in storage tanks: a study of the rollover phenomenon. International Journal of Heat and Mass Transfer, 1997, 40(8): 1875-1884.
    [54] C. John. Normal gravity self-pressurization of 9-INCH-(23 cm) diameter spherical liquid hydrogen tankage. National aeronaut ICs and space administration.
    [55] S. Barsi, M. Kassemi. Numerical and experimental comparisons of the self-pressurizationbehavior of an LH2 tank in normal gravity. Cryogenics, 2008, 48(3-4): 122–129.
    [56] Seyed Ali Jazayeri et al. Numerical Comparison of Thermal Stratification due Natural Convection in Densified LOX and LN2 Tanks. American Journal of Applied Sciences, 2008, 5(12): 1773-1779.
    [57] J.A. Barclay et al. Pressure build-up in LNG and LH2 vehicular cryogenic storage tanks. Adcances in Cryogenic Engineering Transactions of the Cryogenic Engineering Conference-CEC, 49: 41-47.
    [58] N.T. Van Dresar. Self-pressurization of a flightweight liquid hydrogen tank: effects of fill level at low wall heat flux. NASA Technical Memorandum 105411.
    [59] M.M. Hasan. Self-Pressurization of a Flightweight Liquid Hydrogen Storage Tank Subjected to Low Heat Flux. NASA Technical Memorandum 1.3804.
    [60] Sidney C. Huntley. Temperature-pressure-time relations in a closed cryogenic container. Advances in cryogenic engineering, 1960, 5: 54-62.
    [61] Edward Matulevicius. Thermal stratification in enclosed fluids due to natural convection. NASA Technical Memorandum.
    [62] A.E. Germeles. A model for LNG tank rollover. Advances in cryogenic engineering, 1975, 21: 326-336.
    [63] Zh.A. Suprunova et al. Regime of uniform heating of liquid phase during static storage of liquefied natural gas. Advances in Cryogenic Engineering, 1988, 43: 1223-1229.
    [64] T.E. Bailey, R.F. Fearn. Analytical and experimental determination of liquid hydrogen temperature stratification. Advances in Cryogenic Engineering, 1964, 9: 254-264.
    [65] J.W. Tatom et al. Analysis of thermal stratification of liquid hydrogen in rocket propellant tanks. Advances in Cryogenic Engineering, 1964, 9: 265-272.
    [66] A.F. Schmidt et al. An experimental study concerning the pressurization and stratification of liquid hydrogen. Advances in Cryogenic Engineering, 1960, 5: 265-272.
    [67] L.B. EVANS et al. Reduction of Thermal Stratification by Non-uniform all Heating. AIChE Journal, 1971, 17(3): 752-753.
    [68] J. Fesmire, S. Augustynowicz, C. Darve. Performance characterization of perforated multilayer insulation blankets. Proceedings of the nineteenth international cryogenic; 2002: 843–846.
    [69] http://kbs.cnki.net/forums/19761/ShowThread.aspx
    [70] http://wenku.baidu.com/view/fccc97791711cc7931b716df.html
    [71] J.A.Clark. Cryogenic heat transfer. Advances in Heat Transfer, 1969, 5: 325-517.
    [72]杨世铭,陶文铨.《传热学》第三版.北京,高等教育出版社, 2003.
    [73]徐烈等.低温真空技术.北京,机械工业出版社, 2007.
    [74] F.P. Incropera, D.P. Dewitt. Introduction to heat transfer. 3rd Ed. New York: John Wiley& Sons, 1996.
    [75] J.P. Holman. Heat transfer. 8th Ed. New York: McGraw-Hill Companies, 1997.
    [76]陈国邦,黄永华,包锐.低温流体热物理性质.北京:国防工业出版社, 2006.
    [77] Y. Mori, W. Nakayama. Secondary flow and enhanced heat transfer in rotating pipers and ducts. Heat and mass transfer in rotating machinery (A86-24451 09-34). Washington, DC, Hemisphere Publishing Corp., 1984: 3-24.
    [78]王慧,曾令可,吴建青.管道保温结构的计算机模拟与优化,工业炉, 2002, 24(1): 52-54.
    [79] J. P.霍尔曼著,马庆芳等译.传热学.北京,人民教育出版社, 1979.
    [80] Q.S. Shu, R.W. Fast, H.L. Hart. An experimental study of heat transfer in multilayer insulation systems from room temperature to 77k. Fermi National Accelerator Laboratory, 1985.
    [81] Q.S. Shut, R.W. Fast, H.L. Hart. Heat flux from 277 to 77 K through a few layers of multilayer insulation. Cryogenics, 1986, 26: 671-677.
    [82]赵晓如.通过277—77K低层数多层绝热的热流.低温与超导, 1990, 18(2): 11-16.
    [83]朱昌伟,马国光,林燕红,张燃.中小型LNG储罐的高真空多层绝热结构及影响因素.石油规划设计, 2008, 19(1): 41-44.
    [84]李鹏,程惠尔.空间屏打孔多层隔热材料热计算模型.低温技术, 2005, 34(2): 75-80.
    [85]江经善.多层隔热材料及其在航天器上的应用.宇航材料工艺, 2000, 30(4): 17-26.
    [86]张建可.多层绝热的间隔材料有效低温热导率测试研究.真空与低温, 2007, 13(1):38-41.
    [87]孙培杰,吴静怡,张鹏,徐烈.层间稀薄气体传热对多层绝热材料性能的影响分析.低温与超导, 2008, 36(9), 11-18
    [88] Bapat, S., Narayankhedkar, K., and Lukose, T.. Experimental investigations of multilayer insulation. Cryogenics, 1990, 30(8): 711-719
    [89]王文华.液氮冷阱在低温贮槽中的应用.杭氧科技, 1997, 3: 1-3.
    [90]魏蔚,汪荣顺.高真空多层绝热被的性能及其量热器的试验研究.低温与超导, 2007, 35(1): 21-23.
    [91]魏蔚,汪荣顺.多层绝热被性能测试及在LNG罐箱中的应用.天然气工业, 2007, 27(6): 109-111.
    [92]顾祥红,孟繁炯.凝华结霜霜层导热系数理论分析.工程热物理学报, 2000, 21(3): 354-358.
    [93]顾祥红,孔维秀.凝华结霜物理模型研究进展.大连大学学报, 1999, 20(6): 34-39.
    [94]顾祥红,李晓颖.凝华结霜现象的基本传热传质规律.洛阳大学学报, 1999, 14(4): 35-39.
    [95]杨晓西,叶国兴,才建东,邓颂九.平板上凝华过程传热传质分析研究.高校化学工程学报, 1992, 6(3): 233-242.
    [96]孟萦炯,吕晓光,高万功,黄德康.强迫对流凝华结霜的实验研究.大连海运学院学报, 1987, 13(3): 1-7.
    [97]孟繁炯,潘延龄.霜层结构模型及凝华结霜传热传质.流体机械, 1987, 15(2): 54-60.
    [98]舒宏纪,刘惠枝,李恒国.自然对流条件下冷表面状况对凝华结霜影响的实验研究.大连海运学院学报, 1985, 11(8): 53-62.
    [99] R.I.V. Arnett, R.O. Voth. A computer program for the calculation of thermal stratification and self-pressurization in a liquid hydrogen tank. Nasa Contractor Nasa Report, 1972.
    [100] R .W. Arnetta, D.R. Millhiser. A method for analyzing thermal stratification and self pressurization in a fluid coxtainer. National Bureau Of Standards Report, 1965.
    [101] L . Manalo. A numerical study of thermal stratification due to transient natural convection in densified liquid propellant tanks[PHD]. 2003.
    [102] J. H. Robbins, A.C. Rogers. An analysis on predicting thermal stratification in liquid hydrogen. J. Spacecraft, 1966, 3(1): 40-46
    [103] J. H. Chin, J.O. Donaldson, L.W. Gallagher, E.Y. Harper, S.E. Hurd, H.M. Satterlee. Analytical and experimental study of liquid orientation and stratification in standard and reduced gravity fields. Launch and Entry Thermodynamics, 1964.
    [104] S. E. Hurd, M.P. Hollister, J.H. Chin, H.M. Satterlee, E.Y. Harper. Analytical and experimental study of stratification and liquid-ullage coupling and low gravity interface stability. Launchand EntryThermodynamics.
    [105] J. H. Chin, E.Y. Harper, F.L. Hines, S.E. Hurd, G..C. Vliet. Analytical and experimental study of stratification and liquid-ullage coupling. Launchand Entry Thermodynamics.
    [106] R . Kandasamy, K. Periasamy, K.K.S. Prabhu. Chemical reaction, heat and mass transfer on MHD flow over a vertical stretching surface with heat source and thermal stratification effects. International Journal of Heat and Mass Transfer, 2005, 48(21-22): 4557–4561.
    [107] A .I. Saet, V.A. Tatarchenko. Density stratification in a liquid during temperature changes. Journal of Applied Mechanics and Technical Physics, 1970, 11(2): 336-337.
    [108] H .C. Ji, S.H. Schwartz, T.N. Lovrich, J.I. Hochstein, L.A. Holmes. Experimental verification of scaling parameters for thermal stratification. Journal Of Thermophysics And Heat Transfer, 1992, 6(3): 522-531.
    [109] H . Merte, J.A. Clark, H.Z. Barakat. Finite difference solution of stratification and pressure rise in containers. Heat Transfer Laboratory, University of Michigan, Tech Report No. 4; 1968.
    [110] A . Bouhdjar, A. Harhad, B. Benyoucef, O. Guerri. Influence of fluid properties, flow rate and aspect ratios on stratification in a cylindrical cavity. 11th annual conference of the computational fluid dynamics society of Canada, 2003, Vancouver, Canada.
    [111] S. P. Kumar, B.V.S.S.S. Prasad, G. Venkatarathnam, K. Ramamurthi, S.S. Murthy. Influence of surface evaporation on stratification in liquid hydrogen tanks of different aspect ratios. International Journal of Hydrogen Energy, 2007, 32(12): 1954– 1960.
    [112] W .S. Lin, Y.W. Gong, T. Gao, A. Gu, X.S. Lu. Experimental studies on the thermal stratification and its influence on BLEVEs. Experimental Thermal and Fluid Science, 2010, 34(7): 972–978.
    [113] S. G. Cherkasov. Natural convection and temperature stratification in a cryogenic fuel tank in conditions of microgravity. Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 1994, 5: 142-149.
    [114] A . Bouhdjar, A. Harhad. Numerical analysis of transient mixed convection flow in storage tank: influence of fluid properties and aspect ratios on stratification. Renewable Energy, 2002, 25: 555–567.
    [115] J. Navickas. Prediction of a liquid tank thermal stratification by a finite difference computing method. AIAA, 1988.
    [116] S. P. Das, S. Chakraborty, P. Dutta. Studies on thermal stratification phenomenon in LH2 storage vessels. Heat Transfer Engineering, 2004, 25(4):54–66.
    [117] M .C. Kim, S. Kim. The effects of stable thermal stratification on the onset of double-diffusive convection. Int. J. Heat Mass Transfer, 2002, 29(4):469-478.
    [118] S. Kefeng, W.Q. LU. The stratification phenomena in the thermal and solutal fields of double-diffusive convection in a circular cylinder. Chinese Science Bulletin, 2006, 51(6): 747-754.
    [119] J. Tuttle, M.J. DiPirro, P.J. Shirron. Thermal stratification of liquid helium in the shoot dewars. Cryogenics, 1994, 34(5): 369-375.
    [120]尼.瓦.费林,亚.波.布拉诺夫.液体低温系统.赵运生译.北京:《低温工程》编辑部, 1993, 32-38.
    [121]魏蔚,汪荣顺.漏热不均匀度对低温储运容器无损贮存时间的影响分析.第七届全国低温与制冷工程大会会议论文集.昆明: 2005: 289-294.
    [122] G .C. Vliet. Stratification with bottom heating. J.Spacecraft, 1966, 3(7): 1142-1145.
    [123] M .R. Granziera, M.S. Kazimi. A two dimensional, two fluid model for sodium boiling in lmfbr fuel assemblies.
    [124] P. C. Huang, J. Heberlein, E. Pfender. A two-fluid model of turbulence for a thermal. Plasma Jet Plasma Chemistry and Plasma Processing, 1995, 5(1): 25-47.
    [125] Y .M. Shen, C.O. Ng, A.T. Chwang. A two-fluid model of turbulent two-phase flow for simulating turbulent stratified flows. Ocean Engineering, 2003, (30): 153–161.
    [126] F. Wercheng. A two fluid model of turbulence and its modifications. Scientia Sinica, 1988, 88-90.
    [127] D .B. Spalding. The two-fluid model of turbulence applied to combustion phenomena. AIAA Journal, 1984, 24(6): 876-885.
    [128] G .H. Yeoh, J.Y. Tu. Two-fluid and population balance models for subcooled boiling flow. Applied Mathematical Modelling, 2006, (30): 1370–1391.
    [129] O .B. Spalding. Two-fluid models of turbulence. NASA Langley Workshop On Theoretical Aprroaches To Turbulence, 1985.
    [130]王志国.螺旋管气液两相流数值模拟[硕士学位论文].北京:中国石油大学, 2007.
    [131]张宏伟.掺气水流双流体模型数值模拟研究[硕士学位论文].西安:西安理工大学, 2002.
    [132]赵枚.动载作用下管内流动水沸腾传热实验研究[硕士学位论文].南京:南京航空航天大学, 2008.
    [133]宋月兰.多层桨搅拌槽内气一液两相流的数值模拟[硕士学位论文].北京:北京化工大学, 2006.
    [134]李强.二相流双流体模型的数值求解方法研究[硕士学位论文].西安:西北工业大学, 2002.
    [135]陈家军,奚成刚,王金生.非饱和带水-气二相流数值模拟研究进展.水科学进展, 2000, 11(2): 208-214.
    [136]刘彦.固液两相流动边界层的数学模型及流场计算[硕士学位论文].兰州:甘肃工业大学, 2000.
    [137]秦武.固液两相流离心泵内部流场的数值模拟研究[硕士学位论文].长沙:长沙理工大学, 2009.
    [138]韩炜.管道气液两相流动技术研究[博士学位论文].南充:西南石油学院, 2004.
    [139]侯拴弟.搅拌槽内三维流场的实验研究及数值模拟[博士学位论文].北京:北京化工大学, 1997.
    [140]温文.搅拌釜式反应器计算流体力学模拟[硕士学位论文].无锡:江南大学, 2008.
    [141]李祥东,周丽敏,汪荣顺,杨燕华.液氮过冷流动沸腾数值模拟中的双流体模型.力学进展, 2009, 39(2): 203-216.
    [142]李祥东,汪荣顺,石玉美.液氮垂直流动沸腾的双流体模型分析.上海交通大学学报, 2006, 40(2): 257-261.
    [143]李祥东,周丽敏,汪荣顺,杨燕华.基于群体平衡原理的双流体模型在液氮流动沸腾数值计算中的应用.上海交通大学学报, 2008,42(8): 1282-1286.
    [144]李祥东,汪荣顺,顾安忠.低温液体流动沸腾数值计算中的相间传热模型.低温与超导, 2005, 33(2): 26-34.
    [145]李祥东,汪荣顺,顾安忠.低温液体流动沸腾数值计算中的动量模拟.低温与超导, 2004, 32(4): 53-58.
    [146]李祥东,汪荣顺,石玉美.低温液体核态流动沸腾传热的机理模型.低温技术, 2006, 34(3): 168-175.
    [147]李祥东,汪荣顺.低温推进剂弹状汽泡形成过程的数值模拟研究.哈尔滨工程大学学报, 2009, 30(2): 198-203.
    [148]李祥东,汪荣顺,顾安忠.低温气液两相流研究中的CFD技术.低温与超导, 2004, 32(3): 34-38.
    [149]李祥东,汪荣顺,黄荣国,石玉美.垂直圆管内液氮流动沸腾的理论模型及数值模拟.化工学报, 2006, 57(3): 491-497.
    [150]李祥东,汪荣顺,石玉美.垂直通道内低温液体过冷流动沸腾传热的数值预测模型.低温工程, 2006, (1): 6-13.
    [151] M . Ishi, T. Hibiki, Thermo-fluid Dynamics of Two-phase Flow, Springer, New York, 2006.
    [152] X .D. Li, R.S. Wang, R.G. Huang, Y.M. Shi. Numerical and experimental investigation of pressure drop characteristics during upward boiling two-phase flow of nitrogen. International journal of heat and mass transfer, 2007, 50, 1971-1981.
    [153] M . Ishii, N. Zuber. Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE Journal, 25(5), 1979: 843.
    [154] N . Kurul, M.Z. Podowski. Multidimensional effects in forced convection subcooled boiling. Heat Transfer, Proceedings of the International Heat Transfer Conference, 1990: 21-26.
    [155] A EA Technology plc. CFX-4.3 Solver Manual, Harwell, United Kingdom, 1999.
    [156] A . Tomiyama. Struggle with computational bubble dynamics. In: 3rd International Conference on Multiphase Flow. Lyon, France, 1998.
    [157] D .A. Drew, R.T. Jr. Lahey. The virtual mass and lift force on a sphere in rotating and straining inviscid flow. International Journal of Multiphase Flow, 13 (1), 1987: 113-121.
    [158] F. J. Moraga, F.J. Bonetto, R.T. Lahey. Lateral forces on spheres in turbulent uniform shear flow. International Journal of Multiphase Flow, 1999, 25(6-7): 1321-1372.
    [159] C .G. Speziale. Turbulence modeling for time-dependent RANS and VLES - A review. AIAA Journal, 1997, 1071-1091.
    [160] Y . Sato, K. Sekoguchi. Liquid velocity distribution in two-phase bubble flow. International Journal of Multiphase Flow, 1975, 2(1): 79-95.
    [161] N . Basu, G.R. Warrier, V.K. Ghir. Wall heat flux partitioning during subcooled flow boiling: Part1-Model development. Journal of heat transfer, 2005, 127: 131-140.
    [162] X .D. Li, G.F. Xie, R.S. Wang. Experimental and numerical investigations of fluid flow and heat transfer in a cryogenic tank at loss of vacuum. Heat and mass transfer, 2010, 46: 395-404.
    [163] Y u.A. Kirichenko, M.L. Dolgoy, N.M. Levchenko, et al. A study of the boiling of cryogenic liquids. Heat Transfer– Soviet Research, 1976, 8(4): 63-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700