用户名: 密码: 验证码:
改性TiO_2可见光催化剂的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化氧化是一种绿色高效的高级氧化技术,具有分解水制氢、光催化合成和光降解有机污染物等作用,在解决温室效应、能源问题和环境问题方面有重要的应用前景。TiO2因其具有活性高、稳定性好、安全无毒等优点而被作为一种常用的光催化剂。但是TiO2对光的吸收仅限于紫外光区(Eg=3.2eV),对于可见光或太阳光的吸收利用率很低,提高光能利用效率的关键在于突破催化剂的禁带宽度,使其响应光谱向可见光扩展。对TiO2的光敏化是延伸其激发波长的一个重要手段。
     本论文针对拓展催化剂的可见光吸收性能,利用工业有机颜料和石墨烯(GE)对TiO2进行了改性并对改性后的催化剂的可见光催化性能进行了研究。另外,本文还对苯酚选择性氧化和羟基化的实验条件进行了探讨。论文主要由以下三部分内容:
     (1)工业有机颜料敏化改性TiO2复合催化剂降解有机污染物研究
     通过溶剂热法制备了具有可见光响应的BYH3G/TiO2复合催化剂。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT-IR)、紫外可见漫反射光谱(UV-vis DRS)、N2吸附-脱附(BET和BJH)等测试手段对所制备的催化剂进行了表征。分别以罗丹明B(RB)、酸性铬蓝K(ACBK)、甲基橙(MO)等为目标降解物,研究了催化剂在可见光下对有机污染物的光催化降解性能。实验结果表明,颜料的复合有效的拓展了催化剂的可见光吸收性能。在可见光照射下,RB、ACBK、MO的降解率分别为93.5%,94.6%和89.2%,而同样的实验条件下,三种目标降解物的降解率分别为24.8%,34.8%和9.4%;催化剂反复使用四次催化活性没有明显降低,证明复合光催化剂具有很好的稳定性。还分别用颜料红254、颜料红151、颜料红179、酞菁绿G、颜料红122对TiO2进行敏化改性,在降解MO和RB试验中都表现了比纯TiO2更好的可见光降解效率。探讨了制备的光催化剂对有机污染物的降解机理。
     (2)石墨烯/TiO2复合催化剂的制备及其降解有机污染物性能研究
     以商业P25粉(TiO2)和氧化石墨为前驱物,先后在180℃水热和450℃高温下,制得了GE/TiO2复合催化剂。利用XRD、SEM、FT-IR、UV-vis DRS等测试手段对所制备的催化剂进行了表征。
     从吸附能力上,GE/TiO2对RB、MB和MO比改性前的纯TiO2都有所提高,在可见光下,纯TiO2对RB和MB具有一定的降解效果,但是对MO溶液效果却很弱,GE/TiO2的可见光催化性能相对于纯TiO2有了较大提高。而在紫外光照射下降解速率远远高于可见光,在紫外光照射下,光照70min后MO的降解率达到95.6%,60min后RB的降解率达到99.1%,70min后MB的降解率达到99.4%。探讨了GE/TiO2复合催化剂对有机污染物的降解机理。
     (3)苯酚光催化氧化羟基化制备邻苯二酚(CAL)和对苯二酚(HQE)
     分别以纯TiO2、GE/TiO2和BYH3G/TiO2为催化剂对苯酚进行光催化羟基化反应。在可见光照射下仅以BYH3G/TiO2为催化剂时检测到少量的CAL和HQE的生成。在紫外光照射下,GE/TiO2和BYH3G/TiO2均显示出较好的光催化活性和较高羟基化选择性。实验考察了催化剂用量、光照时间和H2O2用量对苯酚光催化羟基化反应的影响。以TiO2为催化剂时,苯酚最高转化率为66.9%,CAL和HQE的收率分别为12.6%和4.6%,反应选择性为25.7%;以GE/TiO2为催化剂时,苯酚的最高转化率为92.1%,CAL和HQE收率分别为19.8%和11.2%,反应选择性为33.6%。以BYH3G/TiO2为催化剂时,苯酚最高的转化率为63.0%,CAL和HQE的收率分别为28.7%和27.6%,反应选择性高达89.3%。从CAL和HQE的高收率的角度考虑,BYH3G/TiO2的羟基化效果最好,GE/TiO2次之,纯TiO2最差。推测了光催化羟基化的反应机理。
Photocatalytic oxidation, one of advanced oxidation technologies, has importantroles to water-splitting for hydrogen production, photocatalytic synthesis and thedegradation of organic contaminants. Photocatalytic oxidation has importantapplication feature in global warming, energy problems and environmental issues, etc.The widely explored TiO2has been accepted as an excellent photocatalyst among thesemiconductors due to its advantages of stability, low toxicity and high activity.However, the large band–gap energy (3.2eV) of TiO2considerably limits theutilization of natural solar light or artificial visible light. Photosensitization isconsidered to be an efficient and general method to modify the photoresponseproperties of TiO2.
     In this thesis, using commercial organic pigments and graphene as modifier tomodify TiO2to expand visible light absorption performance of TiO2. The structuresand property of modified catalyst were studied. There are three main parts in thisthesis:
     (1) TiO2photocatalyst sensitized with commercial organic pigment wasconveniently prepared and characterized by FT-IR, UV-Vis, XRD, SEM and N2adsorption-desorption isotherms. The adsorption capacities and photocatalyticactivities of the new photocatalyst were evaluated by photocatalytic degradation ofseveral kinds of representative pollutants under visible light irradiation. The resultsindicated that the new photocatalyst extends the photoresponse of TiO2from the UVto the visible region. The degradation rates of dyes RB (Rhodamine B), ACBK (AcidChrome Blue K) and MO (Methyl Orange) were24.8%,34.8%and9.4%respectivelyat their initial pH values in a fixed time under visible light irradiation with pure TiO2as the catalyst, while the degradation rates reach up to93.5%,94.6%and89.2%respectively in the present of BYH3G/TiO2(Benzimidazolone Yellow H3G/TiO2)under the same conditions. There was no appreciable loss of photocatalytic activityobserved when the photocatalyst was used four times, which demonstrates excellentstability and recyclability factors. Furthermore, sensitized TiO2with Pigment Red254,Pigment Red151, Pigment Red179, Phthalocyanine Green G, Pigment Red122wereprepared, and they all display better visible light catalytic activity than pure TiO2inthe degradation of MO and RB test under visible light irradiation. The mechanism ofaction was also discussed.
     (2) Graphene/TiO2(GE/TiO2) was prepared by hydrothermal treating of a mixedsuspension of TiO2and graphite oxide. The prepared catalyst was characterized byFT-IR, UV-Vis, XRD and SEM. The adsorption capacity of GE/TiO2for RB、MB(Methlyene Blue) and MO was better than pure TiO2. Pure TiO2has a little bit ofdegradation capacity for RB and MB, but has no degradation capacity for MO, thevisible-light degradation ability of GE/TiO2was better than the pure TiO2. In addition,the degradation rate in the presence of UV light was far better than that of visible light.The degradation rate of MO was95.6%in70min under UV light irradiation, thedegradation rate of RB was99.1%in60min, and the degradation rate of MB was99.4%in70min. The mechanism of action was also discussed.
     (3) Phenol photocatalytic oxidation experiment was carried out under ultravioletand visible light irradiation with the pure TiO2, GE/TiO2and BYH3G/TiO2catalysts.Under visible light irradiation, phenol was relatively stable and only a little catecholwas produced when use BYH3G/TiO2as the catalyst. While under UV-lightirradiation, there were obvious photocatalytic oxidations for phenol, and most phenolwas hydroxylated to pyrocatechol (CAL) and hydroquinone (HQE), others werephotocatalytic oxidized into benzoquinone or other materials. The effects of variousparameters on photocatalytic oxidation of phenol were studied. When using TiO2ascatalyst, the highest conversion of phenol was66.9%, and the yield of CAL and HQEwere12.6%and4.6%respectively, and the selectivity of the reaction was25.7%.Using GE/TiO2as catalyst, the highest conversion of phenol was92.1%, and the yieldof CAL and HQE yield were19.8%and11.2%, the selectivity was33.6%. UsingBYH3G/TiO2as catalyst, the highest conversion of phenol was63%, the yield ofCAL and HQE can reach28.7%and27.6%respectively, and the selectivity of thereaction was up to89.3%. From high yield of CAL and HQE perspective,BYH3G/TiO2was the best hydroxylation catalyst, the second was GE/TiO2, and theworst was pure TiO2. The mechanism of photocatalysis of the catalysts was inferred.
引文
[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductorelectrode. Nature,1972,238(5358):37-38.
    [2] Carey J H, Lawrence J, Tosine H M. PhotodechloinationofPCB′S in the presenceof titanium dioxide in aqueous suspension. Bull. Environ. Contam. Toxicol.,1976,16(1):697-701.
    [3]Yu J, Zhao X. Effect of surface treatment on the photocatalytic activity andhydrophilic property of the sol-gel derived TiO2thinfilms. Mater. Res. Bull.,2001,36(1-2):67-73.
    [4] Pazy, Hellera. Photo-oxidatively self cleaning transparent titanium dioxide filmson sodalime glass the deleterious effect of sodium contamination and itsprevention. J. Mater. Res.,1997,12(10):2795-2766.
    [5]季彩宏,张萍,韩萍芳等. TiO2膜光催化降解4,4’-二溴联苯的研究.环境工程学报,2009,3(1):72-76.
    [6]陈华军,尹国杰,吴春来.纳米Bi2O3/TiO2复合光催化剂的制备及性能研究.环境工程学报,2008,2(11):1516-1518.
    [7]张金龙,陈锋,何斌.光催化.上海:华东理工大学出版社,2004,1-173.
    [8] Bokhimi X, Morales A, Novaro O. Effect of copper precursor on the stabilizationof titania phases, and the optical properties of Cu/TiO2prepared with the Sol Geltechnique. Chem. Mater.,1997,9(11):2616-2620.
    [9] Bokhimi X, Morales A, Aguilar M, et al. Local order in titania polymorphs. Ini. J.Hydrogen Energy,2001,26(12):1279-1287.
    [10] Goti M, Ivanda M, Sekuli A, et al. Microstructure of nanosized TiO2obtainedby sol-gel synthesis. Mater. Lett.,1996,28(1-3):225-229.
    [11] Hwu Y, Yao Y D, Cheng N F, et al. X-ray absorption of nanocrystal TiO2.Nanostruct. Mater.,1997,9(1-8):355-358.
    [12]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002,25-34.
    [13]邓捷,吴立峰.钛白粉应用手册.北京:化学工业出版社,2005,15-32.
    [14] Koparde V N,Cummings P T. Phase transformations during sintering of titaniananoparticles. ACS nano,2008,2(8):1620-1624.
    [15] Frank S. Heterogeneous photocatalytic oxidation of cyanide and sulfite inaqueous-solutions at Semiconductor Powders. J. Phys. Chem.,1977,81(15):1484-1488.
    [16] Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2solar cells with high photon-to-electron conversion efficiencies. Nature,1998,395(6702):583-585.
    [17] Jia Y X, Han W, Xiong G X. Layer-by-layer assembly of TiO2colloids ontodiatomite to build hierarchical porous materials. J. Colloid Interf. Sci.,2008,323(2):326-331.
    [18] Taoda H. Development of TiO2photocatalysts suitable for practical use and theirapplications in environmental cleanup. Res. Chem. Intermed.,2008,34(4):417-426.
    [19] Bickley I B, Gonzaler C T, Lees J S, et al. A structural investigation of titaniumdioxide photocatalysts. J Solid State Chem,1991,92(2):178-182.
    [20] Tomoko K, Masayoshi H, Kihiko H, et al. Formation of titanium oxide nanotube.Langmuir,1998,14(12):3160-3163.
    [21] Jong H J. Creation of novel helical ribbon and double-layered nanotube TiO2structures using an organogel template. Chem. Mater.,2002,14(4):1445-1447.
    [22] Yu G, Cheng B. Effects of calcination temperature on the microstructures andphotocatalytic activity of titanate nanotubes. J. Mol. Catal. A: Chem,2006,249(12):135-142.
    [23] Contescua C, Contescub A. Oxides and Related Surfaces as Catalyst Supports.London: Taylor&Francis,2010,1-20.
    [24] Zhang X B, Liu X Q, Meng G Y. Sintering kinetics of porous ceramics fromnatural diatomite. J. Am. Ceram. Soc.,2005,88(7):1826-1830.
    [25]俞成林,康勇,赵薇.硅藻土微粒负载纳米TiO2的制备.纳米技术与精密工程,2008,6(4):254-260.
    [26] Zhanqi G, Shaogui Y, Cheng S, et al. Microwave assisted photocatalyticdegradation of pentachlorophenol in aqueous TiO2nanotubes suspension. Sep.Purif. Technol.,2007,58(1):24-31.
    [27] Pushpakanth S, Srinivasan B, Sreedhar B, et al. An in situ approach to preparenanorods of titania–hydroxyapatite (TiO2-HAp) nanocomposite by microwavehydrothermal technique. Mater. Chem. Phys.,2008,107(2-3):492-498.
    [28] Ramakrishnan K N. Powder particle size relationship in microwave synthesisedceramic powders. Mat. Sci. Eng. A-Struct.,1999,259(1):120-125.
    [29] Sharma S. Aravindhan R. Microwave glazing of alumina–titania ceramiccomposite coatings. Mater. Lett.,2001,50(5-6):295-301.
    [30] Adachi M, Murata Y, Okada I, et al. Formation of titania nanotubes andapplications for dye-sensitized solar cells. J. Electrochem. Soc.,2003,150(8):488-493.
    [31] Fisher A C, Peter L M, Ponomarev E A, et al. Intensity dependence of the backreaction and transport of electrons in dye-sensitized nanocrystalline TiO2solarcells. J. Phys. Chem. B,2000,104(5):949-958.
    [32] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications ofsemiconductor photocatalysis. Chem. Rev.,1995,95(1):69-96.
    [33] Honda K, Fujishima A. Photolysis-decomposition of water at surface of anirradiated semiconduction. Nature,1972,37(1):238-245.
    [34]杜作娟,古映莹.水热法合成锐钛矿型纳米二氧化钛.精细化工中间体,2002,32(5):24-25.
    [35] Zhu J, Wang S, Bian Z. Solvothermally controllable synthesis of anatase TiO2nanocrystals with dominant facets and enhanced photocatalytic activity.Crystengcomm,2010,12(7):2219-2224.
    [36] Kim T K, Lee M N, Lee S H, et al. Development of surface coating technologyof TiO2powder and improvement of photocatalytic activity by surfacemodification. Thin Solid Films,2005,475(1-2):171-177.
    [37]孙静,高濂,张青红.制备具有光催化活性的金红石相纳米氧化钛粉体.化学学报,2003,61(1):74-77.
    [38] Sakvador P, Gonzalez M L, Manoz F. Catalytic role of lattice defects in thephotoassisted oxidation of water at (001) n-TiO2Rutile. J. Phys. Chem.,1992,96(25):10349-10353.
    [39] Brus L E. Diffusion-controlled reactions: A variational formula for theoptimum reaction coordinate. J. Chem. Phys.,1983,79(11):5566-5578.
    [40] Bms L E. Electron–electron and electron‐hole interactions in smallsemiconductor crystallites: The size dependence of the lowest excited electronicstate. J. Chem. Phys.,1984,80(9):4403-4407.
    [41] Mark F. Optical Properties of Solids. Amsterdam: North-Holland,1972,1970,279.
    [42]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2005,220-235.
    [43] Lo S C, Lin C F, Wu C H, et al. Capability of coupled CdSe/TiO2forphotocatalytic degradation of4-chlorphenol. J. Hazard. Mater.,2004,114(1-3):183-190.
    [44] Al-Sayyed G, Oliveira J C, Pichat P. Semiconductor-sensitized photodegradationof4-nitro-phenol in water. Photochem. Photobiol. A: Chem.,1991,58(1):99-114.
    [45] Bla kov A. á, Cs lleová I., Brezová V. Effect of light sources on the phenoldegradation using Pt/TiO2photocatalysts immobilized on glass fibres. Photochem.Photobiol. A: Chem.,1998,113(3):251-256.
    [46] Cao Y, Yang W, Zhang W, et a1. Improved photocatalytic activity of Sn4+dopedTiO2nanoparticulate films prepared by plasma-enhanced chemicalvapordeposition. New J. Chem.,2004,28(2):218-222.
    [47] Bryan J D, Heald S M, Chambers S A, et a1. Strong room-temperatureferromagnetism in Co2+-doped TiO2made from colloidal nanocrystals. J. Am.Chem. Soc.,2004,126(37): l1640-l1647.
    [48] Park H, Vecitis C D, Choi W, et a1. Solar-powered production of molecularhydrogen from water. J. Phys. Chem. C.,2008,112(4):885-889.
    [49] Choi W, Terrain A, Hoffmann M R. The role of metal lon dopants inquantum-sized TiO2: Correlation between photoreactivity and charge carrierrecombination dynamics. J. Phys. Chem.,1994,98(51):13669-13679.
    [50] San N. Photocatalytic degradation of4-nitrophenol in aqueous TiO2suspensions:Theoretical prediction of the intermediates. J. Photochem. Photobio l. A: Chem.,2002,146(3):189-197.
    [51] Asahi R, Morikawa T, Ohwaki K, et a1. Visible-light photocatalysis innitrogen-doped titanium oxides. Science,2001,293(5528):269-271.
    [52] Ohno L, Mitsui T, Matsumura M. Photocatalytic activity of S-doping TiO2photocatalyst under visible light. Chem. Lett.,2003,32(4):364-365.
    [53] Yamaki T, Itoh H, Asai K. Band gap narrowing of titanium dioxide b y sulfurdoping. Appl. Phys. Lett.,2002,81(3):454-456.
    [54] Yu J C, Yu J G, Ho W K, et a1. Effects of F-doping on the photocatalytic activityand microstructures of nanocrystalline TiO2powders. Chem. Mater.,2002,14(9):3808-3816.
    [55] Barborini E, Conti A M, Kholmanov I, et a1. Nanostructured TiO2films with2eV optical gaps. Adv. Mater.,2005, l7(5):1842-1846.
    [56] Khan S V M, AI-Shahry M, lngler W B. Efficient photochemical water splittingby a chemically modified n-TiO2. Science,2002,297(5590):2243-2245.
    [57] Lin L, Kuntz R R. Photocatalytic hydrogenation of acetylene bymolybdenum-sulfur complexes supported on titania. Langmuir,1992,8(2):870-875.
    [58] Konta R, Ishii T, Kato H, et a1. Photocatalytic activities of noble metal ion dopedSrTiO3under visible light irradiation. J. Phys. Chem. B,2004,108(26):8992-8995.
    [59] Sakthivel S,Shankar M V, Palanichamy M,et a1. Enhancement of photocatalyticactivity by metal deposition: Characterisation and photonic efficiency of Pt, Auand Pd deposited on TiO2catalyst. Water Res.,2004,38(11):3001-3008.
    [60] Yu J G, Xiong J F, Cheng B, et al. Fabrication and characterization of Ag-TiO2multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl.Catal. B: Environ.,2005,60(3-4):21l-221.
    [61]王传义,刘春艳,沈涛.半导体光催化剂的表面修饰.高等学校化学学报,1998,19(12):2013-2019.
    [62] Hyung M S, Jae R C, Hoe J H, et a1. Comparison of Ag deposition effects on thephotocatalytic activity of nanoparticulate TiO2under visible and UV lightirradiation. J. Photochem. Photobiol. A,2004,163(1-2):37-44.
    [63] Xu M W, Bao S J, Zhang X G. Enhanced photocatalytic activity of magneticTiO2photocatalyst by silver deposition. Mater. Lett.,2005,59(17):2194-2198.
    [64] Schiaveuo M. Some working principles of heterogeous photocatalysis bysemiconductors. Electrochmical Acta,1993,38(1):1056-1062.
    [65] Limebigler A L, Lu G, Yates J T. Photocatalysis on TiO2surfaces: Principles,mechanisms, and selected results. Chem. Rev.,1995,95(3):735-758.
    [66] Bedja I, Kamat P V. Capped semiconductor colloids. Synthesis andphotoelectrochemical behavior of TiO2capped SnO2nanocrystallites. J. Phys.Chem.,1995,99(22):9182-9188.
    [67] Wu T X, Liu G M, Zhao J C, et al. Photoassisted degradation of dye pollutants. V.self-photosensitized oxidative transformation of rhodamine B under visible lightirradiation in aqueous TiO2dispersions. J. Phys. Chem. B,1998,102(30):5845-5851.
    [68] Chatterjee D, Mahata A. Evidence of superoxide radical formation in thephotodegradation of pesticide on the dye modified TiO2surface using visible light.J. Photochem. Photobiol., A,2004,165(1-3):19-23.
    [69] Chatterjee D, Mahata A. Demineralization of organic pollutants on the dyemodified TiO2semiconductor particulate system using visible light. Appl. Catal.B: Environ.,2001,33(2):119-125.
    [70] Zhao W, Sun Y, Castellano F N. Visible-light induced water detoxificationcatalyzed by PtIIdye sensitized titania. J. Am. Chem. Soc.,2008,130(38):12566-12567.
    [71] Kisch H, Zang L, Lange C, et al. Antonius and D. Meissner, modified,amorphous titania: A hybrid semiconductor for detoxification and currentgeneration by visible light. Angew. Chem., Int. Ed.,1998,37(21):3034-3036.
    [72] Cho Y, Choi W, Lee C H, et al. Visible light-induced degradation of carbontetrachloride on dye-sensitized TiO2. Environ. Sci. Technol.,2001,35(5):966-970.
    [73] Kyung H, Lee J, Choi W. Simultaneous and synergistic conversion of dyes andheavy metal ions in aqueous TiO2suspensions under visible-light illumination.Environ. Sci. Technol.,2005,39(7):2376-2382.
    [74] Bjgnozzi C A, Argazzi R, K1everlaan C J. Molecular and supramolecularsensitization of nanocrystalline wide band-gap semiconductors with mononuclearpolynuclear metal complexes. Chem. Soc. Rev.,2000,29(2):87-96.
    [75]唐培松,王民权,王智宇,等.半导体TiO2光催化剂及其有机光敏化研究进展.材料导报,2003,17(10):33-36.
    [76] Xu A, Gao Y, Liu H Q. The preparation, characterization and their photocatalyticactivities of rare-earth-doped TiO2nanoparticles. J. Catal.,2002,207(2):15l-157.
    [77] Li F B, Li X Z, Hou M F. Photocatalytic degradation of2-mercaptobenzothiazolein aqueous Lap-TiO2suspension for odor control. Appl. Catal. B: Environ.,2004,48(3):185-194.
    [78] Li F B, Li X Z, Hou M F, et a1. Enhanced photocatalytic activity of Ce3+-TiO2for2-mercaptobenzothiazole degradation in aqueous suspension for odor contro1.Appl. Catal. A: Gen.,2005,285(1-2):181-189.
    [79] Hou M F, Li F B, Li R F, et a1. Mechanisms of enhancement of photo-catalyticproperties and activity of Nd3+-doped TiO2for methyl orange degradation. J. RareEarths,2004,22(4):542-546.
    [80] Choi C H, Juang R S. Photocatalytic degradation of phenol in aqueous solutionsby Pr-doped TiO2nanoparticles. J. Hazard. Mater.,2007,149(1):1-7.
    [81] Ranjit K L, Wiilner I, Bossmann S H, et a1. Lanthanide oxide-doped titaniumdioxide photocatalysts: Novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic Acid. Environ. Sci. Technol.,2001,35(7):1544-1549.
    [82] Zhang Y H, Zhang H X, Xu Y X, et a1. Significant effect of lanthanide dopingon the texture and properties of nanoerystalline mesoporous TiO2. J. Solid StateChem.,2004,177(10):3490-3498.
    [83] Parida K M, Sahu N. Visible light induced photocatalytic activity of rare earthtitania nanoeomposites. J. Mol. Catal. A: Chem.,2008,287(1-2):151-158.
    [84] Stengl V, Bakardjieva S, Murafa N. Preparation and photoeatalytic activity ofrare earth doped TiO2nanoparticles. Mater. Chem. Phys.,2009,114(1):217-226.
    [85] Houlding V H, Gratzel M. Photochemical hydrogen generation by visible light.Sensitization of titanium dioxide particles by surface complexation with8-hydroxyquinoline. J. Am. Chem. Soc.,1983,105(22):5695-5700.
    [86] Ozer R R, Ferry J L. Investigation of the photocatalytic activity ofTiO2-polyoxometalate systems. Environ. Sci. Technol.,2001,35(15):3242-3246.
    [87]孙亚萍,赵靓,等.二氧化钛固载杂多酸催化剂的制备及其光催化性能研究.高等化学工程学报,2006,8(4):554.
    [88] Yoon M, Chang J A, Kim Y, et a1. Heteropoly acid-incorporated TiO2colloidsas novel photocatalytic systems resembling the photosynthetic reaction center. J.Phys. Chem. B.,2001,105(13):2539-2545.
    [89]白波,董岁明,种法国. H3PW12O40/TiO2/SiO2超声光催化降解荧光增白剂废水的研究.化学工程,34(5):61-64.
    [90] Bai B, Zhao J L, Feng X. Preparation and characterization of supportedphotocatalysis: HPIA/TiO2/SiO2composit. Mater. Lett.,2003,57(24-25):3914-3918.
    [91] Marcì G, García-Lópea E, Palmisano L, et a1. Preparation, characterization andphotocatalytic activity of TiO2impregnated with the heteropolyacid H3PW12O40:Photo-assisted degradation of2-propanol in gas–solid regime. Appl. Catal. B:Environ.,2009,90(3-4):497-506.
    [92] Yang Y, Guo Y H, Hu C W, et al. Lacunary Keggin-type polyoxometalates basedmacroporous composite films: Preparation and photocatalytic activity. AppliedCatalysis A: General,2003,252(2):305-314.
    [93] Pruden A L, Ollis D F. Photoassisted heterogeneous catalysis: The degradation oftrichloroethylene in water. J. Catal.,1983,82(2):404-408.
    [94] Michael A. G, Howell S G, Sikdar S K. Photocatalytic selective oxidatioin ofhydrocarbons in the aqueous phase. J. Catal.,1999,183(1):159-162.
    [95] Selli E. Role of humic acids in the TiO2-photocatalyzed degradation oftetrachloroethene in water. Water Res.,1999,33(8):1827-1836.
    [96] Chert D. Photodegradation Kinetics of4-nitrophenol in TiO2suspension. WaterRes.,1998,32(11):3223-3234.
    [97] John C C, Liu J B, David W H, et a1. Photocatalytic oxidation of chlorinatedhydrocarbons in water. Water Res.,1997,31(3):429-438.
    [98]王文保,岳永德.纳米TiO2光催化降解水溶性染料溶液的研究.农村生态环境,1999,15(3):58-60.
    [99]张汝冰.均匀沉淀法制备纳米TiO2及其在环保领域的应用.环境化学,1999,18(6):579-583.
    [100]沈伟韧,贺飞,赵文宽,等. TiO2纳米粉体的制备及光催化活性.武汉大学学报(自然科学版),1999,45(4):389-392.
    [101]孙福侠.纳米TiO2光催化降解苯酚的动力学研究.催化学报,1999,20(3):301-304.
    [102]武正簧.利用半导体薄膜光催化降解苯酚.燃料化学学报,2000,29(4):221-224.
    [103]吴合进,吴鸣.增强型电场协助光催化降解有机污染物.催化学报,2000,2l(5):241-242.
    [104]孙奉玉.二氧化钛表面光学特性与光催化活性的关系.催化学报,1998,19(2):121-125.
    [105]崔斌,杨亚婷. TiO2薄膜光催化降解4-(2-吡啶偶氮)间苯二酚的研究.化学研究与应用,2000,12(4):394-397.
    [106] Cao L X, Gao Z, Steven L, et a1. Photocatalytic oxidation of toluene onnanoscale TiO2catalysts: Studies of deactivation and regeneration. J. Catal.,2000,196(2):253-261.
    [107]陈士夫,程雪丽.空心玻璃微球附载TiO2清除水面漂浮的油层.中国环境科学,1999,19(1):47-50.
    [108]方佑龄,赵文宽,尹少华,等.纳米TiO2在空心陶瓷微球上的固定化及光催化分解辛烷.应用化学,1997,14(2):81-83.
    [109]方佑龄,赵文宽,张国华,等.用浸涂法制备飘浮负载型TiO2薄膜光催化降解辛烷.环境化学,1997,16(5):413-417.
    [110] Yue P L, Khan F, Rizzuti L. Photocatalytic ammonia synthesis in a fluidisedbed reactor. Chem. Eng. Sci.,1983,38(11):1893-1900.
    [111] Massad S K, Hawkins L D, Baker D C. A series of(2S)-2-O-protected-2-hydroxypropanals (L-lactaldehydes) suitable for use asoptically active intermediates. J. Org. Chem.,1983,48(26):5180-5182.
    [112] Tada H, Hyodo M, Kawahara H. Photoinduced polymerization of1,3,5,7-tetramethylcyclotetrasiloxane by titania particles. J. Phys. Chem.,1991,95(24):10185-10188.
    [113] Kominami H, Sugahara H, Hashimoto K. Photocatalytic selective oxidation ofmethanol to methyl formate in gas phase over titanium(IV) oxide in a flow-typereactor. Catal. Commun.,2010,11(5):426-429.
    [114] Ulagappan N, Frei H. Redox chemistry of gaseous reactants inside photoexcitedFeAlPO4molecular sieve. J. Phys. Chem. A,2000,104(3):490-496.
    [115] Yeom Y H, Frei H. Photoactivation of CO in Ti silicalite molecular sieve. J.Phys. Chem. A,2001,105(22):5334-5339.
    [116] Ulagappan N, Frei H. Mechanistic study of CO2photoreduction in Ti silicalitemolecular sieve by FT-IR spectroscopy. J. Phys. Chem. A,2000,104(33):7834-7839.
    [117] Klan P, Literak J, Hajek M. The electrodeless discharge lamp: A prospectivetool for photochemistry. J. Photochem. Photobiol. A: Chem,1999,128(1-3):145-149.
    [118] Regan B, Gr tzel M. A low-cost, high-efficiency solar-cell based ondye-sensitized colloidal TiO2films. Nature,1991,353(6346):737-740.
    [119]张萍,丁世华,周大利.化妆品专用二氧化钛.日用化学工业,1999,(1):58-59.
    [120]沈国良,宁桂玲.纳米二氧化钛在功能纤维中的应用.辽阳石油化工高等专科学校学报,2001,17(4):1-4.
    [121] Kobayakawa K, Sato C, Sato Y, et al. Continuous-flow photoreactor packedwith titanium dioxide immobilized on large silica gel beads to decompose oxalicacid in excess water. J. Photochem. Photobiol. A: Chem,1998,118(1):65-69.
    [122]彭绍琴.玻璃丝负载TiO2光催化剂回收金属银和铜.江西化工,2003,(3):79-81.
    [123] Shang J, Zhao F W, Zhu T, et al. Photocatalytic degradation of rhodamine B bydye-sensitized TiO2under visible-light irradiation. Sci. China Chem.,2011,54(1):167-172.
    [124] Chen X B, Samuel S M. Titanium dioxide nanomaterials: Synthesis, properties,modifications, and applications. Chem. Rev.,2007,107(7):2891-2959.
    [125]何崇智,郗秀荣,孟庆恩,等. X射线衍射实验技术.上海:上海科学技术出版社,1988.
    [126] Jing L Q, Fu H G, Wang B Q, et al. Effects of Sn dopant on the photoinducedcharge property and photocatalytic activity of TiO2nanoparticles. Appl. Catal. B:Environ.2006,62(3-4):282-291.
    [127] Camp P J, Jones A C, Neely R K, et al. Aggregation of copper(II)tetrasulfonated phthalocyanine in aqueous salt solutions. J. Phys. Chem. A,2002,106(44):10725-10732.
    [128]朱光.掺杂稀土离子的纳米TiO2粉末制备及性能研究.西安理工大学硕士学位论文.2008.
    [129] Senthilnathan J, Philip L. Photocatalytic degradation of lindane under UV andvisible light using N-doped TiO2. Chem. Eng. J.,2010,161(1-2):83-92.
    [130] Zhang T Y, Oyama T, Aoshima A, et al. Photooxidative N-demethylation ofmethylene blue in aqueous TiO2dispersions under UV irradiation. J. Photochem.Photobiol. A Chem.,2001,140(2):163-172.
    [131] Zhang T Y, Oyama T, Horikoshi S, et al. Photocatalyzed N-demethylation anddegradation of methylene blue in titania dispersions exposed to concentratedsunlight. Sol. Energy Mater. Sol. Cells,2002,73(3):287-303.
    [132] Zhao W, Chen C C, Li X Z, et al. Photodegradation of sulforhodamine-B dye inplatinized titania dispersions under visible light irradiation: Influence of platinumas a functional co-catalyst. J. Phys. Chem. B,2002,106(19):5022-5028.
    [133] Zhu Y F, Dan Y. Photocatalytic activity of poly(3-hexylthiophene)/titaniumdioxide composites for degrading methyl orange. Sol. Energy Mater. Sol. Cells,2010,94(10):1658-1664.
    [134] Han H, Bai R B. Highly effective buoyant photocatalyst prepared with a novellayered-TiO2configuration on polypropylene fabric and the degradationperformance for methyl orange dye under UV–Vis and Vis lights. Sep. Purif.Technol.,2010,73(2):142-150.
    [135] Zhu H Y, Jiang R, Fu Y Q, et al. Effective photocatalytic decolorization ofmethyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulatedsolar irradiation. Desalination,2012,286:41-48.
    [136] Schmelling D C, Gray K A, Kamat P V. The influence of solution matrix on thephotocatalytic degradation of TNT in TiO2slurries. Water Res.,1997,31(6):1439-1447.
    [137] Mills A, Davies R H, Worsley D. Water purification by semiconductorphotocatalysis. Chem. Soc. Rev.,1993,22:417-425.
    [138] Mills A, Morris S, Davies R. Photomineralisation of4-chlorophenol sensitisedby titanium dioxide: a study of the intermediates. J. Photochem. Photobiol. A:Chem.,1993,70(2):183-191.139] Saha S, Pal A, Kundu S, et al. Photochemical green synthesis of calciumalginate-stabilized Ag and Au nanoparticles and their catalytic application to4-nitrophenol reduction. Langmuir,2010,26(4):2885-2893.
    [140] Fox M A, Dulay M T. Heterogeneous photocatalysis. Chem. Rev.,1993,93(1):341-357.
    [141] Ding Z, Lu G Q, Greenfield P F. Role of the crystallite phase of TiO2inheterogeneous photocatalysis for phenol oxidation in water. J. Phys. Chem. B,2000,104(19):4815-4820.
    [142] Tian G H, Fu H G, Jing L Q, et al. Synthesis and photocatalytic activity of stablenanocrystalline TiO2with high crystallinity and large surface area. J. Hazard.Mater.,2009,161(2-3):1122-1130.
    [143] Chen C C, Ma W H, Zhao J C. Semiconductor-mediated photodegradation ofpollutants under visible-light irradiation. Chem. Soc. Rev.,2010,39:4206-4219.
    [144] Zhao D, Chen C C, Wang Y F, et al. Enhanced photocatalytic degradation ofdye pollutants under visible irradiation on Al(III)-modified TiO2: Structure,interaction, and interfacial electron transfer. Environ. Sci. Technol.,2008,42(1):308-314.
    [145] Thavasi V, Renugopalakrishnan V, Jose R, et al. Controlled electron injectionand transport at materials interfaces in dye sensitized solar cells. Mater. Sci. Eng.R: Reports,2009,63(3):81-99.
    [146] Huang M L, Xu C F, Wu Z B, et al. Photocatalytic discolorization of methylorange solution by Pt modified TiO2loaded on natural zeolite. Dyes Pigm.,2008,77(2):327-334.
    [147] Bourikas K, Stylidi M, Kondarides D I, et al. Adsorption of acid orange7on thesurface of titanium dioxide. Langmuir,2005,21(20):9222-9230.
    [148]刘东志,张天永,王世荣,精细化工产品手册.颜料.北京:化学工业出版社,2002,1.
    [149]沈永嘉.有机颜料-品种与应用.北京:化学工业出版社,2007,459-461.
    [150]同文献[149],228-229.
    [151]同文献[149],345-347.
    [152]同文献[149],321-325.
    [153]同文献[149],330-333.
    [154]同文献[149],361-365
    [155] Ding Z, Lu G Q, Greenfield P F, Role of the crystallite phase of TiO2inheterogeneous photocatalysis for phenol oxidation in water, J. Phys. Chem. B,2000,104(19):4815-4820.
    [156] Tian G H, Fu H G, Jing L G, et al. Synthesis and photocatalytic activity of stablenanocrystalline TiO2with high crystallinity and large surface area. J. Hazard.Mater.,2009,161(2-3):1122-1130.
    [157]司知蠢.可见光激发掺杂TiO2光催化材料制备、结构与性能研究.中南大学硕士论文,2008.
    [158] Eda G, Chhowalla M. Chemically derived graphene oxide: Towards large-areathin-film electronics and optoelectronics. Adv. Mater.,2010,22(22):2392-2415.
    [159] Steurer P, Wissert R, Thomann R, et a1. Functionalized graphenes andthermoplastic nanocomposites based upon expanded graphite oxide. Macromol.Rapid Commun.,2009,30(4-5):316-327.
    [160] Dreyer D R, Park S, Bielawski C W, et a1. The chemistry of graphene oxide.Chem. Soc. Rev.,2010,39:228-240.
    [161] Liang Y Y, Wang H L, Casalongue H S, et a1. TiO2nanocrystals grown ongraphene as advanced photocatalytic hybrid materials. Nano Res.,2010,3(10):701-705.
    [162] Park Y S, Kang S H, Choi W Y. Exfoliated and reorganized graphite oxide ontitania nanoparticles as an auxiliary co-catalyst for photocatalytic solar conversion.Phys. Chem. Chem. Phys.,2011,13(20):9425-9431.
    [163] Zhang H, Lv X J, Li Y M, et a1. P25-graphene composite as a high performancephotocatalyst. ACS Nano,2010,4(1):380-386.
    [164] Zhou K F, Zhu Y H, Yang X L, et a1. Preparation of graphene-TiO2compositeswith enhanced photocatalytic activity. New J. Chem.,2011,35:353-359.
    [165] Nguyen-Phan T D, Pham V H, Shin E W, et a1. The role of graphene oxidecontent on the adsorption-enhanced photocatalysis of titanium dioxide/grapheneoxide composites. Chem. Eng. J.,2011,170(1):226-232.
    [166] Wang Y J, Shi R, Lin J, et a1. Significant photocatalytic enhancement inmethylene blue degradation of TiO2photocatalysts via graphene-like carbon insitu hybridization. Appl. Catal. B: Environ.,2010,100(1-2):179-183.
    [167] Zhang Y H, Tang Z R, Fu X Z. et a1. TiO2-graphene nanocomposites forgasphase photocatalytic degradation of volatile aromatic pollutant: IsTiO2-graphene truly different from other TiO2-carbon composite materials? ACSNano,2010,4(12):7303-7314.
    [168] Zhang Y H, Tang Z R, Fu X Z, et a1. Engineering the unique2D mat ofgraphene to achieve graphene–TiO2nanocomposite for photocatalytic selectivetransformation: What advantage does graphene have over its forebear carbonnanotube? ACS Nano,2011,5(9):7426-7435.
    [169]甘永平,秦怀鹏,黄辉,等.金红石相TiO2-石墨烯复合材料的制备及其光催化性能.物理化学学报,2013,29(2):403-41.
    [170] Szabo T, Berkesi O, Forgo P, et a1. Evolution of surface functional groups in aseries of progressively oxidized graphite oxides. Chem. Mater.,2006,18(11):2740-2749.
    [171] Hummers W S, Offeman R E. Preparation of graphitic oxide. J. Am. Chem.Soc.,1958,80(6):1339-1339.
    [172] Kamiya K, Sakka S, Terada K. Aragonite formation through precipitation ofcalcium carbonate monohydrate. Mater. Res. Bull.,1977,12(11):1095-1102.
    [173] Liu B, Huang Y J, Wen Y, et a1. Highly dispersive {001} facets-exposednanocrystalline TiO2on high quality graphene as a high performancephotocatalyst. J. Mater. Chem.,2012,22:7484-7491.
    [174]魏钟晴,马培华.溶液系统中的晶须生长机理.盐湖研究,1995,3(4):57-65.
    [175]闵乃本.晶体生长的物理基础.上海:上海科学技术出版社,1982,339-84.
    [176] Amjad H E, Alan P N, Hafid A D, et a1. Deposition of anatase on the surface ofactivated carbon. Surf. Coat. Tech.,2004,187(2-3):284-92.
    [177] Liu J H, Yang R, Li S M. Preparation and application of efficie nt TiO2/ACFsphotocatalyst. J. Environ. Sci.,2006,18(5):979-81.
    [178]武正簧,田芳,赵君芙.利用TiO2薄膜光催化降解苯酚.天然气化学杂志,2000,(4):164-174.
    [179]史慧贤.纳米光催化剂的制备及其性能研究.天津大学博士论文,2011,89-91.
    [180] Lin H F, Ravikrishna R, Valsaraj K T. Reusable adsorbents for dilute solutionseparation.6. Batch and continuous reactors for the adsorption and degradation of1,2-dichlorobenzene from dilute wastewater streams using titania as aphotocatalyst. Sep. Purif. Technol.,2002,28(2):87-102.
    [181]仇雁翎.玻璃纤维网上TiO2膜的制备与光催化降解有机物研究.同济大学博士论文,2005.
    [182] Yawalkar1A A, Bhatkhande D S. Solar-assisted photochemical andphotocatalytic degradation of phenol. J. Chem. Technol. Biot.,2001,76(4):363-370.
    [183] Sobczyński A, Duczmal, Zmudziński W. Phenoldestructionbyphotocatalysison TiO2: An attempt to solve the reaction mechanism. J. Mol. Catal. A: Chem.,2004,213(2):225-230.
    [184] Ahmeda S, Rasula M G, Wayde N, et a1. Heterogeneous photocatalyticdegradation of phenols in wastewater: A review on current status anddevelopments. Desalination,2010,261(1-2):3-18.
    [185] Moreiraa J, Serranob B, Ortiz A, et a1. A unified kinetic model for phenolphotocatalytic degradation over TiO2photocatalysts. Chem. Eng. Sci.,2012,78(20):186-203.
    [186]王怡中,胡春,汤鸿霄,等.在TiO2催化剂上苯酚光催化氧化反应研究.环境科学学报,1995,15(4):472-478.
    [187]苗秀生,储少岗,徐晓白,等.黄磷诱发氧化水中苯酚的机理研究.中国环境科学,1996,16(5):373-376.
    [188]荣国斌,苏克曼.大学有机化学基础.上海:华东理工大学出版社,2000,220-240.
    [189]王伟忠.磁场作用下的苯酚光催化氧化反应研究.大连理工大学硕士论文,2004,41-42.
    [190]曹维良,庄绪霞,杨作银,等.苯酚羟基化制备苯二酚反应机理的理论研究.高等学校化学学报,2005,26(3):489-492.
    [191]仇雁翎,陈玲,马俊华,等.光催化氧化苯酚中间产物的分析与降解途径探讨.四川环境,2005,24(4):5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700