用户名: 密码: 验证码:
船舶废气镁基脱硫系统优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了使镁基废气脱硫系统适用于船舶,本文在已建立的镁基船舶废气脱硫试用装置基础上,进行了优化研究。通过实船试验及对比分析,优选脱硫方法,总体确定船舶适用的废气脱硫方法;通过文献调研和理论计算优化设计并改造船舶废气镁基脱硫试用系统;通过统计软件建立镁基-海水法船舶废气脱硫系统的脱硫效率模型,并用于指导船舶废气脱硫系统运行;研究氧化镁高效水化制备氢氧化镁机理,并建立实船应用规模的氧化镁连续高效水化制备氢氧化镁装置;连续运行优化改造后的镁基-海水法船舶废气脱硫试用系统,实船验证镁基脱硫技术的适用性。
     首先,实船试验并对比分析了镁法、海水法、镁基-海水法的废气脱硫效果,认为镁基-海水法因具有脱硫效率高、废水量少、不消耗淡水资源等特点,适用于船舶废气脱硫。
     以获得高效、低阻、适于船舶应用的废气脱硫系统。通过文献调研和理论计算,对脱硫塔的塔型、进风方式、喷淋系统和除雾系统进行全面优化改造。利用Minitab15软件进行响应面设计,获得镁基-海水法船舶废气脱硫系统的脱硫效率模型,方差分析和试验证明模型可靠,设计范围内可用于指导装置运行。
     传统的氧化镁水化制浆系统(液-固)具有水化率低,占地面积大等缺点,不适用于船舶。因此本文提出了一种高效的氧化镁水化制备氢氧化镁的方式,并研究其机理。研究表明,气-液-固反应方式能高效制备氢氧化镁。在海水体系中,获得的水化产物流动性好,杂质被氢氧化镁包裹,不易堵塞管道。
     最后,建成氧化镁连续高效制备氢氧化镁装置,结合已优化改造完成的脱硫塔,在脱硫效率模型指导下连续运行镁基-海水法船舶废气脱硫试用系统。试验结果表明,优化后镁基-海水法船舶废气脱硫系统具有脱硫效率高、系统阻力低、系统稳定性好等特点,适用于船舶废气脱硫。
In order to enable magnesium-base flue gas desulphurization system to be applicable to marine exhaust gases, an optimization study was carried out based on an established marine exhaust gases scrubber. Through experiment contrasts, the applicative desulphurization method was determined. The desulphurization tower was designed optimally based on the results of literature researches and theoretical computations, and corresponding modifications were carried out. A desulphurization efficiency model of magnesium-base seawater scrubber was created by statistical software. And the reliability of the model was verified. The mechanism of a novel hydration reaction was investigated experimentally. And then a high effective and continuous MgO hydration unit was established. Finally, the applicability of magnesium-base seawater desulphurization system for. marine exhaust gases was test onboard.
     First of all, a study to compare three desulphurization methods including seawater, magnesium and magnesium-base seawater was carried out. The results show that the magnesium-base seawater method has characteristics of high desulphurization efficiency, limited volume of wastewater and no consumption of fresh water. Therefore, it could be concluded that the magnesium-base seawater method is suitable for marine exhaust gases desulphurization.
     In order to fulfill the requirement of high effective and low pressure drop, optimizing design and reforming of desulphurization tower were conducted to make it suitable for marine exhaust treatment. After literature researches and theoretical computations, comprehensive optimization of the tower type, gas induced way, spray system and mist elimination system were carried out. A response surface model was created by Minitab15software to predicate the desulphurization efficiency of magnesium-base seawater system. The analysis of variance and experimental test results verified that the model was reliable and could be used to navigate the design space.
     Traditional MgO hydration system (liquid-solid) has the shortages such as large occupied and low hydration efficiency, which restrict its application in marine scrubber area. Therefore, a novel and high effective hydration method was put forward and the mechanism was investigated. The results of study indicated that the hydration efficiency of gas-liquid-solid reaction system was promoted significantly than liquid-solid system. Within the seawater, the hydration product of gas-liquid-solid reaction system has good fluidity and the impurity was covered by the hydration product, which mean free of clogging.
     Eventually, the combination of high effective and continuous MgO hydration unit and the modified desulphurization tower constituted the magnesium-base seawater marine exhaust gases desulphurization system. The system was operated under the guide of desulphurization model. The results of continuous test showed that the system has the characteristic of high desulphurization efficiency, low pressure drop, good stability. It could be concluded that the magnesium-base seawater desulphurization system applied to marine exhaust gases treatment.
引文
[1]Endresen O,Sorgard E,Sundet J K et a1.Emission from international sea transportation and environmental impact. Journal of Geophysical Research:Atomsphere.2003,108 (D17):4560.
    [2]Eyring V,Kohler H W.,Van Aardenne J et a1.Emissions from international shipping: 1.The last 50 years.Journal of Geophysical Research:Atmospheres.2005,110(D17):305.
    [3]Eyring V,Kohler H W,Lauer A et a1.Emissions from international shipping:2.Impact of future technologies on scenarios until 2050.Journal of Geophysical Research: Atmospheres.2005,110(D17):306.
    [4]Agrawal H,Welch W A,Henningsen S et a1.Emissions from main propulsion engine on container ship at sea.Journal of Geophysical Research:Atmospheres.2010,115(D23):205.
    [5]Streets D G,Guttikunda S K,Carmichael G R.The growing contribution of sulfur emissions from ships in Asian waters,1988-1995.Atmospheric Environment.2000,34(26):4425-4439.
    [6]薛成.船舶硫氧化物排放控制及展望.世界海运.2011,34(0g):20-21.
    [7]http://WWW.mandiesel.dk/article_005271.html.2005.
    [8]IMO Resolution MEPC.176(58)一Amendments to the Annex of the Protocol of 1997 to amend the International Convention for the Prevention of Pollution from Ships,1973,as modified by the Protocol of 1978 relating thereto(revised MARPOL Annex VI):10 October 2008[S].
    [9]http://ec.europa.eu/environment/air/pdf/taskl_asign_report.pdf.2005.8.
    [10]http://www.catf.us/resources/fil ings/vessels/MEPC_4-1-FOEI-CATF_shipping_backgrou nd-aper.pdf.
    [11]王璐,郝俊利.船舶燃用低硫燃油的具体要求和应对措施.航海技术.2010,(05):48-50.
    [12]孙化栋.船舶硫氧化物的排放控制.世界海运.2012,35(08):51-54.
    [13]喻小力.LNG气体燃料在内河船的应用前景.造船技术.2012,(06):14-16.
    [14]http://viewer.zmags.com/publication/2c575222#/2c575222/1.
    [15]Wang C F,Corbett J J,Winebrake J.J.Cost-effectiveness of reducing sulfur emissions from ships.Environmental Science & Technology.2007.41(24):8233-8239.
    [16]An S.,Nishida 0.New application of seawater and electrolyzed seawater in air po lluton control of mari ne diesel engine.JSME International Journal Series 13.2003,46 (1):206-213.
    [17]Andreasen A., Mayer S. Use of seawater scrubbing for S02 removal from marine engine exhaust gas. Energy & Fuels.2007,21 (6):3274-3279.
    [18]Ariana I. Made, Fujita Hirotsugu, Nishida Osami, Harano Wataru. Using water-plat e collector and water spray on ESP to reduce marine diesel exhaust emission. Journal o f Marine Environmental Engineering.2008,9 (1):35-44.
    [19]Park Sung Jin, Lee Tae Hoon. Apparatus for desulfurization and denitrification from exhaust gas of a ship. South Korea, utility model, KR 20090055531.2009.
    [20]Anttila M., Hamalainen R., Tuominiemi S. Method and an. equipment for reducing the sulphur dioxide emissions of a marine engine. US, utility model, US 20080044335.2011.
    [21]Caiazzo G., Di Nardo A., Langella G., et al. Seawater scrubbing desulfurization:A model for SO2 absorption in fall-down droplets. Environmental Progress & Sustainable Energy.2012,31 (2):277-287.
    [22]Ma H R, Steernberg K., Riera-Palou X et al. Well-to-wake energy and greenhouse gas analysis of SOx abatement options for the marine industry. Transportation Research Part D:Transport and Environment.2012,17 (4):301-308.
    [23]黄万能,谢以超.船舶污染大气及国外的控制措施.航海技术.2005,(04):59-61.
    [24]黄华.船舶尾气净化一体化研究.荆门职业技术学院学报.2008,23(09):5-9.
    [25]黄华.NTP技术一体化处理船舶尾气装置的初探.荆门职业技术学院学报.2009,24(02):20-24.
    [26]宋永欣,尹峰,池华方.一种对船舶尾气进行海水洗涤处理的装置.中国,实用新型,CN 200720013673.2008.
    [27]杨国华,胡文佳,周江华等.船舶尾气臭氧氧化-海水吸收的脱硫脱硝新工艺研究.内燃机学报.2008,26(03):278-282.
    [28]Peng S G. Washing device and washing method for marine exhaust flue gases. China, patent for invention, CN 200880129628.2009.
    [29]余刚,顾宁,余奇.一种用于海洋船舶尾气同步脱硫脱硝的方法.中国,实用新型,CN 101822937A,2010.
    [30]董景明,潘新祥.一种船舶联合防污染装置.中国,实用新型,CN 201010123235.2010.
    [31]董景明,潘新祥.一种船舶联合防污染系统.中国,发明专利,CN 201010123235.2010.
    [32]彭斯干.海船排烟脱硫方法及装置.中国,实用新型,CN 200810048002.2.2011.
    [33]Peng S G. Ship flue gas desulphurization method and equipment. US, patent for inv ention, US 8038774 B2.2011.
    [34]朴成进,李泰勋.船舶废气的脱硫脱硝方法及处理装置.中国,实用新型,CN 201010540886.2012.
    [35]马义平,许乐平.海水脱硫在船舶硫氧化物排放控制上的应用.船舶工程.2011,33(S2):190-193.
    [36]张兆廷,李国诚.月船舶烟气海水法脱硫技术研究.科技信息.2012,(09):201-220.
    [37]马义平,许乐平,宿鹏浩等.湍球塔和喷淋塔的海水脱硫冷态实验对比.环境工程学报.2013,7(09):3537-3542.
    [38]马义平,许乐平,夏同友等.湍球塔海水脱硫的冷态试验研究.安全与环境学报.2013,13(04):67-70.
    [39]马义平,许乐平,宿鹏浩等.船舶烟气海水脱硫的模拟和设计.上海海事大学学报.2013,34(02):41-45.
    [40]宿鹏浩,许乐平,马义平等.船舶柴油机尾气海水脱硫装置.中国,实用新型,CN 201220731246.2013.
    [41]张成雷,董耀华,祁伟栋等.光催化法处理船舶尾气研究及展望.航海技术.2013,(03):46-49.
    [42]高健,刘光洲.用于船用燃机尾气处理的电解法海水脱硫装置.中国,实用新型,CN 201220299884,2013.
    [43]刘光洲,高健,徐晓亮等.一种船用燃机烟气脱硫脱硝一体化方法及设备.中国,发明专利,CN 201210532709.2013.
    [44]徐晓亮,刘光洲,高健等.适用于船舶废气海水脱硫的供氧装置.中国,实用新型,CN 201320028741.2013.
    [45]刘光洲,高健,徐晓亮等.船用燃机烟气脱硫脱硝一体化装置.中国,实用新型,CN 201220681289.2013.
    [46]Hombravella A, Ki li caslan A, Perales J, RUβ C. Study of exhaust gas cleaning sys tems for vessels to fulfill IMO III in 2016.2011, Fachhochschule Kiel university of ap plied sciences.
    [47]Ship Operations Cooperative Program. Exhaust gas cleaning system selection guide. 2011, File No.10047.01
    [48]美国船级社通过全球第一个三合一减排系统.航海.2010,3:47.
    [49]Scala F, Lancia A, Nigro R, Volpicelli G. Spray-Dry desulfurization of flue gas from heavy oil combustion. J. Air & Waste Manage. Assoc.2005,55:20-29.
    [50]朱益民,唐晓佳,郝阳等.镁基-海水法船用脱硫系统.中国,实用新型,CN 2011200405654.2011.
    [51]唐晓佳,李铁,郝阳等.镁基-海水法船舶烟气脱硫效率研究.应用基础与科学工程学报,2012,20(6):1081-1087.
    [52]郝阳.镁基—海水法船用废气脱硫效率研究:(硕士学位论文).大连:大连海事大学,2011.
    [53]Ghazi Al-Enezi, Hisham Ettouney, Hisham El-Dessouky. Solubility of sulfur dioxide in seawater. Ind Eng Chem Res,2001,40:1434-1441.
    [54]Juan R S, Manuel A, Marla C D et al. Absorption equilibria of dilute S02 in seawater. Journal of Chemical Engineering,2004,49:1710-1716.
    [55]F Vidalb, P Ollero. A kinetic study of the oxidation of S(IV) in seawater. Environ. Sci. Technol.,2001,35:2792-2796.
    [56]Abdul H, Abdulsattar, Srinivasan S. Thermodynamics of the sulfur dioxide seawater system. AIChE Journal,1977,23:62-68.
    [57]景启国,徐康富.氧化镁FGD脱硫过程的建模及其应用.环境污染治理技术及设备,2005,11(6):32-38.
    [58]徐宏建,张超,葛红花.镁法烟气脱硫工艺的实验室模拟及其优化.上海电力学院学报,2010,426(2):145-146.
    [59]杨飏.二氧化硫减排技术与烟气脱硫工程.北京:冶金工业出版社,2004.
    [60]Zhao Yi, Ma Shuang-chen, Wang Xiao-ming et al. Experimental and mechanism studies on seawater flue gas desulfurization. Journal of environmental sciences,2003,15 (1): 123-128.
    [61]周志华.海水脱硫中吸收塔脱硫效率的研究:(博士学位论文).天津:天津大学,2005.
    [62]王亮.海水体系对二氧化硫吸收性能研究:(硕士学位论文).青岛:中国海洋大学,2007.
    [63]IMO Resolution MEPC.184(59)-Guidelines for Exhaust Gas Cleaning Systems; 4 April 2008[S].
    [64]IMO Resolution MEPC.159(55)-Revised Guidelines On Implementation Of Effluent Standards And Performance Test For Sewage Treatment Plants; 13 October 2006[S].
    [65]郑昌萍.湿法脱硫中四种常见脱硫塔的综合评价.中国科技纵横.2011,(17):232.
    [66]袁孝竞,余国琮.填料塔技术的现状与展望.化学工程.1995,23(03):5-14.
    [67]唐营.填料塔设计及核算软件开发:(硕士学位论文).青岛:青岛科技大学,2012.
    [68]晏莱,周三平.现代填料塔技术发展现状与展望.化工装备技术.2007,28(03):29-34.
    [69]袁伯若.鼓泡塔气液两相流数值模拟:(硕士学位论文).上海:华东理工大学,2013.
    [70]蓝敏星,程诺伟.鼓泡塔烟气脱硫处理工艺.广东电力.2011,24(01):87-90.
    [71]方立军,常艳超,胡月龙等.液柱塔雾化特性研究.电力科学与工程.2012,28(02):46-50.
    [72]潘利祥,孙国刚.液柱脱硫塔流动特性的实验研究.煤炭转化.2004,27(03):64-67.
    [73]程峰.液柱冲击塔湿法烟气脱硫的试验和理论研究:(博士学位论文).杭州:浙江大学,2005.
    [74]缪明烽,于耘.湿式逆流喷淋脱硫塔中SO2吸收特性的研究.环境工程学报.2010,4(04):887-892.
    [75]韩香玉.石灰石/石灰一石膏湿法脱硫塔的设计研究:(硕士学位论文).北京:华北电力大学(北京),2006.
    [76]孙厚杰.烟气脱硫裸塔技术发展.中国电力教育.2011,(03):151-153.
    [77]孙厚杰.烟气脱硫裸塔技术研究.锅炉制造.2011,(01):51-54.
    [78]胡将军,李勇,罗军.喷淋塔烟气脱硫的喷嘴特性研究.第九届全国燃煤二氧化硫、氮氧化物污染治理技术及脱硫脱氮技术应用工程实例交流会,北京,2005.
    [79]姚丙东,蒋金宝,兰清敏等.湿法脱硫用喷嘴的研究与进展.化工机械.2006,33(04):194-197.
    [80]李兆东,鄢璐,王小明等.湿法烟气脱硫喷淋塔不同喷嘴布置雾化性能比较试验.热能动力工程.2008,23(03):303-305.
    [81]李兆东,王世和,王小明.湿法脱硫螺旋喷嘴雾化性能.东南大学学报(自然科学版).2008,38(03):493-495.
    [82]谭云松,张国华.吸收塔液体再分配器(ALRD)技术介绍.电站系统工程.2013,29(02):67-69.
    [83]陈光富.氧化镁脱硫技术的工程应用研究:(硕士学位论文).上海:上海交通大学,2007.
    [84]董谊仁,孙凤珍.塔设备除雾技术.化工生产与技术.2000,7(02):6-11.
    [85]谢乾.脱硫除雾器除雾性能研究:(硕士学位论文).北京:华北电力大学(北京),2009.
    [86]Box G, Wilson K, On the experimental attainment of optimum conditions, Journal of the Royal Statistical Society,1951,13 (1):1-45.
    [87]Box G E P, Drape N R. The choice of a second order rotatable DesignBiometrika,1963, 50 (3-4):335.
    [88]梁昭磊.受限条件的试验设计研究:(博士学位论文).天津:天津大学,2008.
    [89]王晶.基于响应曲面法的多响应稳健性参数优化方法研究:(博士学位论文).天津:天津大学,2008.
    [90]宗志宇.基于rsm的多响应稳健性设计方法的研究:(博士学位论文).天津:天津大学,2007.
    [91]Hinkelmann K, Kempthorne O. Introduction to experimental design:Vol.1. design and analysis of experiments. New York:John Wiley and Sons,1994.
    [92]Mohajeri L, Aziz H A, Isa M H et al. A statistical experiment design approach for optimizing biodegradation of weathered crude oil in coastal sediments. Bioresource Technology,2010,101:893-900.
    [93]Box G E., Draper N R. Empirical model building and response surfaces. New York:J ohn Wiley and Sons,1987.
    [94]Hoesktra A J. Gas flow field and collection efficiency of cyclone seperators:[Doct oral Dissertation]. Netherlands:Delft University of Technology,2000.
    [95]Nordin M Y, Venkatesh V C, Sharif S et al. Application of response surface method ology in describing the performance of coated carbide tools when turning AISI 104 stee 1, Journal of Materials Processing Technology.2004 145,46-58.
    [96]葛静微.响应面分析法优化血红素提取工艺.食品科学,2010,31(08):60—64.
    [97]赵博,赵晓云,李志洲.响应面分析法优化微波辅助提取荷叶多酚的工艺研究.食品与发酵科技,2010,46(02):85-88.
    [98]Holloway L R. Application of magnesium hydroxide as a flame retardant and smoke suppressant in elastomers. Rubber chemistry and technology.1988,61 (2):186-193.
    [99]Rocha S O N D, Ciminelli V I N S. Utilization of magnesium hydroxide produced by magnesia hydration as fire retardant for Nylon 6-6,6. Polimeros.2001,11 (3):116-120.
    [100]Booster J L, Van Sandwi jk A., Reuter M A. Conversion of magnesium fluoride to magnesium hydroxide. Minerals engineering.2003,16 (3):273-281.
    [101]Lieth R M A, Oswald H R., Asper R. Bivalent Metal HydroxidesPhysics and Chemistry of Materials with Layered Structures. Springer Netherlands,1977:71-140.
    [102]Laska M, Valt Y Ni J, Fellner P. Influence of pH on the crystal size distribution of Mg (OH) 2 prepared by the hydration of MgO. Crystal Research and Technology.1993,28 (7):931-936.
    [103]Feitknecht W, Braun H. Der mechanismus der hydratation von magnesiumoxid mit wasserdampf. Helvetica Chimica Acta.1967,50 (7):2040-2053.
    [104]Packter A. The rapid precipitation of magnesium hydroxide from aqueous solutions: Analysis of nucleation and crystal growth kinetics, final nucleus numbers and primary crystal sizes. Crystal Research and Technology.1985,20 (3):329-336.
    [105]Fellner P., Hive J., Khandl V et al. Preparation of magnesium hydroxide from nitrate aqueous solution. Chemical Papers.2011,65 (4):454-459.
    [106]Turner G, Stewart B, Baird T et al. Layer morphology and growth mechanisms in barium ferrites. Journal of Crystal Growth.1996,158 (3):276-283.
    [107]Henrist C., Mathieu J P, Vogels C et al. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. Journal of Crystal Growth.2003,249 (1-2):321-330.
    [108]Layden G K., Brindley G W. Kinetics of Vapor-Phase Hydration of Magnesium Oxide. Journal of the American Ceramic Society.1963,46 (11):518-522.
    [109]Kato Y, Yamashita N, Kobayashi K et al. Kinetic study of the hydration of magnesium oxide for a chemical heat pump. Applied Thermal Engineering.1996,16 (11):853-862.
    [110]Rocha S 0 N D., Mansur M B, Ciminelli V I N S. Kinetics and mechanistic analysis of caustic magnesia hydration. Journal of Chemical Technology and Biotechnology.2004,79 (8):816-821.
    [111]Van Der Merwe E M, Strydom C A. Hydration of medium reactive magnesium oxide using hydration agents. Journal of thermal analysis and calorimetry.2006,84 (2):467-471.
    [112]Van der Merwe E M, Strydom C, Botha A. Hydration of medium reactive industrial magnesium oxide with magnesium acetate. Journal of thermal analysis and calorimetry.2004, 77 (1):49-56.
    [113]Smithson G L, Bakhshi N N. The kinetics and mechanism of the hydration of magnesium oxide in a batch reactor. The Canadian Journal of Chemical Engineering[J].1969,47 (6):508-513.
    [114]Birchal V S, Rocha S, Mansur M B et al. A simplified mechanistic analysis of the hydration of magnesia. The Canadian Journal of Chemical Engineering[J].2001,79 (4):507-511.
    [115]Filippou D, Katiforis N, Papassiopi N et al. On the kinetics of magnesia hydration in magnesium acetate solutions. Journal of Chemical Technology & Biotechnology.1999,74 (4):322-328.
    [116]Matabola K P, van der Merwe E M, Strydom C A et al. The influence of hydrating agents on the hydration of industrial magnesium oxide. Journal of Chemical Technology & Biotechnology.2010,85 (12):1569-1574.
    [117]Amaral L F, Oliveira I R, Salomao R et al. Temperature and common-ion effect on magnesium oxide (MgO) hydration. Ceramics International.2010,36 (3):1047-1054.
    [118]Lv J, Qiu L, Qu B. Controlled growth of three morphological structures of magnes ium hydroxide nanoparticles by wet precipitation method. Journal of Crystal Growth.200 4,267 (3):676-684.
    [119]孙元兵,吴争平,陈启元.六角片状氢氧化镁晶体的制备及其生长机理.2012年全国冶金物理化学学术会议,昆明,2012.
    [120]吴会军,向兰,金永成等.高分散氢氧化镁粉体的制备及其影响因素.无机材料学报.2004,19(05):1181-1185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700