用户名: 密码: 验证码:
基于碳捕集的太阳能—燃煤机组热力系统耦合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来由于CO2的大量排放所导致的温室效应对全球气候和自然环境造成了一系列不利影响。在全球节能减排的大环境下,作为CO2第二排放大国,将面临巨大的减排压力。CO2捕集与封存技术(CCS)是以燃煤为主的能源结构下CO2减排的有效手段。基于单乙醇胺化学吸收法(MEA)的燃烧后碳捕集技术,是具有发展前景捕集技术。本文对以机组抽汽为碳捕集系统吸收剂解吸提供热源和以太阳能提供解吸热源的机组热力系统特性进行了研究。主要研究内容和创新如下:
     1、分析了基于单乙醇胺(MEA)捕集CO2吸收剂解吸能耗特性,研究了以机组抽汽为吸收剂解吸热源的三种方案,确定了可行方案并对系统进行了优化。研究了基于MEA的CO2吸收剂解吸能耗特性,得到了不同质量分数下吸收剂的再生能耗,对碳捕集电站的能量流、质量流进行分析,研究了以机组抽汽为吸收剂解吸热源的三种方案,确定了可行方案。基于(?)分析模型和(?)成本分析,分析了系统的不可逆程度,考虑能量成本和非能量成本,研究了系统各组件热经济学成本的分布。
     2、提出了基于碳捕集的太阳能-燃煤机组三种集成系统,分析了集成系统的热力学性能,研究了系统的不可逆程度及(?)成本分布规律。由于吸收剂解吸热需求量大,完全由机组抽汽提供解吸热,将使机组的能量流分布有较大改变,对机组经济安全运行产生不利影响。为此,本文提出了三种基于碳捕集的太阳能-燃煤机组集成系统,并对集成系统进行了可行性分析,研究了系统的热力学特性和炯成本分布规律。
     3、构建了基于碳捕集的太阳能-燃煤机组集成系统的热经济学优化模型,对集成系统进行了技术经济性分析。分析了太阳能集热场为碳捕集系统提供热源时集成系统的热经济学特性,建立了以热经济学成本最小为目标函数的数学模型,对集成系统的能流进行了优化研究,分析了集成系统的热经济学成本分布规律。对所研究系统进行了技术经济评估,研究了发电成本、CO2减排成本随碳税收及售价的变化。
CO2, generated by the combustion of fossil fuels, is recently considered as the main factor causing global warming, which influences global climate and evironment negatively. China, the world's second largest carbon emitter, faces a huge burden of cutting emissions. Carbon capture and storage is an effective way to reduce emissions when coal takes up mainly in the energy structure. Post-combustion carbon capture based on monoethanolamine aqueous solution is a technology with prospect of development.
     This paper studies the thermodynamic characteristic of the unit when steam extraction and solar energy provide heat source for absorbent desorption in carbon capture system. The main achievements are as below:
     1. The characteristics of energy consumption during absorbent desorption are analyzed when CO2capture is based on MEA aqueous. Three schemes are proposed when steam extraction of unit provid heat source for absorber desorption and a feasible plan is defined which can also be for further optimized. The energy consumption characteristics is stuied when the carbon capture is based on MEA aqueous solution. The energy consumption for regeneration is calculated when aqueous solution is with different mass fraction. The mass flow and energy flow of power plant with CO2capture are analysed. Three schemes are proposed when absorber desorption heat source is from steam extraction and a feasible plan is defined. Based on exergy anaslysis and exergy cost anaslysis model, the irreversible exergy loss of the system is illustrated. The distribution of the thermal economics cost is studied when energy cost and non-energy costs are considered.
     2. Three solar-coal unit integration systems with carbon capture are proposed. Thermaldynamic property, the irreversible exergy loss and the distribution of exergy cost of the integration system are analyzed. Due to the large demand of heat for absorber desorption, energy distrabution in the unit will change dramatically if the heat is only supplied by the steam extraction. This effects negatively on the safe operation of the unit. Therefore, three solar-coal integration systems with carbon capture are proposed, and the systems'feasibilities, termodynamic property and exergy cost distrabution are analysed.
     3. Thermo economic optimization model of solar-coal unit integration system with carbon capture is established and its techno-economics character is analysed. The thermoeconomic characteristics of integration system are analysed when the heat source of the carbon capture system is provided by solar collctors. The mathematical model is established when objective function is the minimum thermoeconomic cost. The energy flow of the integration system is optimized and the distribution of thermoeconomic cost is illustrated. The techno-economics evaluation of the integration system reveals the change rule of power generation cost and CO2reduction cost along with carbon tax and price.
引文
[1]董建勋.燃煤电厂SCR烟气脱硝试验研究及数学模型建立[D].保定:华北电力大学,2007
    [2]霍宗杰.能源结构与粗放型经济增长[D].兰州:兰州大学,2010.
    [3]罗金玲,高冉,黄文辉,霍达,王彦宁.中国二氧化碳减排及利用技术发展趋势[J].资源与产业,2011,13(1):132-132.
    [4]肖难.选择催化还原系统尿素热解装置的优化研究[D].哈尔滨:哈尔滨工业大学,2009.
    [5]郑瑛,王保文,宋侃,郑楚光.化学链燃烧技术中新型氧载体CaSO4的特性研究[J].工程热物理学报,2007,27(3):531-533.
    [6]卢玲玲,王树众,姜峰,胡昕.化学链燃烧技术的研究现状及进展[J].现代化工,2007,27(8):17-22.
    [7]A. Lyngfelt, B. Leckner, T. Mattisson. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion [J]. Chemical Engineering Science,2001,56(10):3101-3113.
    [8]J. Adanez, L. De Diego, F. Garcia-Labiano, et al. Selection of oxygen carriers for chemical-looping combustion [J]. Energy & Fuels,2004,18(2):371-377.
    [9]P. Cho, T. Mattisson, A. Lyngfelt. Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion [J]. Fuel,2004, 83(9):1215-1225.
    [10]M. M. Hossain, H. I. de Lasa. Chemical-looping combustion (CLC) for inherent CO2 separations—a review[J]. Chemical Engineering Science,2008,63(18): 4433.4451.
    [11]M. Kanniche, R. Gros-Bonnivard, P. Jaud, et al. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture[J]. Applied Thermal Engineering,2010,30(1):53-62.
    [12]J. D. Figueroa, T. Fout, S. Plasynski, et al. Advances in CO2 capture technology—The US Department of Energy's Carbon Sequestration Program[J]. International Journal of Greenhouse Gas Control,2008,2(1):9-20.
    [13]K. E. Zanganeh, A. Shafeen, C. Salvador. CO2 Capture and Development of an Advanced Pilot-Scale Cryogenic Separation and Compression Unit[J]. Energy Procedia,2009,1(1):247-252.
    [14]A. A. Olajire. CO2 capture and separation technologies for end-of-pipe applications-Areview[J]. Energy,2010,35(6):2610-2628.
    [15]A. B. Rao, E. S. Rubin. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control [J]. Environmental science & technology,2002,36(20):4467-4475.
    [16]N. MacDowell, N. Florin, A. Buchard, et al. An overview of CO2 capture technologies[J]. Energy & Environmental Science,2010,3(11):1645-1669.
    [17]J. N. Knudsen, J. N. Jensen, P.-J. Vilhelmsen, et al. Experience with CO2 capture from coal flue gas in pilot-scale:Testing of different amine solvents[J]. Energy Procedia,2009,1(1):783-790.
    [18]H. Herzog, D. Golomb. Carbon capture and storage from fossil fuel use[J]. Encyclopedia of energy,2004,1:1-11.
    [19]P. Linga, R. Kumar, P. Englezos. The clathrate hydrate process for post and pre-combustion capture of carbon dioxide[J]. Journal of hazardous materials,2007, 149(3):625-629.
    [20]P. Cobden, P. Van Beurden, H. T. J. Reijers, et al. Sorption-enhanced hydrogen production for pre-combustion CO2 capture:Thermodynamic analysis and experimental results[J]. International Journal of Greenhouse Gas Control,2007, 1(2):170-179.
    [21]H. J. Lee, J. D. Lee, P. Linga, et al. Gas hydrate formation process for pre-combustion capture of carbon dioxide[J]. Energy,2010,35(6):2729-2733.
    [22]C. Ekstrom, F. Schwendig, O. Biede, et al. Techno-Economic Evaluations and Benchmarking of Pre-combustion CO2 Capture and Oxy-fuel Processes Developed in the European ENCAP Project[J]. Energy Procedia,2009,1(1):4233-4240.
    [23]M. Carbo, J. Boon, D. Jansen, et al. Steam demand reduction of water-gas shift reaction in IGCC power plants with pre-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control,2009,3(6):712-719.
    [24]M. Kato, Y. Maezawa, S. Takeda, et al. Pre-combustion CO2 capture using ceramic absorbent and methane steam reforming[J]. Nippon seramikkusu kyokai gakujutsu ronbunshi,2005,113(3):252-254.
    [25]E. Van Selow, P. Cobden, R. Van den Brink, et al. Performance of sorption-enhanced water-gas shift as a pre-combustion CO2 capture technology [J]. Energy Procedia,2009,1(1):689-696.
    [26]I. Pfaff, A. Kather. Comparative thermodynamic analysis and integration issues of CCS steam power plants based on oxy-combustion with cryogenic or membrane based air separation[J]. Energy Procedia,2009,1(1):495-502.
    [27]E. S. Hecht, C. R. Shaddix, A. Molina, et al. Effect of CO2 gasification reaction on oxy-combustion of pulverized coal char[J]. Proceedings of the Combustion Institute, 2011,33(2):1699-1706.
    [28]T. Czakiert, K. Sztekler, S. Karski, et al. Oxy-fuel circulating fluidized bed combustion in a small pilot-scale test rig[J]. Fuel Processing Technology,2010, 91(11):1617-1623.
    [29]J. C. Sautet, T. Boushaki, L. Salentey, et al. Oxy-combustion properties of interacting separated jets[J]. Combustion science and technology,2006,178(12): 2075-2096.
    [30]A.Sarofim. Oxy-fuel combustion:progress and remaining issues[C].2nd Workshop of IEAGHG International Oxy-Fuel Combustion Network, Jan; Windsor, CT.2007.
    [31]B. M. Sass, H. Farzan, R. Prabhakar, et al. Considerations for treating impurities in oxy-combustion flue gas prior to sequestration[J]. Energy Procedia,2009,1(1): 535-542.
    [32]B. Buhre, L. Elliott, C. Sheng, et al. Oxy-fuel combustion technology for coal-fired power generation [J]. Progress in energy and combustion science,2005,31(4): 283-307.
    [33]C. Fu, T. Gundersen. Heat integration of an oxy-combustion process for coal-fired power plants with CO2 capture by pinch analysis[J]. chemical engineering,2010, 21.
    [34]T. S. Chung, D. Patino-Echeverri, T. L. Johnson. Expert assessments of retrofitting coal-fired power plants with carbon dioxide capture technologies [J]. Energy Policy, 2011,39(9):5609-5620.
    [35]E. Favre. Carbon dioxide recovery from post-combustion processes:Can gas permeation membranes compete with absorption[J]. Journal of membrane science, 2007,294(1):50-59.
    [36]T. C. Merkel, H. Lin, X. Wei, et al. Power plant post-combustion carbon dioxide capture:an opportunity for membranes [J]. Journal of membrane science,2010, 359(1):126-139.
    [37]G. A. Norton, H. Yang, R. C. Brown, et al. Heterogeneous oxidation of mercury in simulated post combustion conditions[J]. Fuel,2003,82(2):107-116.
    [38]H. Kvamsdal, J. Jakobsen, K. Hoff. Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture[J]. Chemical Engineering and Processing:Process Intensification,2009,48(1):135-144.
    [39]J. A. Mason, K. Sumida, Z. R. Herm, et al. Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption[J]. Energy & Environmental Science,2011,4(8):3030-3040.
    [40]B. Thitakamol, A. Veawab, A. Aroonwilas. Environmental impacts of absorption-based CO2 capture unit for post-combustion treatment of flue gas from coal-fired power plant[J]. International Journal of Greenhouse Gas Control,2007, 1(3):318-342.
    [41]M. Wang, A. Lawal, P. Stephenson, et al. Post-combustion CO2 capture with chemical absorption:A state-of-the-art review[J]. Chemical Engineering Research and Design,2011,89(9):1609-1624.
    [42]K. Z. House, C. F. Harvey, M. J. Aziz, et al. The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the US installed base[J]. Energy & Environmental Science,2009,2(2):193-205.
    [43]J. T. Yeh, K. P. Resnik, K. Rygle, et al. Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia[J]. Fuel Processing Technology,2005, 86(14):1533-1546.
    [44]J. Davis, G. Rochelle. Thermal degradation of monoethanolamine at stripper conditions[J]. Energy Procedia,2009,1(1):327-333.
    [45]J. M. Plaza, D. V. Wagener, G. T. Rochelle. Modeling CO2 capture with aqueous monoethanolamine [J]. Energy Procedia,2009,1(1):1171-1178.
    [46]H. Lepaumier, A. Grimstvedt, K. Vernstad, et al. Degradation of MMEA at absorber and stripper conditions [J]. Chemical Engineering Science,2011,66(15): 3491-3498.
    [47]T. Supap, R. Idem, P. Tontiwachwuthikul, et al. Kinetics of sulfur dioxide-and oxygen-induced degradation of aqueous monoethanolamine solution during CO2 absorption from power plant flue gas streams[J]. International Journal of Greenhouse Gas Control,2009,3(2):133-142.
    [48]S. J. Vevelstad, I. Eide-Haugmo, E. F. da Silva, et al. Degradation of MEA; a theoretical study[J]. Energy Procedia,2011,4:1608-1615.
    [49]X. Chen, F. Closmann, G. T. Rochelle. Accurate screening of amines by the wetted wall column[J]. Energy Procedia,2011,4:101-108.
    [50]S. O. Gardarsdottir, F. Normann, K. Andersson, et al. Transient Behavior of a Post Combustion CO2 Capture Process [C].2nd Post Combustion Capture Conference, 2013.
    [51]A. Chakma, A. Meisen. Identification of methyl diethanolamine degradation products by gas chromatography and gas chromatography-mass spectrometry[J]. Journal of Chromatography A,1988,457:287-297.
    [52]E. T. Choy, A. Meisen. Gas chromatographic detection of diethanolamine and its degradation products[J]. Journal of Chromatography A,1980,187(1):145-152.
    [53]F. A. Chowdhury, H. Yamada, T. Higashii, et al. CO2 Capture by Tertiary Amine Absorbents:A Performance Comparison Study[J]. Industrial & Engineering Chemistry Research,2013.
    [54]H. Chalmers, M. Lucquiaud, J. Gibbins, et al. Flexible operation of coal fired power plants with postcombustion capture of carbon dioxide [J]. Journal of Environmental Engineering,2009,135(6):449-458.
    [55]G. Puxty, R. Rowland, A. Allport, et al. Carbon dioxide postcombustion capture:A novel screening study of the carbon dioxide absorption performance of 76 amines[J]. Environmental science & technology,2009,43(16):6427-6433.
    [56]G. Sartori, D. W. Savage. Sterically hindered amines for carbon dioxide removal from gases[J]. Industrial & Engineering Chemistry Fundamentals,1983,22(2): 239-249.
    [57]P. Singh, J. P. Niederer, G. F. Versteeg. Structure and activity relationships for amine based CO2 absorbents—I[J]. International Journal of Greenhouse Gas Control, 2007,1(1):5-10.
    [58]S. J. Yoon, H. Lee. Substituent effect in amine-CO2 interaction investigated by NMR and IR spectroscopies[J]. Chemistry Letters,2003(4):344-345.
    [59]E. F. Da Silva, H. F. Svendsen. Computational chemistry study of reactions, equilibrium and kinetics of chemical CO2 absorption[J]. International Journal of Greenhouse Gas Control,2007,1(2):151-157.
    [60]A. S. Lee, J. R. Kitchin. Chemical and Molecular Descriptors for the Reactivity of Amines with CO2[J]. Industrial & Engineering Chemistry Research,2012,51(42): 13609-13618.
    [61]E. M. Mindrup, W. F. Schneider. Computational comparison of the reactions of substituted amines with CO2[J]. ChemSusChem,2010,3(8):931-938.
    [62]D. Gonzalez-Garza, R. Rivera-Tinoco, C. Bouallou. Comparison of ammonia, monoethanolamine, diethanolamine and methyldiethanolamine solvents to reduce CO2 greenhouse gas emissions[J]. Chemical Engineering Transactions,2009,18: 279-284.
    [63]M. Keramati, A. A. Ghoreyshi. Improving CO2 adsorption onto activated carbon through functionalization by chitosan and triethylenetetramine[J]. Physica E: Low-dimensional Systems and Nanostructures,2014,57:161-168.
    [64]E. W. Martin. Investigation of Thermal Integration in a Coal-Fired Power Plant with MEA Post-Combustion Carbon Capture[J].2011.
    [65]J. Davison. Performance and costs of power plants with capture and storage of CO2[J]. Energy,2007,32(7):1163-1176.
    [66]L. M. Romeo, I. Bolea, J. M. Escosa. Integration of power plant and amine scrubbing to reduce CO2 capture costs[J]. Applied Thermal Engineering,2008, 28(8):1039-1046.
    [67]D. Johansson, P.-A. Franck, T. Berntsson. CO2 capture in oil refineries-an evaluation of different heat integration possibilities for heat supply to the post-combustion process[C]. Linkoping Electronic Conference Proceedings, No.57. World Renweable Energy Congress 2011, May 8-13, Linkoping, Sweden,2011.
    [68]D. Johansson, P.A. Franck, T. Berntsson. Hydrogen production from biomass gasification in the oil refining industry-A system analysis[J]. Energy,2012,38(1): 212-227.
    [69]D. Johansson, J. Rootzen, T. Berntsson, et al. Assessment of strategies for CO2 abatement in the European petroleum refining industry[J]. Energy,2012,42(1): 375-386.
    [70]L. Wibberley, A. Cottrell, P. Scaife, et al. Synergies with renewables:Concentrating solar thermal[M]. Cooperative Research Centre for Coal in Sustainable Development,2006.
    [71]A. O. Lawal, R. O. Idem. Kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous MEA-MDEA blends during CO2 absorption from flue gas streams[J]. Industrial & Engineering Chemistry Research,2006,45(8):2601-2607.
    [72]G. Soave, J. A. Feliu. Saving energy in distillation towers by feed splitting [J]. Applied Thermal Engineering,2002,22(8):889-896.
    [73]H. Herzog, J. Meldon, A. Hatton. Advanced post-combustion CO2 capture[J]. Clean Air Task Force,2009:1-39.
    [74]K. Zhang, Z. Liu, Y. Li, et al. The improved CO2 capture system with heat recovery based on absorption heat transformer and flash evaporator[J]. Applied Thermal Engineering,2014,62(2):500-506.
    [75]F. Geuzebroek, L. Schneiders, G. Kraaijveld, et al. Exergy analysis of alkanolamine-based CO2 removal unit with AspenPlus[J]. Energy,2004,29(9): 1241-1248.
    [76]H. Hong, Y. Zhao, H. Jin. Proposed Partial Repowering of a Coal-Fired Power Plant Using Low-Grade Solar Thermal Energy [J]. International Journal of Thermodynamics,2011,14(1):21-28.
    [77]S. Ziaii, S. Cohen, G. T. Rochelle, et al. Dynamic operation of amine scrubbing in response to electricity demand and pricing [J]. Energy Procedia,2009,1(1): 4047-4053.
    [78]B. Huang, S. Xu, S. Gao, et al. Industrial test and techno-economic analysis of CO2 capture in Huaneng Beijing coal-fired power station [J]. Applied Energy,2010, 87(11):3347-3354.
    [79]L. Tock, F. Marechal. Process design optimization strategy to develop energy and cost correlations of CO2 capture processes[J]. Computers & Chemical Engineering, 2014,61:51-58.
    [80]M. R. Abu-Zahra, L. H. Schneiders, J. P. Niederer, et al. CO2 capture from power plants:Part I. A parametric study of the technical performance based on monoethanolamine[J]. International Journal of Greenhouse Gas Control,2007,1(1): 37-46.
    [81]M. R. Abu-Zahra, J. P. Niederer, P. H. Feron, et al. CO2 capture from power plants: Part Ⅱ. A parametric study of the economical performance based on mono-ethanolamine[J]. International Journal of Greenhouse Gas Control,2007, 1(2):135-142.
    [82]T. Mimura, H. Simayoshi, T. Suda, et al. Development of energy saving technology for flue gas carbon dioxide recovery in power plant by chemical absorption method and steam system[J]. Energy Conversion and Management,1997,38:S57-S62.
    [83]I. von Harbou, M. Imle, H. Hasse. Modeling and simulation of reactive absorption of CO2 with MEA:Results for four different packings on two different scales[J]. Chemical Engineering Science,2014,105:179-190.
    [84]E. Hu, Y. Yang, A. Nishimura, et al. Solar thermal aided power generation[J]. Applied Energy,2010,87(9):2881-2885.
    [85]Q. Yan, E. Hu, Y. Yang, et al. Evaluation of solar aided thermal power generation with various power plants [J]. International Journal of Energy Research,2011, 35(10):909-922.
    [86]Y. Yang, Y. Cui, H. Hou, et al. Research on solar aided coal-fired power generation system and performance analysis[J]. Science in China Series E:Technological Sciences,2008,51(8):1211-1221.
    [87]崔映红,杨勇平,张明智.太阳能-煤炭互补的发电系统与互补方式[J].中国电机工程学报,2008,28(5):102-107.
    [88]崔映红,杨勇平,杨志平,侯宏娟,郭喜燕.太阳能辅助燃煤一体化热发电系统耦合机理[J].中国电机工程学报,2008,28(29):99-104.
    [89]崔映红,杨勇平.蒸汽直接冷却槽式太阳集热器的传热流动性能研究[J].太阳能学报,2009,30(3):304-310.
    [90]崔映红,陈娟,杨阳,杨勇平.太阳能辅助燃煤热发电系统性能研究[J].中国电机工程学报,2009(023):92-98.
    [91]Q. Yan, Y. Yang, A. Nishimura, et al. Multi-point and Multi-level Solar Integration into a Conventional Coal-Fired Power Plant[J]. Energy & Fuels,2010,24(7): 3733-3738.
    [92]Y. Yang, Q. Yan, R. Zhai, et al. An efficient way to use medium-or-low temperature solar heat for power generation-integration into conventional power plant[J]. Applied Thermal Engineering,2011,31(2):157-162.
    [93]Q. Yan, E. Hu, Y Yang, et al. Dynamic modeling and simulation of a solar direct steam-generating system[J]. International Journal of Energy Research,2010,34(15): 1341-1355.
    [94]V. Siva Reddy, S. Kaushik, S. Tyagi. Exergetic analysis of solar concentrator aided natural gas fired combined cycle power plant[J]. Renewable Energy,2012,39(1): 114-125.
    [95]V. Nikulshina, D. Hirsch, M. Mazzotti, et al, A Steinfeld. CO2 capture from air and co-production of H2 via the Ca(OH)2-CaCO3 cycle using concentrated solar power-Thermodynamic analysis[J]. Energy,2006,31(12):1379-1389.
    [96]V. Nikulshina, M. Galvez, A. Steinfeld. Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca (OH)2-CaCO3-CaO solar thermochemical cycle[J]. Chemical Engineering Journal,2007,129(1):75-83.
    [97]G. Ordorica-Garcia, A. V. Delgado, A. F. Garcia. Novel integration options of concentrating solar thermal technology with fossil-fuelled and CO2 capture processes[J]. Energy Procedia,2011,4:809-816.
    [98]S. Odeh, G. Morrison, M. Behnia. Modelling of parabolic trough direct steam generation solar collectors[J]. Solar energy,1998,62(6):395-406.
    [99]H. Price. A parabolic trough solar power plant simulation model [J]. National Renewable Energy Laboratory, Tech. Rep. NREL/CP-550-33209,2003.
    [100]F.Lippke. Direct steam generation in parabolic trough solar power plants: Numerical investigation of the transients and the control of a once-through system[J]. Journal of solar energy engineering,1996,118(1).
    [101]M. Eck, E. Zarza, M. Eickhoff, et al. Applied research concerning the direct steam generation in parabolic troughs[J]. Solar energy,2003,74(4):341-351.
    [102]Z. Cheng, Y. He, J. Xiao, et al. Three-dimensional numerical study of heat transfer characteristics in the receiver tube of parabolic trough solar collector [J]. International Communications in Heat and Mass Transfer,2010,37(7):782-787.
    [103]G. Gong, X. Huang, J. Wang, et al. An optimized model and test of the China's first high temperature parabolic trough solar receiver[J]. Solar energy,2010,84(12): 2230-2245.
    [104]M. Montes, A. Abanades, J. Martinez-Val, et al. Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors[J]. Solar energy,2009,83(12):2165-2176.
    [105]M. Zhang, Y. Guo. Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution[J]. Applied Energy,2013,111:142-152.
    [106]M. Jafarian, M. Arjomandi, G., J. Nathan. A hybrid solar and chemical looping combustion system for solar thermal energy storage [J]. Applied Energy,2013,103: 671-678.
    [107]P. Viebahn, V. Daniel, H. Samuel. Integrated assessment of carbon capture and storage (CCS) in the German power sector and comparison with the deployment of renewable energies[J]. Applied Energy,2012,97:238-248.
    [108]J. Lilliestam, J. M. Bielicki, A. G. Patt. Comparing carbon capture and storage (CCS) with concentrating solar power (CSP):Potentials, costs, risks, and barriers[J]. Energy Policy,2012,47:447-455.
    [109]M. Mokhtar, M. T. Ali, R. Khalilpour, et al. Solar-assisted Post-combustion Carbon Capture feasibility study[J]. Applied Energy,2012,92:668-676.
    [110]H. Li, J. Yan, P. E. Campana. Feasibility of integrating solar energy into a power plant with amine-based chemical absorption for CO2 capture[J]. International Journal of Greenhouse Gas Control,2012,9:272-280.
    [111]H. Li, M. Ditaranto, J. Yan. Carbon capture with low energy penalty: supplementary fired natural gas combined cycles[J]. Applied Energy,2012,97: 164-169.
    [112]王庆霞.火电厂热力系统分析矩阵法的应用研究[D].北京:华北电力大学,2005.
    [113]陈国年,钟史明.电厂热力系统矩阵计算法[J].汽轮机技术,1991,33(5):39-45.
    [114]张春发,张素香,崔映红,杨文滨,张德成.现行电力系统热经济性状态方程[J].工程热物理学报,2001,22(6):665-667.
    [115]郭江龙,张树芳,宋之平,陈海平.火电厂热力系统热经济性矩阵分析方法[J].中国电机工程学报,2004,24(1):205-210.
    [116]闫丽涛.300MW火力发电机组热力系统(?)分析及优化研究[D].保定:华北电力大学,2010.
    [117]A. Srivastava. Second law (exergy) analysis of various types of coal [J]. Energy Conversion and Management,1988,28(2):117-121.
    [118]吴智泉,安连锁.煤的燃料(?)分析[J].中国能源,2011,33(8):38-40.
    [119]钱三鸿,杨东华.复杂物质化学(?)的计算模型及计算式[J].华东理工大学学报,1986,1:011.
    [120]朱明善.环境状态下化合物的化学(?)和化学焓[J].工程热物理学报,1983,1:000.
    [121]蒋爱华.泛(?)分析方法及其应用研究[D].长沙:中南大学,2011.
    [122]K. Kaygusuz, S. Bilgen. Thermodynamic aspects of renewable and sustainable development[J].Energy Sources, Part A,2009,31(4):287-298.
    [123]V. Stepanov. Chemical energies and exergies of fuels[J]. Energy,1995,20(3): 235-242.
    [124]W. Eisermann, P. Johnson, W. Conger. Estimating thermodynamic properties of coal, char, tar and ash[J]. Fuel Processing Technology,1980,3(1):39-53.
    [125]C. Zhang, Y. Wang, C. Zheng, et al. Exergy cost analysis of a coal fired power plant based on structural theory of thermoeconomics[J]. Energy Conversion and Management,2006,47(7):817-843.
    [126]F. Zeman. Energy and material balance of CO2 capture from ambient air[J]. Environmental science & technology,2007,41(21):7558-7563.
    [127]王加璇,张恒良.动力工程热经济学[M].水利电力出版社,1995.
    [128]C. A. Frangopoulos. Application of the thermoeconomic functional approach to the CGAM problem[J]. Energy,1994,19(3):323-342.
    [129]M. R. von Spakovsky. Application of engineering functional analysis to the analysis and optimization of the CGAM problem[J]. Energy,1994,19(3):343-364.
    [130]G. Tsatsaronis, J. Pisa. Exergoeconomic evaluation and optimization of energy systems—application to the CGAM problem[J]. Energy,1994,19(3):287-321.
    [131]M. Lozano, A. Valero. Thermoeconomic analysis of gas turbine cogeneration systems[J]. Asme, New York, NY, (USA).1993,30:311-320.
    [132]张超,刘黎明,陈胜,郑楚光.基于热经济学结构理论的热力系统性能评价[J].中国电机工程学报,2005,25(24):108-113.
    [133]A. Valero, F. Lerch, L. Serra, et al. Structural theory and thermoeconomic diagnosis: Part II:Application to an actual power plant[J]. Energy Conversion and Management,2002,43(9):1519-1535.
    [134]赵明德.火电厂尾部CO2回收系统设计及与电厂的集成研究[D].北京:华北电力大学,2011.
    [135]R. Eberhart, J. Kennedy. A new optimizer using particle swarm theory[C]. Micro Machine and Human Science,1995. MHS'95., Proceedings of the Sixth International Symposium on.1995. IEEE,39-43.
    [136]H. Price, E. Lupfert, D. Kearney, et al. Advances in parabolic trough solar power technology [J]. Journal of solar energy engineering,2002,124(2):109-125.
    [137]J. Dersch, M. Geyer, U. Herrmann, et al. Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems[J]. Energy,2004,29(5):947-959.
    [138]M. Eck, W. Steinmann. Direct steam generation in parabolic troughs:first results of the DISS project[J]. Transactions-american Society of Mechanical Engineers Journal of Solar Energy Engineering,2002,124(2):134-139.
    [139]G. J. Kolb. Economic evaluation of solar-only and hybrid power towers using molten-salt technology [J]. Solar energy,1998,62(1):51-61.
    [140]M. Horn, H. Fuhring, J. Rheinlander. Economic analysis of integrated solar combined cycle power plants:a sample case:the economic feasibility of an ISCCS power plant in Egypt[J]. Energy,2004,29(5):935-945.
    [141]S. Odeh, M. Behnia, G. Morrison. Performance evaluation of solar thermal electric generation systems[J]. Energy Conversion and Management,2003,44(15): 2425-2443.
    [142]J. Gonzalez, E. Otero, S. Feliu, et al. Initial steps of corrosion in the steel/Ca(OH)2+Cl system:The role of heterogeneities on the steel surface and oxygen supply[J]. Cement and concrete research,1993,23(1):33-40.
    [143]周颖艳,杜小泽,杨立军,杨勇平.吸收(?)气余热的非共沸混合工质蒸发换热特性[J].中国电机工程学报,2013,33(008):9-15.
    [144]J. G. Haidar, J. I. Ghojel. Waste heat recovery from the exhaust of low-power diesel engine using thermoelectric generators[C]. Thermoelectrics,2001. Proceedings ICT 2001. XX International Conference on.2001. IEEE,413-418.
    [145]R. Saidur, J. Ahamed, H. Masjuki. Energy, exergy and economic analysis of industrial boilers[J]. Energy Policy,2010,38(5):2188-2197.
    [146]X. Shi, D. Che. A combined power cycle utilizing low-temperature waste heat and LNG cold energy[J]. Energy Conversion and Management,2009,50(3):567-575.
    [147]T. Zhelev, K. Semkov. Cleaner flue gas and energy recovery through pinch analysis[J]. Journal of Cleaner Production,2004,12(2):165-170.
    [148]J. Roy, M. Mishra, A. Misra. Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle[J]. Energy,2010,35(12): 5049-5062.
    [149]J. Roy, M. Mishra, A. Misra. Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions [J]. Applied Energy,2011,88(9):2995-3004.
    [150]J. Roy, A. Misra. Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery [J]. Energy,2012,39(1):227-235.
    [151]H. Chen, D. Y. Goswami, M. M. Rahman, et al. A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power[J]. Energy,2011,36(1):549-555.
    [152]Y. Chen, P. Lundqvist, A. Johansson, et al. A comparative study of the carbon dioxide transcritical power cycle compared with an organic Rankine cycle with R123 as working fluid in waste heat recovery [J]. Applied Thermal Engineering, 2006,26(17):2142-2147.
    [153]T. Hung, S. Wang, C. Kuo, et al. A study of organic working fluids on system efficiency of an ORC using low-grade energy sources[J]. Energy,2010,35(3): 1403-1411.
    [154]B. F. Tchanche, G. Lambrinos, A. Frangoudakis, et al. Low-grade heat conversion into power using organic Rankine cycles-A review of various applications [J]. Renewable and Sustainable Energy Reviews,2011,15(8):3963-3979.
    [155]X. Shi, D. Che, B. Agnew, et al. An investigation of the performance of compact heat exchanger for latent heat recovery from exhaust flue gases[J]. International Journal of Heat and Mass Transfer,2011,54(1):606-615.
    [156]王丽.冷凝式燃气热水器换热器的研究[D].上海:同济大学,2006.
    [157]舒海静,李永安,许开颜.济南地区太阳能发电资源潜力分析[J].制冷与空调,2005,19(1):68-70.
    [158]刘强,郭民臣.考虑加热器热效率的电厂热力系统结构矩阵[J].节能,2006,25(8):25-29.
    [159]张树芳,冉鹏,郭江龙.应用扩展型能效分布矩阵分析二次再热机组的热经济性[J].动力工程,2006,26(3):437-442.
    [160]C. A. Frangopoulos. Thermoeconomic functional analysis:a method for optimal design or improvement of complex thermal systems[J].1983.
    [161]M.A. Lozano, A. Valero, L. Serra. Theory of exergetic cost and thermoeconomic optimization[C]. Proceedings of the International Symposium ENSEC.1993.
    [162]J. Uche, L. Serra, A. Valero. Thermoeconomic optimization of a dual-purpose power and desalination plant[J]. Desalination,2001,136(1):147-158.
    [163]黄诗煌,王良恩.吸收塔优化设计目标函数建立与求解[J].福建化工,2001(1):24-26.
    [164]Douglas Jm,化工过程的概念设计.1994,北京:化学工业出版社.
    [165]M. Taal, I. Bulatov, J. Klemes, et al. Cost estimation and energy price forecasts for economic evaluation of retrofit projects[J]. Applied Thermal Engineering,2003, 23(14):1819-1835.
    [166]刘彦丰,朱路平,闫维平.C02捕集技术在燃煤电厂中应用的经济性评估[J].中国电机工程学报,2010,30:59-64.
    [167]J. Silveira, C. Tuna. Thermoeconomic analysis method for optimization of combined heat and power systems—part Ⅱ[J]. Progress in energy and combustion science,2004,30(6):673-678.
    [168]张超.复杂能量系统的热经济学分析与优化[D].武汉:华中科技大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700