用户名: 密码: 验证码:
苯硼酸酯键合的层层组装水凝胶超薄膜及其在生物传感和药物释放领域的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本论文中,我们利用苯硼酸基团能够和顺式邻二醇结构形成可逆的苯硼酸酯共价键的性质,用丙烯酰胺和3-丙烯酰胺基苯硼酸的共聚物(P(AAm-AAPBA))和聚乙烯醇(PVA)进行层层自组装,制备了超薄PVA/P(AAm-AAPBA)层层自组装水凝胶膜。该薄膜可以在反射光谱上显示Fabry-Perot条纹,在葡萄糖的作用下,薄膜的溶胀程度增大,Fabry-Perot条纹发生移动,可以直观地反映出葡萄糖浓度的变化。这一性质使得该水凝胶膜适于用作葡萄糖传感器。因为PVA/P(AAm-AAPBA)层层自组装膜的厚度处于次微米或微米级,比普通的水凝胶膜传感器薄两个数量级,所以它的响应速率很快,特征响应时间可达十几秒,这是目前已知的水凝胶膜类传感器的最快响应速率。这一快速响应的葡萄糖传感器在对糖尿病人的血糖水平进行实时持续监控方面具有潜在的应用价值。
     为了提高层层自组装水凝胶膜传感器在生理pH值下的葡萄糖响应性,我们又向聚合物中引入了二甲胺基丙基丙烯酰胺(DMAPAA)和丙烯酸(AAc),利用硼-氮作用降低苯硼酸的pKa,利用丙烯酸和PVA的羟基进行交联,制备出在生理pH下具有较好葡萄糖响应性和稳定性的传感器。
     此外,层层自组装膜非常适合用作药物释放载体。我们以胰岛素和聚乙烯醇形成的缀合物(insulin-PVA)与P(AAm-AAPBA)制备了以可逆苯硼酸酯键连接的insulin-PVA/P(AAm-AAPBA)层层自组装膜,采用低苯硼酸含量的P(AAm-AAPBA)以降低膜的稳定性,将其用于自调节的胰岛素释放。当层层自组装膜浸入水溶液中,随着苯硼酸酯共价键断裂,层层自组装膜逐渐解离,胰岛素就会释放到介质中,释放速率可以通过pH值、离子强度和葡萄糖浓度进行调节。
Most hydrogel-based biosensors have been hindered in their practicalapplications due to the slow response. In this dissertation we designed hydrogelsensors with quick response from ultrathin hydrogel films, by using layer-by-layer(LBL) assembly technique, which is a simple but versatile approach for filmfabrication. Specifically, with formation of reversible covalent phenylboronate esterbond as the driving force, glucose-responsive hydrogel films can be facilelyfabricated by layer-by-layer assembly, and their thickness is controlled on submicronor micron scale, which is2orders of magnitude thinner than films used in ordinaryhydrogel sensors. In the presence of glucose, these films swell to a larger degree,which infers good glucose-responsive performance. Furthermore, the response islinear and reversible. Glucose-induced swelling can be reported via the shift ofFabry-Perot fringes. Most importantly, the response is quite fast, making it possible tobe used for continuous glucose monitoring.
     In the later work, in order to enhance the sensors’ performance,N,N-Dimethylaminopropyl acrylamide (DMAPAA) and acrylic acid (AAc) areintroduced into LBL films. Under this experiment setup, the pKa of phenylboronicacid is reduced by B-N interaction. Besides, the cross-link of PVA and acrylic acidincreases the stability of the films. Therefore, in this way, stable glucose-sensorscapable of using under phycological pH are prepared.
     Under proper conditions, layer-by-layer films may disintegrate as a result of thebreakage of the bonds, which makes them suitable for controlled drug release.Therefore, the films fabricated using reversible phenylboronate ester bonds as drivingforces also disintegrate gradually in aqueous solutions. In this work, insulin canrelease from LbL films fabricated from insulin-PVA (PVA: polyvinyl alcohol)conjugate and poly[acrylamide-co-3-(acrylamido)-phenylboronic acid]. Whenimmersed in an aqueous solution, the films disintegrate gradually, thus insulin isreleased into the media. Specifically, the release rate can be tuned by pH, ionicstrength and glucose concentration, making this system potential for self-regulated insulin release.
引文
[1] Total Prevalence of Diabetesand Pre-Diabetes. American Diabetes Association,2008
    [2] R. Garg, H. Bhutani, E. Alyea, et al. Hyperglycemia and Length of Stay in PatientsHospitalized for Bone Marrow Transplantation. Diabetes Care,2007,30(4):993-994
    [3] H. King, R. E. Aubert, W. H. Herman. Global Burden of Diabetes,1995-2025: Prevalence,numerical estimates, and projections. Diabetes Care,1998,21(9):1414-1431
    [4] A. J. Marshall, J. Blyth, C. A. B. Davidson, et al. pH-Sensitive Holographic Sensors.Analytical Chemistry,2003,75(17):4423-4431
    [5] A. J. Marshall, D. S. Young, J. Blyth, et al. Metabolite-Sensitive Holographic Biosensors.Analytical Chemistry,2004,76(5):1518-1523
    [6] R. B. Millington, A. G. Mayes, J. Blyth, et al. A Holographic Sensor for Proteases.Analytical Chemistry,1995,67(23):4229-4233
    [7] A. G. Mayes, J. Blyth, R. B. Millington, et al. Metal Ion-Sensitive Holographic Sensors.Analytical Chemistry,2002,74(15):3649-3657
    [8] T. Miyata, N. Asami, T. Uragami. A reversibly antigen-responsive hydrogel. Nature,1999,399:766-769
    [9] M. Watanabe, T. Akahoshi, Y. Tabata, et al. Molecular Specific Swelling Change ofHydrogels in Accordance with the Concentration of Guest Molecules. Journal of theAmerican Chemical Society,1998,120(22):5577-5578
    [10] X. Xu, A. V. Goponenko, S. A. Asher. Polymerized PolyHEMA Photonic Crystals: pHand Ethanol Sensor Materials. Journal of the American Chemical Society,2008,130(10):3113-3119
    [11] C. E. Reese, S. A. Asher. Photonic Crystal Optrode Sensor for Detection of Pb2+in HighIonic Strength Environments. Analytical Chemistry,2003,75(15):3915-3918
    [12] S. A. Asher, A. C. Sharma, A. V. Goponenko, et al. Photonic Crystal Aqueous Metal CationSensing Materials. Analytical Chemistry,2003,75(7):1676-1683
    [13] K. Lee, S. A. Asher. Photonic Crystal Chemical Sensors: pH and Ionic Strength. Journalof the American Chemical Society,2000,122(39):9534-9537
    [14] S. H. Foulger, P. Jiang, Y. Ying, et al. Photonic Bandgap Composites. Advanced Materials,2001,13(24):1898-1901
    [15] C. E. Reese, A. V. Mikhonin, M. Kamenjicki, et al. Nanogel Nanosecond Photonic CrystalOptical Switching. Journal of the American Chemical Society,2004,126(5):1493-1496
    [16] G. Pan, R. Kesavamoorthy, S. A. Asher. Nanosecond Switchable Polymerized CrystallineColloidal Array Bragg Diffracting Materials. Journal of the American Chemical Society,1998,120(26):6525-6530
    [17] M. A. C. Stuart, W. T. S. Huck, J. Genzer, et al. Emerging applications ofstimuli-responsive polymer materials. Nature materials,2010,9(2):101-113
    [18] J. Kim, J. Yoon, R. C. Hayward. Dynamic display of biomolecular patterns through anelastic creasing instability of stimuli-responsive hydrogels. Nature materials,2010,9(2):159-164
    [19] J. H. Holtz, S. A. Asher. Polymerized colloidal crystal hydrogel films as intelligentchemical sensing materials. Nature,1997,389(6653):829-832
    [20] M. Lee, S. Kabilan, A. Hussain, et al. Glucose-Sensitive Holographic Sensors forMonitoring Bacterial Growth. Analytical Chemistry,2004,76(19):5748-5755
    [21] V. L. Alexeev, A. C. Sharma, A. V. Goponenko, et al. High Ionic Strength Glucose-SensingPhotonic Crystal. Analytical Chemistry,2003,75(10):2316-2323
    [22] Y. Liu, Y. Zhang, Y. Guan. New polymerized crystalline colloidal array for glucose sensing.Chemical Communications,2009,(14):1867
    [23] D. Nakayama, Y. Takeoka, M. Watanabe, et al. Simple and Precise Preparation of a PorousGel for a Colorimetric Glucose Sensor by a Templating Technique. Angewandte ChemieInternational Edition,2003,42(35):4197-4200
    [24] A. M. Horgan, A. J. Marshall, S. J. Kew, et al. Crosslinking of phenylboronic acid receptorsas a means of glucose selective holographic detection. Biosensors and Bioelectronics,2006,21(9):1838-1845
    [25] W. Yang, J. Yan, G. Springsteen, et al. A novel type of fluorescent boronic acid that showslarge fluorescence intensity changes upon binding with a carbohydrate in aqueous solutionat physiological pH. Bioorganic& Medicinal Chemistry Letters,2003,13(6):1019-1022
    [26] M. Lee, S. Kabilan, A. Hussain, et al. Glucose-Sensitive Holographic Sensors forMonitoring Bacterial Growth. Analytical Chemistry,2004,76(19):5748-5755
    [27] T. D. James, K. R. A. S. Sandanayake, S. Shinkai. A Glucose-Selective MolecularFluorescence Sensor. Angewandte Chemie International Edition in English,1994,33(21):2207-2209
    [28] A. Kikuchi, K. Suzuki, O. Okabayashi, et al. Glucose-Sensing Electrode Coated withPolymer Complex Gel Containing Phenylboronic Acid. Analytical Chemistry,1996,68(5):823-828
    [29] J. C. Norrild, I. Sotofte. Design, synthesis and structure of new potential electrochemicallyactive boronic acid-based glucose sensors. Journal of the Chemical Society, PerkinTransactions2,2002,(2):303-311
    [30] F. H. Arnold, W. Zheng, A. S. Michaels. A membrane-moderated, conductimetric sensorfor the detection and measurement of specific organic solutes in aqueous solutions. Journalof Membrane Science,2000,167(2):227-239
    [31] Kress-Rogers. Chemosensors, Biosensors and Immunosensors. In: Instrumentation andSensors for the Food Industry. Oxford, U.K: Butterworth-Heinemann Ltd,1993
    [32] P. A. Hiltner, I. M. Krieger. Diffraction of light by ordered suspensions. The Journal ofPhysical Chemistry,1969,73(7):2386-2389
    [33] E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics.Physical Review Letters,1987,58(20):2059-2062
    [34] S. A. Asher, J. Holtz, L. Liu, et al. Self-Assembly Motif for Creating Submicron PeriodicMaterials. Polymerized Crystalline Colloidal Arrays. Journal of the American ChemicalSociety,1994,116(11):4997-4998
    [35] J. H. Holtz, J. S. W. Holtz, C. H. Munro, et al. Intelligent Polymerized Crystalline ColloidalArrays: Novel Chemical Sensor Materials. Analytical Chemistry,1998,70(4):780-791
    [36] S. A. Asher, V. L. Alexeev, A. V. Goponenko, et al. Photonic Crystal CarbohydrateSensors: Low Ionic Strength Sugar Sensing. Journal of the American Chemical Society,2003,125(11):3322-3329
    [37] V. L. Alexeev, A. C. Sharma, A. V. Goponenko, et al. High Ionic Strength Glucose-SensingPhotonic Crystal. Analytical Chemistry,2003,75(10):2316-2323
    [38] S. D. D. N. Vladimir L. Alexeev. Photonic Crystal Glucose-Sensing Material forNoninvasive Monitoring of Glucose in Tear Fluid. Clinical Chemistry,2004,50(12):2353-2360
    [39] M. Ben-Moshe, V. L. Alexeev, S. A. Asher. Fast Responsive Crystalline Colloidal ArrayPhotonic Crystal Glucose Sensors. Analytical Chemistry,2006,78(14):5149-5157
    [40] M. M. Ward Muscatello, L. E. Stunja, S. A. Asher. Polymerized Crystalline Colloidal ArraySensing of High Glucose Concentrations. Analytical Chemistry,2009,81(12):4978-4986
    [41] M. M. W. Muscatello, S. A. Asher. Poly(vinyl alcohol) Rehydratable Photonic CrystalSensor Materials. Advanced Functional Materials,2008,18(8):1186-1193
    [42] T. Tanaka, D. J. Fillmore. Kinetics of swelling of gels. The Journal of Chemical Physics,1979,70(3):1214-1218
    [43] Y. N. Denisyuk. On the Reproduction of the Optical Properties of an Object by the WaveField of Its Scattered Radiation. Optics and Spectroscopy,1963,18:152-157
    [44] M. Lee, S. Kabilan, A. Hussain, et al. Glucose-Sensitive Holographic Sensors forMonitoring Bacterial Growth. Analytical Chemistry,2004,76(19):5748-5755
    [45] A. G. Mayes, J. Blyth, R. B. Millington, et al. A holographic sensor based on a rationallydesigned synthetic polymer. Journal of Molecular Recognition,1998,11(1-6):168-174
    [46] S. Kabilan, A. J. Marshall, F. K. Sartain, et al. Holographic glucose sensors. Biosensors andBioelectronics,2005,20(8):1602-1610
    [47] S. Kabilan, J. Blyth, M. C. Lee, et al. Glucose-sensitive holographic sensors. Journal ofMolecular Recognition,2004,17(3):162-166
    [48] X. Yang, X. Pan, J. Blyth, et al. Towards the real-time monitoring of glucose in tear fluid:Holographic glucose sensors with reduced interference from lactate and pH. Biosensorsand Bioelectronics,2008,23(6):899-905
    [49] Y. Takeoka, M. Watanabe. Template Synthesis and Optical Properties of ChameleonicPoly(N-isopropylacrylamide) Gels Using Closest-Packed Self-Assembled Colloidal SilicaCrystals. Advanced Materials,2003,15(3):199-201
    [50] Y. J. Lee, P. V. Braun. Tunable Inverse Opal Hydrogel pH Sensors. Advanced Materials,2003,15(7-8):563-566
    [51] Y. Takeoka, M. Watanabe. Polymer Gels that Memorize Structures of MesoscopicallySized Templates. Dynamic and Optical Nature of Periodic Ordered Mesoporous ChemicalGels. Langmuir,2002,18(16):5977-5980
    [52] B. Zhao, J. S. Moore. Fast pH-and Ionic Strength-Responsive Hydrogels in Microchannels.Langmuir,2001,17(16):4758-4763
    [53] X. Zhang, Y. Yang, T. Chung, et al. Preparation and Characterization of Fast ResponseMacroporous Poly(N-isopropylacrylamide) Hydrogels. Langmuir,2001,17(20):6094-6099
    [54] D. Nakayama, Y. Takeoka, M. Watanabe, et al. Simple and Precise Preparation of a PorousGel for a Colorimetric Glucose Sensor by a Templating Technique. Angewandte ChemieInternational Edition,2003,42(35):4197-4200
    [55] S. H. Park, Y. Xia. Assembly of Mesoscale Particles over Large Areas and Its Applicationin Fabricating Tunable Optical Filters. Langmuir,1998,15(1):266-273
    [56] Y. Xia, B. Gates, Y. Yin, et al. Monodispersed Colloidal Spheres: Old Materials with NewApplications. Advanced Materials,2000,12(10):693-713
    [57] Y. Lee, S. A. Pruzinsky, P. V. Braun. Glucose-Sensitive Inverse Opal Hydrogels:Analysis of Optical Diffraction Response. Langmuir,2004,20(8):3096-3106
    [58] C. Lin, A. T. Metters. Hydrogels in controlled release formulations: Network design andmathematical modeling. Advanced Drug Delivery Reviews,2006,58(12-13):1379-1408
    [59] D. P. Huynh, G. J. Im, S. Y. Chae, et al. Controlled release of insulin frompH/temperature-sensitive injectable pentablock copolymer hydrogel. Journal of ControlledRelease,2009,137(1):20-24
    [60] J. J. Kim, K. Park. Modulated insulin delivery from glucose-sensitive hydrogel dosageforms. Journal of Controlled Release,2001,77(1-2):39-47
    [61] H. Yu, D. W. Grainger. Modified release of hydrophilic, hydrophobic and peptide agentsfrom ionized amphiphilic gel networks. Journal of Controlled Release,1995,34(2):117-127
    [62] N. Kashyap, B. Viswanad, G. Sharma, et al. Design and evaluation of biodegradable,biosensitive in situ gelling system for pulsatile delivery of insulin. Biomaterials,2007,28(11):2051-2060
    [63] K. Kataoka, H. Miyazaki, M. Bunya, et al. Totally Synthetic Polymer Gels Responding toExternal Glucose Concentration: Their Preparation and Application to On OffRegulation of Insulin Release. Journal of the American Chemical Society,1998,120(48):12694-12695
    [64] T. Traitel, Y. Cohen, J. Kost. Characterization of glucose-sensitive insulin release systemsin simulated in vivo conditions. Biomaterials,2000,21(16):1679-1687
    [65] D. P. Huynh, M. K. Nguyen, B. S. Pi, et al. Functionalized injectable hydrogels forcontrolled insulin delivery. Biomaterials,2008,29(16):2527-2534
    [66] Y. Zhang, Y. Guan, S. Zhou. Synthesis and Volume Phase Transitions of Glucose-SensitiveMicrogels. Biomacromolecules,2006,7(11):3196-3201
    [67] V. Lapeyre, I. Gosse, S. Chevreux, et al. Monodispersed Glucose-Responsive MicrogelsOperating at Physiological Salinity. Biomacromolecules,2006,7(12):3356-3363
    [68] T. Hoare, R. Pelton. Engineering Glucose Swelling Responses inPoly(N-isopropylacrylamide)-Based Microgels. Macromolecules,2007,40(3):670-678
    [69] C. M. Nolan, M. J. Serpe, L. A. Lyon. Thermally Modulated Insulin Release from MicrogelThin Films. Biomacromolecules,2004,5(5):1940-1946
    [70] S. Cartier, T. A. Horbett, B. D. Ratner. Glucose-sensitive membrane coated porous filtersfor control of hydraulic permeability and insulin delivery from a pressurized reservoir.Journal of Membrane Science,1995,106(1-2):17-24
    [71] K. Ishihara, M. Kobayashi, N. Ishimaru, et al. Glucose Induced Permeation Control ofInsulin through a Complex Membrane Consisting of Immobilized Glucose Oxidase and aPoly(amine). Polymer Journal,1984,16(8):625-631
    [72] V. Ravaine, C. Ancla, B. Catargi. Chemically controlled closed-loop insulin delivery.Journal of Controlled Release,2008,132(1):2-11
    [73] X. Zhang, H. Chen, H. Zhang. Layer-by-layer assembly: from conventional tounconventional methods. Chemical Communications,2007,(14):1395-1405
    [74] G. Decher. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science,1997,277(5330):1232-1237
    [75] T. Boudou, T. Crouzier, K. Ren, et al. Multiple Functionalities of Polyelectrolyte MultilayerFilms: New Biomedical Applications. Advanced Materials,2010,22(4):441-467
    [76] F. Caruso. Nanoengineering of Particle Surfaces. Advanced Materials,2001,13(1):11-22
    [77] R. K. Iler. Multilayers of colloidal particles. Journal of Colloid and Interface Science,1966,21(6):569-594
    [78] G. Decher, J. D. Hong. Buildup of Ultrathin Multilayer Films by a Self-Assembly Process:II. Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles andPolyelectrolytes on Charged Surfaces. Berichte der Bunsengesellschaft für physikalischeChemie,1991,95(11):1430-1434
    [79] G. Decher. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science,1997,277(5330):1232-1237
    [80] G. Decher, J. D. Hong, J. Schmitt. Buildup of ultrathin multilayer films by a self-assemblyprocess: III. Consecutively alternating adsorption of anionic and cationic polyelectrolyteson charged surfaces. Thin Solid Films,1992,210-211, Part2(0):831-835
    [81] Y. Zhang, Y. Guan, S. Zhou. Single Component Chitosan Hydrogel Microcapsule from aLayer-by-Layer Approach. Biomacromolecules,2005,6(4):2365-2369
    [82] C. Wang, S. Ye, L. Dai, et al. Enhanced Resistance of Polyelectrolyte MultilayerMicrocapsules to Pepsin Erosion and Release Properties of Encapsulated Indomethacin.Biomacromolecules,2007,8(5):1739-1744
    [83] Y. Zhang, S. Yang, Y. Guan, et al. Fabrication of Stable Hollow Capsules by CovalentLayer-by-Layer Self-Assembly. Macromolecules,2003,36(11):4238-4240
    [84] P. Kohli, G. J. Blanchard. Applying Polymer Chemistry to Interfaces: Layer-by-Layer andSpontaneous Growth of Covalently Bound Multilayers. Langmuir,2000,16(10):4655-4661
    [85] Y. Zhang, Y. Guan, S. Yang, et al. Fabrication of Hollow Capsules Based on HydrogenBonding. Advanced Materials,2003,15(10):832-835
    [86] H. Lee, R. Mensire, R. E. Cohen, et al. Strategies for Hydrogen Bonding BasedLayer-by-Layer Assembly of Poly(vinyl alcohol) with Weak Polyacids. Macromolecules,2011,45(1):347-355
    [87] W. B. Stockton, M. F. Rubner. Molecular-Level Processing of Conjugated Polymers.4.Layer-by-Layer Manipulation of Polyaniline via Hydrogen-Bonding Interactions.Macromolecules,1997,30(9):2717-2725
    [88] L. Wang, Z. Wang, X. Zhang, et al. A new approach for the fabrication of an alternatingmultilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding.Macromolecular Rapid Communications,1997,18(6):509-514
    [89] Y. Guan, S. Yang, Y. Zhang, et al. Fabry Perot Fringes and Their Application To Study theFilm Growth, Chain Rearrangement, and Erosion of Hydrogen-Bonded PVPON/PAAFilms. The Journal of Physical Chemistry B,2006,110(27):13484-13490
    [90] Y. Zhang, W. Cao. Stable Self-Assembled Multilayer Films of Diazo Resin and Poly(maleicanhydride-co-styrene) Based on Charge-Transfer Interaction. Langmuir,2001,17(16):5021-5024
    [91] Y. Shimazaki, M. Mitsuishi, S. Ito, et al. Preparation of the Layer-by-Layer DepositedUltrathin Film Based on the Charge-Transfer Interaction. Langmuir,1997,13(6):1385-1387
    [92] X. Zhang, H. Chen, H. Zhang. Layer-by-layer assembly: from conventional tounconventional methods. Chemical Communications,2007,(14):1395-1405
    [93] Z. An, G. Lu, H. M hwald, et al. Self-Assembly of Human Serum Albumin (HSA) andl-α-Dimyristoylphosphatidic Acid (DMPA) Microcapsules for Controlled Drug Release.Chemistry–A European Journal,2004,10(22):5848-5852
    [94] J. F. Quinn, A. P. R. Johnston, G. K. Such, et al. Next generation, sequentially assembledultrathin films: beyond electrostatics. Chemical Society Reviews,2007,36(5):707-718
    [95] Z. Tang, Y. Wang, P. Podsiadlo, et al. Biomedical Applications of Layer-by-LayerAssembly: From Biomimetics to Tissue Engineering. Advanced Materials,2006,18(24):3203-3224
    [96] S. S. Shiratori, M. F. Rubner. pH-Dependent Thickness Behavior of Sequentially AdsorbedLayers of Weak Polyelectrolytes. Macromolecules,2000,33(11):4213-4219
    [97] Q. Xing, S. R. Eadula, Y. M. Lvov. Cellulose Fiber Enzyme Composites Fabricatedthrough Layer-by-Layer Nanoassembly. Biomacromolecules,2007,8(6):1987-1991
    [98] Y. Kobayashi, J. Anzai. Preparation and optimization of bienzyme multilayer films usinglectin and glyco-enzymes for biosensor applications. Journal of ElectroanalyticalChemistry,2001,507(1-2):250-255
    [99] K. Yoshida, K. Sato, J. Anzai. Layer-by-layer polyelectrolyte films containing insulin forpH-triggered release. Journal of Materials Chemistry,2010,20(8):1546-1552
    [100] W. Tong, C. Gao. Multilayer microcapsules with tailored structures for bio-relatedapplications. Journal of Materials Chemistry,2008,18(32):3799-3812
    [101] Z. Ding, Y. Guan, Y. Zhang, et al. Layer-by-layer multilayer films linked with reversibleboronate ester bonds with glucose-sensitivity under physiological conditions. Soft Matter,2009,5(11):2302-2309
    [102] S. Ye, C. Wang, X. Liu, et al. New loading process and release properties of insulin frompolysaccharide microcapsules fabricated through layer-by-layer assembly. Journal ofControlled Release,2006,112(1):79-87
    [103] W. Qi, X. Yan, J. Fei, et al. Triggered release of insulin from glucose-sensitive enzymemultilayer shells. Biomaterials,2009,30(14):2799-2806
    [104] Z. Ding, Y. Guan, Y. Zhang, et al. Synthesis of glucose-sensitive self-assembled films andtheir application in controlled drug delivery. Polymer,2009,50(17):4205-4211
    [105] Y. F. Fan, Y. N. Wang, Y. G. Fan, et al. Preparation of insulin nanoparticles and theirencapsulation with biodegradable polyelectrolytes via the layer-by-layer adsorption.International Journal of Pharmaceutics,2006,324(2):158-167
    [106] Z. Tang, Y. Wang, P. Podsiadlo, et al. Biomedical Applications of Layer-by-LayerAssembly: From Biomimetics to Tissue Engineering. Advanced Materials,2007,19(7):906
    [107] B. G. De Geest, N. N. Sanders, G. B. Sukhorukov, et al. Release mechanisms forpolyelectrolyte capsules. Chemical Society Reviews,2007,36(4):636-649
    [108] J. Kost, R. Langer. Responsive polymeric delivery systems. Advanced Drug DeliveryReviews,2001,46(1-3):125-148
    [109] Z. Dai, A. Heilig, H. Zastrow, et al. Novel Formulations of Vitamins and Insulin byNanoengineering of Polyelectrolyte Multilayers around Microcrystals. Chemistry-AEuropean Journal,2004,10(24):6369-6374
    [110] Gemma Ibarz, Lars D hne, Edwin Donath. Smart Micro-and Nanocontainers for Storage,Transport, and Release. Advanced Materials,2001,13(17):1324-1327
    [111] Claire S. Peyratout and Lars Dahne. Tailor-Made Polyelectrolyte Microcapsules: FromMultilayers to Smart Containers. Angewandte Chemie International Edition,2004,43(29):3762-3783
    [112] B. G. De Geest, A. M. Jonas, J. Demeester, et al. Glucose-Responsive PolyelectrolyteCapsules. Langmuir,2006,22(11):5070-5074
    [113] S. De Koker, L. J. De Cock, P. Rivera-Gil, et al. Polymeric multilayer capsules deliveringbiotherapeutics. Advanced Drug Delivery Reviews,2011,63(9):748-761
    [114] X. Chen, W. Wu, Z. Guo, et al. Controlled insulin release from glucose-sensitiveself-assembled multilayer films based on21-arm star polymer. Biomaterials,2011,32(6):1759-1766
    [115] Z. Ding, Y. Guan, Y. Zhang, et al. Synthesis of glucose-sensitive self-assembled films andtheir application in controlled drug delivery. Polymer,2009,50(17):4205-4211
    [116] J. Blacklock, H. Handa, D. Soundara Manickam, et al. Disassembly of layer-by-layer filmsof plasmid DNA and reducible TAT polypeptide. Biomaterials,2007,28(1):117-124
    [117] R. M. Flessner, C. M. Jewell, D. G. Anderson, et al. Degradable Polyelectrolyte Multilayersthat Promote the Release of siRNA. Langmuir,2011,27(12):7868-7876
    [118] R. Smith, M. Riollano, A. Leung, et al. Layer-by-Layer Platform Technology forSmall-Molecule Delivery. Angewandte Chemie International Edition,2009,48(47):8974-8977
    [119] K. C. Wood, J. Q. Boedicker, D. M. Lynn, et al. Tunable Drug Release from HydrolyticallyDegradable Layer-by-Layer Thin Films. Langmuir,2005,21(4):1603-1609
    [120] K. Yoshida, H. Sato, S. Takahashi, et al. Preparation of Layer-by-layer Thin FilmsContaining Insulin and its pH-Sensitive Decomposition. Polymer journal,2007,40(2):90-91
    [121] G. K. Such, J. F. Quinn, A. Quinn, et al. Assembly of Ultrathin Polymer Multilayer Filmsby Click Chemistry. Journal of the American Chemical Society,2006,128(29):9318-9319
    [122] E. W. L. Chan, D. Lee, M. Ng, et al. A Novel Layer-by-Layer Approach to Immobilizationof Polymers and Nanoclusters. Journal of the American Chemical Society,2002,124(41):12238-12243
    [123] S. Xing, Y. Guan, Y. Zhang. Kinetics of Glucose-Induced Swelling of P(NIPAM-AAPBA)Microgels. Macromolecules,2011,44(11):4479-4486
    [124] A. Matsumoto, T. Kurata, D. Shiino, et al. Swelling and Shrinking Kinetics of TotallySynthetic, Glucose-Responsive Polymer Gel Bearing Phenylborate Derivative as aGlucose-Sensing Moiety. Macromolecules,2004,37(4):1502-1510
    [125] J. Wang, D. Gan, L. A. Lyon, et al. Temperature-Jump Investigations of the Kinetics ofHydrogel Nanoparticle Volume Phase Transitions. Journal of the American ChemicalSociety,2001,123(45):11284-11289
    [126] M. Antonietti, R. A. Caruso, C. G. G ltner, et al. Morphology Variation of Porous PolymerGels by Polymerization in Lyotropic Surfactant Phases. Macromolecules,1999,32(5):1383-1389
    [127] Toyoichi Tanaka and David J. Fillmore. Kinetics of swelling of gels. The Journal ofChemical Physics,1979,70(3):1214
    [128] X. Zhang, X. Xu, S. Cheng, et al. Strategies to improve the response rate of thermosensitivePNIPAAm hydrogels. Soft Matter,2008,4(3):385-391
    [129] R. Yoshida, K. Uchida, Y. Kaneko, et al. Comb-type grafted hydrogels with rapiddeswelling response to temperature changes. Nature,1995,374(6519):240-242
    [130] S. Mallam, F. Horkay, A. M. Hecht, et al. Scattering and swelling properties ofinhomogeneous polyacrylamide gels. Macromolecules,1989,22(8):3356-3361
    [131] Y. Zhang, Y. Guan, S. Zhou. Permeability Control of Glucose-Sensitive Nanoshells.Biomacromolecules,2007,8(12):3842-3847
    [132] H. Kim, S. W. Keller, T. E. Mallouk, et al. Characterization of ZirconiumPhosphate/Polycation Thin Films Grown by Sequential Adsorption Reactions. Chemistryof Materials,1997,9(6):1414-1421
    [133] A. Mamedov, J. Ostrander, F. Aliev, et al. Stratified Assemblies of Magnetite Nanoparticlesand Montmorillonite Prepared by the Layer-by-Layer Assembly. Langmuir,2000,16(8):3941-3949
    [134] F. J. Arregui, I. R. Matias, Y. Liu, et al. Optical fiber nanometer-scale Fabry-Perotinterferometer formed by the ionic self-assembly monolayer process. Optics Letters,1999,24(9):596-598
    [135] W. Lin, Y. Guan, Y. Zhang, et al. Salt-induced erosion of hydrogen-bonded layer-by-layerassembled films. Soft Matter,2009,5(4):860-867
    [136] M. Zhang, A. Smith, W. Gorski. Carbon Nanotube-chitosan System for ElectrochemicalSensing Based on Dehydrogenase Enzymes. Analytical Chemistry,2004,76(17):5045-5050
    [137] D. Jung, J. J. Magda, I. S. Han. Catalase Effects on Glucose-Sensitive Hydrogels.Macromolecules,2000,33(9):3332-3336
    [138] F. Moussy, S. Jakeway, D. J. Harrison, et al. In vitro and in vivo Performance and Lifetimeof Perfluorinated Ionomer-Coated Glucose Sensors after High-Temperature Curing.Analytical Chemistry,1994,66(22):3882-3888
    [139] A. P. Davis, R. S. Wareham. Carbohydrate Recognition through Noncovalent Interactions:A Challenge for Biomimetic and Supramolecular Chemistry. Angewandte ChemieInternational Edition,1999,38(20):2978-2996
    [140] S. L. Wiskur, H. Ait-Haddou, J. J. Lavigne, et al. Teaching Old Indicators New Tricks.Accounts of Chemical Research,2001,34(12):963-972
    [141] J. P. LORAND, J. O. EDWARDS. Polyol Complexes and Structure of the BenzeneboronateIon. The Journal of Organic Chemistry,1959,24(6):769-774
    [142] J. J. Lavigne, E. V. Anslyn. Teaching Old Indicators New Tricks: A ColorimetricChemosensing Ensemble for Tartrate/Malate in Beverages. Angewandte ChemieInternational Edition,1999,38(24):3666-3669
    [143] S. A. Barker, A. K. Chopra, B. W. Hatt, et al. The interaction of areneboronic acids withmonosaccharides. Carbohydrate Research,1973,26(1):33-40
    [144] K. Kataoka, H. Miyazaki, T. Okano, et al. Sensitive Glucose-Induced Change of the LowerCritical Solution Temperature ofPoly[N,N-(dimethylacrylamide)-co-3-(acrylamido)-phenylboronic acid] in PhysiologicalSaline. Macromolecules,1994,27(4):1061-1062
    [145] J. Yoon, A. W. Czarnik. Fluorescent chemosensors of carbohydrates. A means ofchemically communicating the binding of polyols in water based on chelation-enhancedquenching. Journal of the American Chemical Society,1992,114(14):5874-5875
    [146] T. D. James, K. R. A. S. Sandanayake, S. Shinkai. Angewandte Chemie InternationalEdition in EnglishAngew. Chem. Int. Ed. Engl.,1994,33(21):2207-2209
    [147] L. I. Bosch, T. M. Fyles, T. D. James. Binary and ternary phenylboronic acid complexeswith saccharides and Lewis bases. Tetrahedron,2004,60(49):11175-11190
    [148] Springsteen Greg, Wang Binghe. A detailed examination of boronic acid-diol complexation.Tetrahedron,2002,58(26):5291-5300
    [149] A. M. Horgan, A. J. Marshall, S. J. Kew, et al. Crosslinking of phenylboronic acid receptorsas a means of glucose selective holographic detection. Biosensors and Bioelectronics,2006,21(9):1838-1845
    [150] H. Otsuka, E. Uchimura, H. Koshino, et al. Anomalous Binding Profile of PhenylboronicAcid with N-Acetylneuraminic Acid (Neu5Ac) in Aqueous Solution with Varying pH.Journal of the American Chemical Society,2003,125(12):3493-3502
    [151] Jens Chr. Norrild, Inger S tofte. Design, synthesis and structure of new potentialelectrochemically active boronic acid-based glucose sensors. Journal of the ChemicalSociety, Perkin Transactions2J. Chem. Soc., Perkin Trans.2,2002,(2):303-311
    [152] S. L. Wiskur, J. J. Lavigne, H. Ait-Haddou, et al. pKa Values and Geometries of Secondaryand Tertiary Amines Complexed to Boronic AcidsImplications for Sensor Design. OrganicLetters,2001,3(9):1311-1314
    [153] A. Matsumoto, R. Yoshida, K. Kataoka. Glucose-Responsive Polymer Gel BearingPhenylborate Derivative as a Glucose-Sensing Moiety Operating at the Physiological pH.Biomacromolecules,2004,5(3):1038-1045
    [154] A. Matsumoto, S. Ikeda, A. Harada, et al. Glucose-Responsive Polymer Bearing a NovelPhenylborate Derivative as a Glucose-Sensing Moiety Operating at Physiological pHConditions. Biomacromolecules,2003,4(5):1410-1416
    [155] Tierney Sven, Falch Berit M. Hasle, Hjelme Dag Roar, et al. Determination of GlucoseLevels Using a Functionalized Hydrogel-optical Fiber Biosensor: Toward ContinuousMonitoring of Blood Glucose in Vivo. Analytical Chemistry,2009,81(9):3630-3636
    [156] S. Tierney, S. Volden, B. T. Stokke. Glucose sensors based on a responsive gel incorporatedas a Fabry-Perot cavity on a fiber-optic readout platform. Biosensors and Bioelectronics,2009,24(7):2034-2039
    [157] T. Hoare, R. Pelton. Charge-Switching, Amphoteric Glucose-Responsive Microgels withPhysiological Swelling Activity. Biomacromolecules,2008,9(2):733-740
    [158] M. P. A. E. PM Gallop. Boradeption: a new procedure for transferring water-insolubleagents across cell membranes. Science,1982,217(4555):166-169
    [159] Z. Y. Tang, Y. Wang, P. Podsiadlo, et al. Biomedical Applications of Layer-by-LayerAssembly: From Biomimetics to Tissue Engineering. Advanced Materials,2006,18(24):3203-3224
    [160] W. Zhang, A. Zhang, Y. Guan, et al. Silver-loading in uncrosslinked hydrogen-bonded LBLfilms: structure change and improved stability. Journal of Materials Chemistry,2011,21(2):548-555
    [161] Y. Guan, Y. Zhang, T. Zhou, et al. Stability of hydrogen-bondedhydroxypropylcellulose/poly(acrylic acid) microcapsules in aqueous solutions. Soft Matter,2009,5(4):842-849
    [1] Y. Liu, Y. Zhang, Y. Guan. New polymerized crystalline colloidal array for glucose sensing.Chemical Communications,2009,(14):1867
    [2] W. Qi, X. Yan, J. Fei, et al. Triggered release of insulin from glucose-sensitive enzymemultilayer shells. Biomaterials,2009,30(14):2799-2806
    [3] Z. Ding, Y. Guan, Y. Zhang, et al. Layer-by-layer multilayer films linked with reversibleboronate ester bonds with glucose-sensitivity under physiological conditions. Soft Matter,2009,5(11):2302-2309
    [4] Y. Guan, S. Yang, Y. Zhang, et al. Fabry Perot Fringes and Their Application To Study theFilm Growth, Chain Rearrangement, and Erosion of Hydrogen-Bonded PVPON/PAA Films.The Journal of Physical Chemistry B,2006,110(27):13484-13490
    [5] S. A. Asher, V. L. Alexeev, A. V. Goponenko, et al. Photonic Crystal CarbohydrateSensors: Low Ionic Strength Sugar Sensing. Journal of the American Chemical Society,2003,125(11):3322-3329
    [6] K. Kazunori, M. Hiroaki, B. Masayuki, et al. Totally Synthetic Polymer Gels Responding toExternal Glucose Concentration: Their Preparation and Application to On-Off Regulation ofInsulin Release. Journal of the American Chemical Society,1998,120(48):12694-12695
    [7] Y. Zhang, Y. Guan, S. Zhou. Synthesis and Volume Phase Transitions of Glucose-SensitiveMicrogels. Biomacromolecules,2006,7(11):3196-3201
    [8] V. L. Alexeev, A. C. Sharma, A. V. Goponenko, et al. High Ionic Strength Glucose-SensingPhotonic Crystal. Analytical Chemistry,2003,75(10):2316-2323
    [9] M. Ben-Moshe, V. L. Alexeev, S. A. Asher. Fast Responsive Crystalline Colloidal ArrayPhotonic Crystal Glucose Sensors. Analytical Chemistry,2006,78(14):5149-5157
    [10] J. I. Jay, K. Langheinrich, M. C. Hanson. Unequal stoichiometry between crosslinkingmoieties affects the properties of transient networks formed by dynamic covalent crosslinks.Soft Matter,2011,7(12):5826-5835
    [11] F. K. Sartain, X. Yang, and C. R. Lowe. Holographic Lactate Sensor. Analytical Chemistry,2006,78(16):5664-5670
    [12] R. Nishiyabu, Y. Kubo, T. D. James. Boronic acid building blocks: tools for self assembly.Chemical Communications,2011,47(4):1124-1150
    [13] M. Harmon, D. Kuckling, C. Frank. Photo-Cross-Linkable PNIPAAm Copolymers.2.Effects of Constraint on Temperature and pH-Responsive Hydrogel Layers. Macromolecules,2003,36(1):162-172
    [1] S. Tierney, B. Falch, D. Hjelme, and B. Stokke. Determination of Glucose Levels Using aFunctionalized Hydrogel-optical Fiber Biosensor: Toward Continuous Monitoring of BloodGlucose in Vivo. Analytical Chemistry,2009,81(9):3630-3636
    [2] Z. Ding, Y. Guan, Y. Zhang, et al. Layer-by-layer multilayer films linked with reversibleboronate ester bonds with glucose-sensitivity under physiological conditions. Soft Matter,2009,5(11):2302-2309
    [3] D. Kuckling, M. E. Harmon, C. W. Frank. Photo-Cross-Linkable PNIPAAm Copolymers.1.Synthesis and Characterization of Constrained Temperature-Responsive Hydrogel Layers.Macromolecules,2002,35(16):6377-6383
    [4] S. Tierney, D. R. Hjelme, B. T. Stokke. Determination of Swelling of Responsive Gels withNanometer Resolution. Fiber-Optic Based Platform for Hydrogels as Signal Transducers.Analytical Chemistry,2008,80(13):5086-5093
    [5] T. Tanaka, D. J. Fillmore. Kinetics of swelling of gels. The Journal of Chemical Physics,1979,70(3):1214-1218
    [6] M. E. Harmon, D. Kuckling, C. W. Frank. Photo-Cross-Linkable PNIPAAm Copolymers.2.Effects of Constraint on Temperature and pH-Responsive Hydrogel Layers. Macromolecules,2003,36(1):162-172
    [7] H. Feil, Y. Bae, J. Feijen, et al. Effect of comonomer hydrophilicity and ionization on thelower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules,1993,26(10):2496-2500
    [8] K. Kataoka, H. Miyazaki, T. Okano, et al. Sensitive Glucose-Induced Change of the LowerCritical Solution Temperature ofPoly[N,N-(dimethylacrylamide)-co-3-(acrylamido)-phenylboronic acid] in PhysiologicalSaline. Macromolecules,1994,27(4):1061-1062
    [9] M. Nichifor, X. X. Zhu. Copolymers of N-alkylacrylamides and styrene as newthermosensitive materials. Polymer,2003,44(10):3053-3060
    [1] Y. Guan, S. Yang, Y. Zhang, et al. Fabry Perot Fringes and Their Application To Study theFilm Growth, Chain Rearrangement, and Erosion of Hydrogen-Bonded PVPON/PAA Films.The Journal of Physical Chemistry B,2006,110(27):13484-13490
    [2] W. Lin, Y. Guan, Y. Zhang, et al. Salt-induced erosion of hydrogen-bonded layer-by-layerassembled films. Soft Matter,2009,5(4):860-867
    [3] Y. Guan, Y. Zhang, D. Zhou, et al. Stability of hydrogen-bondedhydroxypropylcellulose/poly(acrylic acid) microcapsules in aqueous solutions. Soft Matter,2009,5(4):842-849
    [4] Z. Ding, Y. Guan, Y. Zhang, et al. Layer-by-layer multilayer films linked with reversibleboronate ester bonds with glucose-sensitivity under physiological conditions. Soft Matter,2009,5(11):2302-2309
    [5] W. W. Bromer, S. K. Sheehan, A. W. Berns, et al. Preparation and Properties ofFluoresceinthiocarbamyl Insulins*. Biochemistry,1967,6(8):2378-2388
    [6] M. Lee, S. Kabilan, A. Hussain, et al. Glucose-Sensitive Holographic Sensors for MonitoringBacterial Growth. Analytical Chemistry,2004,76(19):5748-5755
    [7] D. Shiino, Y. Murata, K. Kataoka, et al. Preparation and characterization of aglucose-responsive insulin-releasing polymer device. Biomaterials,1994,15(2):121-128
    [8] D. Shiino, Y. Murata, A. Kubo, et al. Amine containing phenylboronic acid gel forglucose-responsive insulin release under physiological pH. Journal of Controlled Release,1995,37(3):269-276
    [9] F. Liu, S. C. Song, D. Mix, et al. Glucose-Induced Release of Glycosylpoly(ethylene glycol)Insulin Bound to a Soluble Conjugate of Concanavalin A. Bioconjugate Chemistry,1997,8(5):664-672
    [10] K. Hinds, J. J. Koh, L. Joss, et al. Synthesis and Characterization of Poly(ethyleneglycol) Insulin Conjugates. Bioconjugate Chemistry,2000,11(2):195-201
    [11] K. D. Hinds, K. M. Campbell, K. M. Holland, et al. PEGylated insulin in PLGAmicroparticles. In vivo and in vitro analysis. Journal of Controlled Release,2005,104(3):447-460
    [12] K. D. Hinds, S. W. Kim. Effects of PEG conjugation on insulin properties. Advanced DrugDelivery Reviews,2002,54(4):505-530
    [13] G. Springsteen, B. H. Wang. A detailed examination of boronic acid-diol complexation.Tetrahedron,2002,58(26):5291-5300
    [14] K. Kataoka, H. Miyazaki, T. Okano, et al. Sensitive Glucose-Induced Change of the LowerCritical Solution Temperature ofPoly[N,N-(dimethylacrylamide)-co-3-(acrylamido)-phenylboronic acid] in PhysiologicalSaline. Macromolecules,1994,27(4):1061-1062
    [15] W. B. Stockton, M. F. Rubner. Molecular-Level Processing of Conjugated Polymers.4.Layer-by-Layer Manipulation of Polyaniline via Hydrogen-Bonding Interactions.Macromolecules,1997,30(9):2717-2725
    [16] X. Zhang, Y. Guan, Y. Zhang. Ultrathin Hydrogel Films for Rapid Optical Biosensing.Biomacromolecules,2011,13(1):92-97
    [17] S. A. Asher, V. L. Alexeev, A. V. Goponenko, et al. Photonic Crystal CarbohydrateSensors: Low Ionic Strength Sugar Sensing. Journal of the American Chemical Society,2003,125(11):3322-3329
    [18] A. Matsumoto, R. Yoshida, K. Kataoka. Glucose-Responsive Polymer Gel BearingPhenylborate Derivative as a Glucose-Sensing Moiety Operating at the Physiological pH.Biomacromolecules,2004,5(3):1038-1045
    [19] T. Konno, K. Ishihara. Temporal and spatially controllable cell encapsulation using awater-soluble phospholipid polymer with phenylboronic acid moiety. Biomaterials,2007,28(10):1770-1777
    [20] K. Kataoka, H. Miyazaki, M. Bunya, et al. Totally Synthetic Polymer Gels Responding toExternal Glucose Concentration: Their Preparation and Application to On Off Regulationof Insulin Release. Journal of the American Chemical Society,1998,120(48):12694-12695
    [21] S. Xing, Y. Guan, Y. Zhang. Kinetics of Glucose-Induced Swelling of P(NIPAM-AAPBA)Microgels. Macromolecules,2011,44(11):4479-4486

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700