用户名: 密码: 验证码:
特厚煤层综放开采上覆岩层破坏规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于特厚煤层综放开采条件下重复采动作用其上覆岩体的破坏特点国内外研究较少,而上覆岩体移动与破坏高度直接涉及到导水裂隙带发育高度及其井下作业的安全。同时随着老虎台矿开采深度的增加和工作面向北推进,其地表沉陷区的面积也不断增大,许多建筑设施产生了变形和破坏,城区市政设施安全受到严重影响。因此,研究特厚煤层上覆岩体的移动及破坏规律具有重要的经济和社会意义。本论文以老虎台矿开采工程实践为例,针对特厚煤层的开采特点完成了如下研究内容:
     (1)结合老虎台矿区工程地质构造分布特性及岩体强度等影响因素,应用立体弹塑性数值模拟方法对综放条件下特厚煤层上覆岩体破坏规律、应力分布特点以及应力场演变规律进行了研究。
     (2)结合实测勘察资料对特厚煤层分层综放开采条件下上覆岩体移动与变形规律、以及上覆岩层导水裂隙带高度的演变特性及发展规律进行了研究。
     (3)基于模糊数学理论,建立老虎台矿地表移动变形预测方法。
     针对上述研究内容,本论文采取的研究方法主要包括:
     (1)结合老虎台矿区工程地质构造分布特性及岩体强度等影响因素,应用立体弹塑性数值模拟方法对综放条件下特厚煤层上覆岩体破坏规律、应力分布特点以及应力场演变规律进行了研究。
     (2)结合实测勘察资料对特厚煤层分层综放开采条件下上覆岩体移动与变形规律、以及上覆岩层导水裂隙带高度的演变特性及发展规律进行了研究。
     (3)基于模糊数学理论,建立老虎台矿地表移动变形预测方法。
The laws on upper rock mass deformation, failure and water flowing fractured zone development are closely-related to production safety of coal mining under water body, and relevant researches on these are rare. Due to this fact, the demands of the research on upper rock mass failure is getting much more strong. Meanwhile, as the process of underground mining year by year, the goaf area has been expanded to north and endangered the safety of the massive number of industrial and civil constructions in Fushun city. Many constructions have deformed or been destroyed to a great degree. In the circumstance, the research on upper rock mass movement seems very necessary.
     The main research researching contents include:
     (1) with reference to the geological features and other influencing factors, such as rock mass strength, etc.3-D numerical stimulation method is utilized to research the laws of upper rock mass failure, stress distribution and development and under the condition of top caving of especially thick coal seam.
     (2) with reference to the field measured data, researching the laws of upper rock mass deformation and movement and the heights and the laws of development of water flowing fractured zone under the condition top caving of especially thick coal seam.
     (3) establishing the subsidence projection formulas on fuzzy mathematics.
     In order to achieve above-mentioned academic goals, the methods applied in this thesis include:
     (1) building numerical stimulation model on geological conditions, rock strength and mining technology on the plot and analyzing the laws of upper rock mass failure and stress distribution on numerical stimulation results and other relevant data.
     (2) establishing the height and the laws of water flowing fractured zone development in the process of dynamic mining and analyzing the laws of upper rock mass movement and deformation on numerical stimulation and other data.
     (3) establishing relevant formulas to project subsidence and ground deformation on fuzzy mathematics and other data.
引文
[1]A. Bello Garcia. Parameter Optimization of Influence Function in Mining subsidence[J]. International Journal of Rock Mechanics and Mining Science,1997,553-534
    [2]Brauner. Subsidence due to underground mining[M]. Bureau of Mines,1973
    [3]Suo Yong-lu. Characteristics of ground behavior of fully mechanized caving faces in hard thick seams[J]. Journal of coal science & engineering,2003,125-29
    [4]Jiang Fuxing, Jiang Guoan. Theory and technology for hard roof control of longwall face in Chinese collieries[J]. Journal of coal science & engineering,1998,1-6
    [5]Coulthard M.A.. Constitutive Model of Creep in Rock salt Applied to Underground Room closure[J]. International Journal of Rock Mechanics and Mining Science,1997,221~228
    [6]Okubo.S. Local safety factor Applicable to Wide Rouge of Failure Criteria[J]. Rock Mechanics and Rock Engineering,1997,221~224
    [7]The effect of joint constitutive Laws on the modeling of an underground excavation and comparsion with in situ measuremen[J]. International Journal of Rock,1997,231~238
    [8]W. A. Houstrulid Editor. Undergound Mining Methods Handbook[M]. Society of Mining Engineer of AIME,1982
    [9]Kay, D.r. Report of the Angus place Subsidence Modelling Joint Case study[M]. NSw Department of Mineral Resources,1990
    [10]Coulthard. Numerical analysis if failed cemented fill at ZC/NBHC Mine[J]. In proceedings of 3rd Austrialia-New Zealand Geomecharics Conference.1980,145~151
    [11]Helmut Kratszch. Mining Subsidence Engineering[M]. Spring-verlag Berlin Hei-delberg, 1983
    [12]申宝宏,孔庆军.综放工作面覆岩破坏规律的观测研究[J].煤田地质与勘探,2000,10,42-44
    [13]杨贵.综放开采导水裂隙带高度及研究方法[D].青岛:山东科技大学,2004
    [14]孙世国.特厚煤层综放开采上覆岩体移动特点与破坏范围的研究[D].北京:北京科技大学博十后研究报告,2000
    [15]曾先贵,李文平,李洪亮,刘启蒙,姜广路.综放开采近断层导水断裂带发育规律研究[J].采矿与安全工程学报.2006,23(3):306-310
    [16]黄志安,童海方,张英华,李示波,倪文,宋建国,邢奕.采空区上覆岩体“三带”的界定准则和仿真确定[J].北京科技大学学报.2006,28(7):609-612
    [17]许明能,姚多喜,鲁海峰.五沟煤矿1011工作面开采“两带”高度发育的数值模拟分析[J].煤矿开采.2007,12(5):64~67
    [18]朱明华,邹俊兴.初采覆岩破坏性影响区的解析高度[J].焦作矿业学院学报.1995.4(2):83-88
    [19]钱呜高,石平五.矿山压力与岩层控制[J].北京:中国矿业大学出版社.2003
    [20]梁运培,文光才.顶板岩层“三带”划分的综合分析方法[J].煤炭科学技术.2000,28(5): 39
    [21]谭志祥,何国清.断层影响下导水裂隙带的发育规律[J].煤炭科学技术.1997.25(10):45-47
    [22]程金全.导水裂隙带发育高度研究[J].煤炭科技.2002(3):5-6
    [23]李文秀.《Fuzzy理论在采矿及岩土工程中的应用》[M].北京:冶金工业出版社,2004
    [24]《抚顺矿区地表与岩移观测资料综合分析报告》[M].抚顺:抚顺矿务局,1991
    [25]《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》[M].北京:煤炭工业出版社,1986
    [26]《煤矿岩层与地表移动》[M].北京:煤炭工业出版社,1981
    [27]李文秀,赵胜涛,梁旭黎,王晶.深基坑开挖地表移动变形分析的Fuzzy模型[J].岩石力学与工程学报,2005,24(2):5495-5497
    [28]李文秀,梁旭黎.山区隧道开挖岩体移动变形分析[J].路基工程,2006,6:13-14
    [29]李文秀,赵胜涛,梁旭黎.文家坪磷矿岩体移动预计分析[J].IM&P化工矿物与加工,2005,2:19~21
    [30]宋传文,柴正芳。放顶煤开采顶煤应力有限元分析[J].山东矿业学院学报,1999,18(2):20-31
    [31]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004:52-58
    [32]凌贤长,蔡德所.岩石力学[M].哈尔滨:哈尔并工业大学出版社,2002:5-7
    [33]张学言,闫澎旺.岩土塑性力学基础[M].天津:天津大学出版社,2003:70-80
    [34]Divis W F. Theories of plasticity and the failure of soil masses[M]. New York; Elsevier, 1968:341-354
    [35]Youg R N. Application of Plasticity and generalized stress-strain in geotechnical engineering[J]. New York:ASCE,1982
    [36]Bazant Z P. Mechanic og Geometerials[M], Rack, concrete, soil. New York; Wiley-Interscience,1983
    [37]俞茂宏,咎月稳,范文等.20世纪岩石强度理论的发展[J].岩石力学与工程学报,2000,19(5):545-549
    [38]肖桃李,邓雄.塑性屈服准则在岩土工程中的应用分析[J].西部探矿工程,2006(8):1-4
    [39]郑颖人,高红.岩土材料基本力学特性与屈服准则体系[J].建筑科学与工程学报,2007,24(2):1-5
    [40]陈津民.细观应力破坏准则和五大强度理论[J].地球与环境,2005(33):15-16
    [41]杨学强,刘祖德,何世秀.对岩上体屈服准则的探讨[J].湖北工学院学报,2003,18(6): 5-8
    [42]俞茂宏,M.Yoshimine,强洪大等.强度理论的发展和展望[J].工程力学,2004,21(6):1-20
    [43]史述昭,杨光华.岩体常用屈服函数的改进[J].岩土工程学报,1987,9(4):60-69
    [44]杨雪强.对一些角遇模型的认识[J].岩石力学,2004,25(4):16-20
    [45]孙世国等.矿山联合开采边坡岩体变形规律[J].北京:地震出版社,2000
    [46]孙世国,地下与露天复合采动效应及边坡变形机理[J].岩石力学与工程学报,1999(5):16-20
    [47]邹海,桂和荣,王桂梁等.综放开采导水裂隙带高度预测方法[J].煤田地质与勘探,1998,26(6):43-46
    [48]谭志祥,何国清.断层影响下导水裂隙带的发育规律[J].煤炭科学技术,1997,25(10):45-47
    [49]谭志祥,周鸣,李志恒.断层对“两带”影响的模拟研究[J].矿山压力与顶板管理,1999,16(2):74-76
    [50]蔡东.综放面“两带”高度发育特征.矿山压力与顶板管理[J],2000,17(1):68-69
    [51]易德礼.祁东煤矿3-224工作面开采“两带”高度特征研究[J].江苏煤炭,2004(3):37~39
    [52]隋旺华.开采覆岩破坏工程地质预测理论与实践[J].工程地质学报,1994,2(2):29~37
    [53]桂和荣,周庆富.综放开采最大导水裂隙带高度的应力法预测[J].煤炭学报,1997,22(4):375-379
    [54]刘佑荣,唐辉明.岩体力学[M].中国地质大学出版社,1999
    [55]吴华峰.模糊综合评判在岩体工程分类中的应用[J].西北水力发电,2002,3
    [56]曹胜根,缪协兴.超长综放工作面采场矿山压力控制[J].煤炭学报,2001,12,621-625
    [57]商兵营,李有强.顶板承压水下特厚煤层放顶煤开采技术的应用分析[J].煤矿机电,2000,5,96-98
    [58]康永华.兴隆庄煤矿提高回采上限的实验研究[J].煤炭学报,1995
    [59]康永华.采煤方法变革对导水裂缝带发育规律的影响[J].煤炭学报,1998
    [60]康永华.覆岩破坏规律的综合研究技术体系[J].煤炭科学技术,1997.11
    [61]钱鸣高.20年来采场围岩控制理论与实践回顾[J].中国矿业大学学报,2000
    [62]王金庄,郭增长.我国村庄下采煤的回顾与展望[J].中国煤炭,2002
    [63]尹增德.充州矿区放顶煤开采覆岩破坏规律探测研究[J].焦作工学院学报,1999.7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700