用户名: 密码: 验证码:
Matlab和VBA混合编程实现大气化学模式瞬态物种动力学的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气是一个非常复杂的化学体系,其中化学物种多,反应数量大,瞬态物种如自由基等反应速率快,寿命短,实验上难以实时在线连续地跟踪测定。采用模式数值计算方法模拟大气瞬态物种化学行为及其动力学是大气化学中一种重要的研究方法。
     本文利用Matlab与VBA混合编程技术,借助VBA宏工具,以Excel表单作为输入输出界面,编写了计算程序,用于实现大气化学模式中瞬态物种的浓度及其日变化的数值模拟。VBA程序通过读入Excel表单中的模式信息(包括反应物种、反应方程系数、反应物初始浓度、反应速率常数、基元反应等),按照Matlab的命令格式,建立两个m文件。一个m文件是函数文件,包含文件的函数名,根据模式所建立的常微分方程组的维数以及按照每个反应物种所建立的常微分方程。另一个是指令文件,用于在Matlab中求解前边的函数文件。用VBA程序启用Matlab ActiveX自动化服务功能,并用Execute方法执行指令文件,然后将Matlab的运算结果传输至VBA程序中的相应变量,进一步处理后输出至Excel表单中的相应位置。该程序界面简单,操作简便,运行速度快。采用建立的模式及程序分别计算了C_2H_4-O_3体系过氧自由基动力学曲线及HO_2自由基化学放大水效应曲线,结果与实验测定的曲线完全一致。另外,该程序还内置了灵敏度分析功能,可以用于分析单变量及双变量对模拟结果的影响。用于灵敏度分析的数据样本分别采用了正态分布与均匀分布。模拟结果显示正态分布所产生的数据样本更适合于灵敏度分析。采用单变量灵敏度方法分析了C_2H_4-O_3体系中HO_2和有机过氧自由基RO_2对各基元反应速率常数的灵敏度,确定了对反应产物最敏感的动力学参数。利用双变量灵敏度方法,确定引起水效应的基元反应的速率常数的变化范围,以及单萜烯和NO对大气臭氧生成速率P(O_3)的影响。建立了基于计数物种法的贡献度分析方法,用于分析机理中各基元反应对生成和消耗目标自由基的贡献。采用蒙特卡罗方法,利用随机数函数生成正态分布数据样本,用于模式计算时的误差传递分析,分析了C_2H_4-O_3体系中,当所有物种初始浓度、速率常数等参数均引入确定误差时,对模拟结果所造成的误差。
     尝试建立了模式机理自动生成方法并编写了实现这一方法的程序。该程序可以实现包含C、H、O三种元素体系的模式自动建立。发生反应的条件必须同时满足反应的吉布斯自由能判据及已有的反应规则。通过程序自动建立了反应体系中所有可能发生的反应。应用该方法于C_2H_4-O_3体系,所得到的机理与文献报道的基本一致。
     借助于有向图方法实现了对化学模式的结构分析,并通过该有向图初步分析了各反应物种在机理中的重要程度。利用程序计算得到了作有向图所需要的数据,并实现了自动作图,提出了反应物等级概念。
     在RACM(区域大气化学模式)模式基础上,加入了部分萜烯烃与O_3的反应,建立了可用于对流层大气瞬态物种的数值模拟的模式。该模式共有79个模式物种,239个基元反应。利用建立的模式及其程序分别计算了位于日本海的Rishiri岛及广州清远后花园大气中重要瞬态物种HO和HO_2自由基浓度及其日变化。对模式计算结果和观测数据进行了统计分析,结果表明模式计算得到的HO与HO_2浓度及其日变化与实测结果高度相关,模式计算与实验测定结果在方法误差范围内基本一致。
The atmosphere is a very complex system. It contains a great number of chemical species and reations.The transient species such as free radicals, is of faster reaction rate and short life. Numerical simulation was an important research method in atmospheric chemistry. It was used to calculate the concentration of transient species and simulate dynamics of atmospheric chemistry.
     With VBA and Matlab mix programming technology, used Excel forms as the input and output contact surface, compiled computational procedure, and used it in simulating the concentration and the diurnalvariation of the atmospheric transient state species. VBA procedure read the reaction mechanism information (including response species, response equation coefficient, reactant initial density, constant of action, elementary reaction and so on) in the Excel form, and established two m files. One m file is the function file. It included the function name, the ODEs' dimension and the ordinary differential equation. Another is the command file. It was used to solve the function file. And used VBA langues to begin the ActiveX automation service function of Matlab, and used the Execute method to execute order document. Then Matlab operation result was transmited to VBA variable, and output to the Excel form. Calculated the dynamics curve of peroxy radical and the water effect curve of HO_2 radical in C_2H_4-O_3 system, the results was consistent with the experiment. Program had been built-in function of sensitivity analysis; it can be used to analyze the influence of single variable and double variant to the analogue results. The data sample insensitivity analysis had been used normal distribution and uniform distribution separately. The analogue results showed that normal distribution was more suitable for insensitivity analysis. We used the single variable sensitivity analysis to analyze the sensitivity of various elementary reactions' rate constant to HO_2 and RO_2 in C_2H_4-O_3 system, and Ascertained variation range of the elementary reaction that caused water effect with double variant insensitivity analysis. Simultaneously ascertained the influence of monoterpenes and NO to the atmospheric ozone production speed P(O_3). Established contribution analysis method which based on the counting species method, used it in analyzing various elements reactions' production and consumption contribution to peroxy radical species. Using the Monte Carlo method and random number function, established error transmits analysis method, and analyzed that the error of analogue result when all parameters such as species initial concentration, rate constant were of 10% errors in the C_2H_4-O_3 system.
     Established the method of chemical reaction mechanism's computer auxiliary establishment, and compiled the corresponding program. The program can be used to establish the mechanism which contained only three elements ( C、H、O ). Used it in the C_2H_4-O_3 system and obtained a mechanism what was consistent with the literature result.
     With the aid of oriented graph, established the method to the chemical reaction mechanism's structure analysis, and analyzed each species' weightiness through this oriented graph; obtained all data which the oriented graph needed, and realized the automatic drawing; and put forward the concept of reactant rank..
     This article added the reactions of monoterpenes and O_3 in RACM (regional atmospheric chemistry mechanism), and established a box model which can be used in numerical simulation of the troposphere atmosphere transient state species. The model altogether had 79 model species, 239 elementary reactions. Simulated HO and HO_2 radical concentration and the diurnalvariation in clean atmospheric and pollution atmosphere separately, and analyzed the result using statistical analysis methods such as the relevant analysis, the analogue results and the actual results were of linear correlation, and the relevance was remarkable. The model results was consistent with the experiment results.
引文
[1] 王明星.大气化学[M].北京:气象出版社,1999:1-50.
    
    [2] 环境监测分析方法编写组编.空气和废气监测分析方法[M].北京:中国环境 科学出版社,1990:30.
    
    [3] 秦瑜,赵春生.大气化学基础[M].北京:气象出版社,2003:70.
    
    [4] 赵美萍,邵敏.环境化学[M].北京:北京大学出版社,2005:23.
    
    [5] 刘绮.环境化学[M].北京:化学工业出版社,2004:103-104.
    
    [6] H. Harder, W. Patz, A. Volz-Thomas. Measurements of nitrogen oxides, ozone,and carbon monoxide during the FIELDVOC'94 compaign in Tabua[J].Chemosphere-Global Chang Science, 2001, 3: 227-237.
    
    [7] D. S. Lee, I. Kohler, E. Grobler, F. Rohrer, R. Sausen, J. G J. Olivier, F. J.Denrener, A. F. Bouwman. Estimations of global NOx emissions and theiruncertainties[J]. Atmospheric Environment, 1997,31(12): 1735-1749.
    
    [8] H. S. Johnston, Reduction of stratospheric ozone by nitrogen oxide catalysts fromsupersonic transport exhausts[J]. Science, 1997,173-517.
    
    [9] M. J. Molina, F. S. Rowland. Stratospheric sink for cholrofluoromethanes:chlorine atom catalyzed destruction of ozone[J]. Nature, 1974, 249-810.
    
    [10] P. J. Fraser, D. E. Oram, C. E. Reeves. Southern hemisphere halon trends(1978-1998) and global halon emissions[J]. J. Geophys. Res., 1999, 1104:15985-15999.
    
    [11] R. M. Solomon, R. Dezafra. Diurnal variation of stratospheric chlorine monoxide :a critical test of chlorine chemistry in the ozone layer[J]. Science, 1984, 224: 1210-1220.
    
    [12] S. Solomon, The hole truth. Nature[J]. 2004, 427: 289-291.
    
    [13] S. Solomon, R. R. Gacia, F. S. Rowland. On the deletion of Antarctic ozone [J].Nature, 1986: 321-755.
    
    [14] P. J. Crutzen. My life with O_3, NO_x, and other YZO_x compounds (Nobel Lecture)[J]. Angew. Chew. Int. Ed. Engl., 1996, 35: 1758-1777.
    
    [15]唐孝炎,张远航,邵敏.大气环境化学[M].北京:高等教育出版社,2006: 584-632.
    
    [16] M. W. Gery. A photo-chemical mechanism for urban and regional scale computer??modeling[J]. J. Geophys. Res., 1989,94: 12925-12956.
    
    [17] W. P. L. Carter. A detailed mechanism for the gas-phase atmospheric reactions of organic compounds[J]. Atmospheric Environment, 1990, 24A: 481-518.
    
    [18]刘峻峰,李金龙,白郁华.大气化学模式的数值计算方法[J].环境科学研究, 2000,13(1):44-49.
    
    [19] W. R. Stockwell, P. Middleton, J. S. Chang. The second generation regional aciddeposition model chemical mechanism for regional air quality modeling[J]. J.Geophys. Res., 1990, 95: 16343-16367.
    
    [20] W. R. Stockwell, F. Kirchner, M. Kuhn. A new mechanism for regionalatmospheric chemistry modeling[J]. J Geophys Res, 1997,102: 25847-25879.
    
    [21] W. R. Stockwell, D. Kley. The Euro-RADM mechanism: A gas-phase chemicalmechanism for European air quality studies[C]. Forschungszentrurn Julich Gmbh(KFA), Julich. Germany, 1994.
    
    [22] M. W. Gery, G Z. Whitten, J. P. Killus. A photochemical kinetics mechanism forurban and regional scale computer modeling[J]. J. Geophys. Res., 1989, 94:12925-12956.
    
    [23] P. J. Builcjes. The LOTOS-Long tern ozone simulation project, summaryreport[R]. IMW-TNO Report 92/240, TNO, Ddft, The Netherlands, 1992.
    
    [24] R. M. Stern. Entwichlung und Anwendung eines ells mit verschiedenenchemischen Mechanismen[A]. In: Meteorologische Abhandlungen Vol.8. InstitutFur Meteorologie der Freien Universitat Berlin[C]. Verlag von Dietrich Reimer,Berlin, ISSN 0342. 4324, 1994.
    
    [25] J. B. Miliford, D. Gao, A. G Russell. Use sensitivity analysis to comparechemical mechanisms for air-quality modeling[J]. Environ. Sci. Technol., 1992,26: 1179-1189.
    
    [26] D. Simpson, S. Y. Andersson, M. E. Jenkin, Updating the chemical scheme forthe EME MSC-W oxidant model: current status[R]. EMEP MSC-W Note 2/93,Norwegian Meteorological Institute, Oslo, Norway, 1993.
    
    [27] D. Simpson. Biogenic emissions in Europe: implication for ozone controlstrategies[J]. J. Geophys. Res., 1995, 100: 22891-22906.
    
    [28] M. Pilling, S. Saunders, M. Jenkin. Tropospheric Chemistry Modelling[EB/OL].Downloaded from http://www.chem.leeds.ac.uk/Atmospherie/MCM/main.html.1998.
    
    [29] F. W. Lurmann, A. C. Lloyd, R. Atkinson. A chemical mechanism for use inLong-range transport/acid deposition computer modeling[J]. J. Geophys. Res.,1986,91: 10905-10936.
    
    [30] A. Strand, O.Hov. A two-dimensional global study of tropospheric ozoneproduction[J]. J. Geophys. Res., 1994, 99: 22877-22895.
    
    [31] S. Y. Andersson. Updating the chemical scheme for the IVL photochemicaltrajectory model[R]. IVL B1151, IVL, Goteborg, Sweden, 1995.
    
    [32] R. Ruhnke. Ein Verfabren zur analyse von chemischen reak tionssystemcal undzur erstellung von chemienodulen fur atmospherische model[Ph-D]. Thesis,University Essen. Germany, 1995.
    
    [33] M. Kuhn, P. J. H. Builtyes. Intercomparison for the gas-phase chemistry inseveral chemistry and transport models[J]. Atmos Environ, 1998, 32: 693-709.
    
    [34] P. Waraeck, Chemistry of the Natural Atmosphere[M]. Academic, San Diego,Calif, 1988.
    
    [35] E. D. Morris, H. Niki. Reaction of the nitrate radical with acetaldehyde andpropylene [J]. J. Phys. Chem., 1974, 78: 1337-1338.
    
    [36] S. M. Japar, H. Niki. Gas-phase reactions of the nitrate radical with olefins[J]. J.Phys. Chem., 1975, 79: 1629-1632.
    
    [37] U. Platt, D. Perner, A. M. Winer, G W. Harris, J. N. Pitts. Detection of NO_3 in thepolluted troposphere by differential optical absorption[J]. J. Geophys. Res. Lett.,1980, 7: 89-92.
    
    [38] W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J.Howard, A. R. Ravishankara, C. E. Kolb, M. J. Molina. Chemical kinetics andphotochemical data for use in stratospheric modeling[R]. Eval. 11, Natl. Aeronaut.and Space Admin., Jet Propul. Lab., Calif. Inst. of Technol., Pasadena, 1994.
    
    [39] R. P. Wayne. The nitrate radical: physics, chemistry, and the atmosphere[J].Atmos. Environ., 1991, 25A: 1-203.
    
    [40] G K. Moortgat, W. Klippel, K. H. Mobus, W. Seiler, P. Warneck. Laboratorymeasurement of photolytic parameters for formaldehyde[R]. Final Rep.FAA-EE-80-47, Washington. D. C, 1980.
    
    [41] C. A. Cantrell, J. A. Davidson, A. H. McDaniel, R. E. Shetter, J. G Calvert.Temperature-dependent formaldehyde cross sections in the near-ultravioletspectral region[J]. J. Phys. Chem., 1990, 94: 3902-3908.
    [42] R. D. Martinez, A. A. Buitrago, N. W. Howell, C. H. Hearn, J. A. Joens. The near U. V. absorption spectra of several aliphatic aldehydes and ketones at 300 K[J]. Atmos. Environ., 1992,26A: 785-792.
    [43] P. A. Giguere, A. W. Olmos. Sur le spectre ultraviolet de l'acide peracetique et l'ydrolyse des peracetates[J]. Can. J. Chem., 1956, 34: 689-691.
    [44] R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, J. Troe. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV, IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry[J]. J. Phys. Chem. Ref. Data, 1992,21: 1125-1568.
    [45] R. Atkinson, E. C. Tuazon, I. Bridier, J. Arey. Reactions of NO_3-naphthalene, adducts with O_2 and NO_2[J]. Environ. Sci. Technol., 1994, 28: 605-614.
    [46] T. A. Staffelbach, J. J. Orlando, G. S. Tyndall, J. G. Calvert. The UV-visible absorption spectrum and photolysis quantum yields of methylglyoxal[J]. J. Geophys. Res., 1995,100: 14189-14198.
    [47] E. P. Gardner, P. D. Sperry, J. G. Calvert. Photodecomposition of acrolein in O_2-N_2 mixtures[J]. J. Phys. Chem., 1987, 91: 1922-1930.
    [48] W. M. Uselman, S. Z. Levine, W. H. Chan, J. G. Calvert, J. H. Shaw. A kinetic study of the mechanism of peroxynitric acid formation in irradiated mixtures of chlorine, hydrogen, nitrogen dioxide and nitric oxide in air, in nitrogenous air pollutants[M]. Chemical and Biological Implications, edited by D. Grosjean, Ann Arbor Sci., Ann Arbor, Mich., 1979.
    [49] R. Atkinson. Evaluation of kinetic and mechanistic data for modeling of photochemical smog[J]. J. Phys. Chem. Ref. Data, 1984,13: 315-444.
    [50] S. E. Paulson, R. C. Flagan, J. H. Seinfeld, Atmospheric photooxidation of isoprene, I, The hydroxyl radical and ground state atomic oxygen reactions[J]. Int. J. Chem. Kinet., 1992, 24: 79-101.
    [51] R. J. Cvetanovic, Evaluated chemical kinetic data for the reactions of atomic oxygen O(~3P) with unsaturated hydrocarbons[J]. J. Phys. Chem. Ref. Data, 1987, 16: 261-326.
    [52] F. Kirchner, W. R. Stockwell. Isoprene and terpene oxidation mechanisms, in Proceedings of the EUROTRAC Symposium'96, Transport and Transformation of Pollutants in the Troposphere[C]. Volumel: Clouds, Aerosols, Modelling and Photooxidants, edited by P. M. Borrell et al., pp. 715-719, Comput. Mech. Publ.,??Southampton, England, 1996.
    
    [53] E. C. Tuazon, R. Atkinson. A product study of the gas phase reaction ofmethacrolein with the OH radical in the presence of NO_x[J]. Int. J. Chem. Kinet.,1990,22:591-602.
    
    [54] A. Bierbach. Produktuntersuchungen und Kinetik der OH-initiierten gasphaseno-xidationa romafischer Kohlenwasserstoffe sowie ausgewahlter carbonylischerFolgeprodukte[D]. Dissertation, Bergische Univ. Gesamthochschule Wuppertal,Wuppertal, Germany, 1994.
    
    [55] A. Bierbach, I. Barnes, K. H. Becker, E. Wiesen. Atmospheric chemistry ofunsaturated carbonyls: butendial, 4-oxo-2-pentenal, 3-hexene-2, 5-dione, maleicanhydride, 3H-furan-2-one, and 5-methyl-3H-furan-2-one[J]. Environ. Sci.Technol., 1994,28:715-729.
    
    [56] E. Wiesen. OH-initiierte oxidation von p-xylol und produktuntersuchungenanausgewaehlten carbonylverbindungen (1995)[D]. Dissertation, Bergische Univ.Gesamthochschule Wuppertal, Wuppertal, Germany, 1995.
    
    [57] E. Wiesen, I. Barnes, K. H. Becker. Study of the OH-initiated degradation of thearomatic photooxidation product 3, 4-dihydroxy-3-hexene-2, 5-dione[J].Environ. Sci. Technol., 1995, 29: 1380-1386.
    
    [58] D. Grosjean, E. L. Williams II. Gas phase reaction of the hydroxyl radical withthe unsaturated peroxyacyl nitrate CH_2=(CH_3)C(O)OONO_2[J]. Int. J. Chem.Kinet., 1993, 25: 921-929.
    
    [59] R. Atkinson, S. M. Aschmann, J. Arey. Formation of ringretaining products fromthe OH radical-initiated reactions of o-, m-, and p-xylene[J]. Int. J. Chem.Kinet., 1991,23:77-97.
    
    [60] L. Bras. Chemical Processes in Atmospheric Oxidation[M]. Springer-Verlag,New York, 1997.
    
    [61] F. Kirchner, W. R. Stockwell. Effect of peroxy radical reactions on the predictedconcentrations of ozone, nitrogenous compounds, and radicals[J]. J. Geophys.Res., 1996, 101:21007-21022.
    
    [62] P. D. Lightfoot, R. A. Cox, J. N. Crowley, M. Destriau, G D. Hayman, M. E.Jenkin, G. K. Moortgat, F. Zabel. Organic peroxy radicals: Kinetics, spectroscopyand tropospheric chemistry[J]. Atmos. Environ., 1992, 26A: 1806-1963.
    
    [63] S. Aloisio, J. S. Francisco, R. R. Friedl. Experimental evidence for the existence??of the HO_2-H_2O complex[J]. J. Phy. chem., 2000, 104: 6597-6601.
    
    [64] W. R. Stockwell, F. Kirchner, M. Kuhn. A new mechanism for regionalatmospheric chemistry modeling [J]. J. Geophys. Res., 1997,102: 25847-25879.
    
    [65] S. Y. Andersson. Updating the chemical scheme for the IVL photochemicaltrajectory model[R]. IVL Rep. B 1151, Swed. Environ. Res. Inst., Gotegory,Sweden, 1995.
    
    [66] M. E. Jenkin, S. M. Saunders, M. J. Pilling. Constructing a detailed chemicalmechanism for use in tropospheric chemistry models[R]. Report, AEA Technol.,Natl. Environ. Technol. Cent., Culham, England, 1996.
    
    [67] P. Middleton, W. R. Stockwell, W. P. L. Carter. Aggregation and analysis ofvolatile organic compound emissions for regional modeling[J]. Atmos. Environ.,1990, 24A: 1107-1133.
    
    [68] W. R. Stockwell, P. Middleton, J. S. Chang, X. Tang, The second Generationregional Acid Deposition Model chemical mechanism for regional air qualitymodeling[J]. J. Geophys. Res., 1990, 95: 16343-16367.
    
    [69] E. S. C. Kwok, R. Atkinson. Estimation of hydroxyl radical rate constants fir gasphase organic compounds using a structre reactivity relationship: an update[J].Atmos. Environ., 1995, 29: 1685-1695.
    
    [70] J. A. Leone. Analysis of the characteristics of complex chemical reactionmechanisms; application to photochemical smog chemistry[J]. Environ. Sci.Technol., 1984,18:280.
    
    [71] O. Horie, G K. Moortgat. Decomposition pathways of then excited criegeeintermediates in the ozonolysis of simole alkenes[J]. Atmos. Environ., 1991,25A:1881-1896.
    
    [72]A.T.巴拉班著.金晓龙,陈志鹤译.图论在化学中的应用[M].科学出版 社.1983.
    
    [73]沈济,赵倩雪,佟玉芹.图论在大气化学模式计算和灵敏度分析等中的应用 [J].环境科学进展,1999,7(6):153-165.
    
    [74] Y. Kanaya, K. Nakamura, S. Kato, J. Matsumoto, H. Tanimoto, H. Akimoto. Nighttime variations in HO_2 radical mixing ratios at Rishiri Island observed with elevated monoterpene mixing ratios[J]. Atmos. Environ., 2002, 36: 4929-4940.
    
    [75] Y. Kanaya, Y. Yokouchi, J. Matsumoto, K. Nakamura, S. Kato, H. Tanimoto, H. Furutani, K. Toyota, H. Akimoto. Implications of iodine chemistry for daytime HO_2 levels at Rishiri Island[J]. J. Geophys. Res. Lett., 2002, 29, 10. 1029/2001 GL 014061.
    [76] C. A. Cantrell, R. E. Shetter, J. A. Lind, A. H. McDaniel, J. G. Calvert, D. D. Parrish, F. C. Fehsenfeld, M. P. Buhr, M. J. Trainer. An improved chemical amplifier technique for peroxy radical measurements[J]. J. Geophys. Res., 1993, 98: 2897-2909.
    [77] B. Qi, A. Takami, S. Hatakeyama. Peroxy radical concentrations measured at a forest canopy in Nikko, Japan, in summer 2002[J]. J. Atmos. Chem., 2005, 52: 63-79.
    [78] X. Q. Li, B. Qi, L. M. Zeng, X. Y. Tang. Development and deployment of an instrument for measurement of atmospheric peroxy radical by chemical amplification[J]. Science in China, 2008, in press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700