用户名: 密码: 验证码:
高重频CO_2激光损伤HgCdTe晶体的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光辐照效应是目前国内外激光技术领域研究热点之一,HgCdTe晶体作为一种性能优异的红外光学材料,被广泛应用于红外探测器的制备。由于HgCdTe探测器在红外波段具有高探测率、响应波段可调以及工作温度范围较宽等优点,目前在国防军事、工业等领域得到了广泛的应用。高重频CO2激光长时间辐照下,HgCdTe材料或器件表面会发生多脉冲损伤。因此,研究HgCdTe材料或器件的多脉冲损伤机理,掌握高重频CO2激光作用下HgCdTe晶体的损伤规律是非常有意义的。
     本文系统地研究了脉冲调Q CO2激光辐照下HgCdTe晶体的多脉冲破坏机理,首先介绍了HgCdTe材料的结构、热学、光学和缺陷等基本特性,了解了HgCdTe材料的光学和热学参数;然后通过理论与实验相结合的方法,得到了高重频CO2激光作用下HgCdTe晶体的温升特性和损伤特性,给出了HgCdTe晶体温升、熔化阈值、熔化深度与激光重频、辐照时间的一般性规律;最后通过对损伤形貌和组分变化的测量以及应力的计算,得到了多脉冲CO2激光辐照下HgCdTe晶体的损伤机理。
     在研究过程中,我们取得了一些研究成果和创新性的结果结论。概括起来,本文的主要研究结果和结论如下:
     1.建立了强激光辐照HgCdTe晶体的一维热传导解析模型,从理论上计算得到了脉冲调Q CO2激光辐照下Hg0.826Cd0.174Te晶体的单脉冲熔化阈值、熔化时间和烧蚀深度;理论结果表明:对于ns激光而言,Hg0.826Cd0.174Te晶体的单脉冲熔化阈值约为31.8J/cm2。
     2.从理论和实验上研究了高重频CO2激光辐照Hg0.826Cd0.174Te晶体热损伤特性,分析了Hg0.826Cd0.174Te晶体温升特性和熔化阈值与激光重频和辐照时间的关系,研究结果表明:高重频CO2激光辐照下,Hg0.826Cd0.174Te晶体的温升过程和熔化阈值与激光重频的大小无关,晶体的熔化阈值应由平均功率密度来表征,且受辐照时间的影响,随着辐照时间的增加,晶体熔化阈值逐渐减小,然而当熔化阈值减小到某一值时,受热平衡的影响此时晶体的熔化阈值不再改变,其大小为0.95kW/cm2,理论模型与实验结果基本一致,进而证明了实验结论的正确性。
     3.分析了单脉冲和多脉冲下Hg0.826Cd0.174Te晶体表面的力学效应,理论结果表明:对于单脉冲激光,熔化前晶体表面主要受热应力和蒸发波压力作用,而熔化后晶体表面主要受蒸发波压力作用;而多脉冲下,由于激光峰值功率低,晶体表面的应力主要受激光热应力影响。通过对晶体损伤形貌分析可知:高重频CO2激光辐照下HgCdTe晶体的损伤应为热熔损伤,扫描电镜下晶体表面熔化现象明显且未发现有裂纹产生,应力分析结果支持实验结果。
     4.材料组分测量结果显示:损伤前后晶体组分变化明显,辐照区内出现了大量的O元素,随着辐照功率的增加,Hg元素的含量迅速减小,而Cd、Te和O元素的含量逐渐增加;分析认为Hg损失的主要原因是HgCdTe晶体中化学键Hg-Te键在激光热作用的影响下不稳定,易发生断裂,从而导致Hg蒸发,含量减少;而出现O元素主要是由于高温环境下晶体与空气中O2接触发生的氧化反应所致。
In recent years, laser irradiation effect is one of the most important researchfields. HgCdTe crystal is an infrared optical material of high performance and iswidely used to manufacture infrared detectors. Because of its high detectivity、adjustable response spectrum and wide operating temperature range in the infraredwavelengths, HgCdTe devices are widely used in the national defense, industry andother fields. In the prolonged irradiation of high repetition frequency CO2laser,HgCdTe materials or devices are damaged by multi-pulsed CO2laser. While damagemechanism of the materials or devices irradiated by multi-pulsed laser is differentfrom single pulsed laser. Therefore, it is very significant to obtain damage mechanismand characteristic of HgCdTe materials or devices in multi-pulsed laser irradiation.
     Damage mechanism of HgCdTe crystal irradiated by high repetition frequencyCO2laser is systematically studied in this thesis. Firstly, physics properties ofHgCdTe materials are introduced and thermal and optical parameters are obtained.Secondly, temperature rise and damage characteristics of HgCdTe crystal irradiated byhigh repetition frequency CO2laser are obtained by theoretical analysis andexperiments, a general rule on the temperature rise and damage characteristics isgiven. Finally, damage mechanism of HgCdTe crystal is analyzed by damagemorphology and the composition changes of the crystal and calculation of the stress.
     A few research results and innovative conclusions are obtained in our research.In summary, main research results and conclusions in this thesis are as follows:
     1. The unidimensional analytical model of HgCdTe crystal irradiated by highpower laser is set up. Melting threshold, melting time and ablation depth of Hg0.826Cd0.174Te crystal damaged by single pulsed CO2laser is calculated in the theroy.Theoretical results show that: melting threshold of Hg0.826Cd0.174Te crystal damagedby single pulsed CO2laser is31.8J/cm2.
     2. Damage characteristics for the onset of surface melting was investigatedtheoretically and experimentally on Hg0.826Cd0.174Te crystal irradiated by highrepetition frequency CO2laser. The impact of repetition frequency and irradiationtime on damage threshold was analyzed. The results show that melting threshold isindependent of laser repetition frequency and gradually reduces with the increase ofirradiation time. While once melting threshold is less than a constant value,the valueof which is0.95kW/cm2, melting threshold of the crystal never change. In addition,damage threshold calculated by theoretical model is in good agreement with theexperimental datas.
     3. Mechanical characteristics of Hg0.826Cd0.174Te crystal irradiated by singlepulsed laser and multi-pulsed laser are calculated. Theoretical results show that stresson the crystal surfaceirradiated by single pulse laser is mainly thremal stress andevaporation pressure before melting and thremal stress after melting, while stress onthe crystal surfaceirradiated by multi-pulsed laser is mainly thremal stress because oflow peak power density. In addition, SEM results show that the main way ofHg0.826Cd0.174Te crystal damaged by multi-pulsed laser is melting damage, meltingand solidification phenomenon are very obvious on the crystal surface, and theobvious crack which is caused by thermal stress was not found. Theoretical results arein good agreement with the experimental results
     4. Chemical component measurement results show that chemical compositionchanges of the crystal are obvious, and a lot of O element is found in the laser ablationzone. With the increase of laser irradiation power, the content of Hg element decreaserapidly, the content of Cd、Te and O element raise by degrees, and chemicalcomposition changes of the crystal are more and more obvious. The main cause of Hgloss at A and B point is that the Hg-Te key in the crystal is not stable and easily breaks.O element on the crystal surface mainly is from oxidation when the crystal isirradiated by pulsed CO2laser.
引文
[1]李永强,黄存友.激光技术的应用研究进展[J].装备制造技术,2013,87-88.
    [2]孟献丰,陆春华,倪亚茹,等.激光技术的应用与防护[J].红外与激光工程,2005,34(2),136-141.
    [3]沈自才,崔云,牛锦超.激光技术在航天工程中的应用及对策[J].红外与激光工程,2012,41(10),2703-2711.
    [4] J. J. Degnan. Millimeter accuracy satellite laser ranging: a review [J]. Geodynamics Series,1993,25,133-162.
    [5]侯利冰,黄庚华,况耀武,等.光子计数激光测距技术研究[J].科学技术与工程,2013(18),5186-5190.
    [6] J. E. Vornehm, A. Schweinsberg, Z. Shi et al. Phase locking of multiple optical fiber channelsfor a slow-light-enabled laser radar system [J]. Optics express,2013,21(11),13094-13104.
    [7] F. Shipeng, L. Defu, W. Jinran et al. Error analysis and correction for hardware-in-the-loopsimulation system of laser guidance weapon [J]. Infrared and Laser Engineering,2013,4,013.
    [8]王云萍,张海洋,郑星元,等.高重频激光对激光制导武器的干扰机理分析[J].激光技术,2014,38(1).
    [9] R. Dong, Y. Ai, Z. Xiong et al. Experiment and analysis of the effect of fine tracking system onthe unstable platform in laser communication [J]. Optoelectronics Letters,2013,9,301-304.
    [10]张靓,郭丽红,刘向南,等.空间激光通信技术最新进展与趋势[J].飞行器测控学报,2013,32(4),286-293.
    [11]汪之国,龙兴武,王飞.四频差动激光陀螺综述[J].激光与光电子学进展,2012,49(4),34-41.
    [12] M. Olson. History of laser weapon research.(DTIC Document,2012).
    [13] P. Sprangle. Laser Weapons for Naval Applications [M]. Naval Research LAB WashingtonDC,2012.
    [14] P. Bratt, S. Johnson, D. Rhiger et al. Historical perspectives on HgCdTe material and devicedevelopment at Raytheon Vision Systems [C]. SPIE Defense, Security, and Sensing,2009,72982U.
    [15] A. Rogalski. HgCdTe infrared detector material: history, status and outlook [J]. Reports onProgress in Physics,2005,68(10),2267-2336.
    [16]李修乾.激光辐照碲镉汞光电探测器实验研究[D]:[硕士论文].长沙:国防科学技术大学,2002.
    [17]王思雯,郭立红,赵帅,等.高功率CO2激光对远场HgCdTe探测器的干扰实验[J].光学精密工程,2010,18(4),798-804.
    [18] T. H. Maiman. Stimulated optical radiation in ruby [J].1960.
    [19] C. K. Patel. Interpretation of CO2Optical Maser Experiments [J]. Physical Review Letters,1964,12(24),684.
    [20] C. K. Patel. Selective Excitation Through Vibrational Energy Transfer and Optical MaserAction in N2-CO2[J]. Physical Review Letters,1964,13(21),617.
    [21] C. K. Patel, P. K. Tien, J. H. McFee. CW High-power CO2-N2-He LASER [J]. AppliedPhysics Letters,1965,7(11),290-292.
    [22]郭劲,李殿军,王挺峰,等.高功率CO2激光器及其应用技术[M].北京:科学出版社,2013
    [23]谢冀江,李殿军,张传胜,等.声光调Q CO2激光器[J].光学精密工程,2009,17(5),1008-1013.
    [24]孟范江,郭立红,杨贵龙,等.大功率TEA CO2激光器系统中电磁干扰的抑制[J].强激光与粒子束,2008,20(2),177-181.
    [25]孟范江,杨贵龙,李殿军,等.大功率脉冲TEA CO2激光器控制系统设计[J].激光与红外,2010,40(8),843-846.
    [26]邵明振,邵春雷,卢启鹏,等.高功率TEA CO2激光器主机结构优化设计[J].发光学报,2013,34(3),388-393.
    [27] S. Marcus, G. M. Carter. Electrooptically Q-switched CO2waveguide laser [J]. Applied optics,1979,18(16),2824-2826.
    [28] R. C. McMillan, R. B. Davidson, R. L. Robertson et al. Light-weight low-volume CO2ladartechnology [C]. SPIE's1995Symposium on OE/Aerospace Sensing and Dual Use Photonics,1995,132-141.
    [29] T. Znotins, S. Byron, S. Moody et al. Intracavity plasma shutter for transversely excited CO2lasers [J]. Review of scientific instruments,1984,55(6),869-872.
    [30]王骐,田兆硕,王雨三,等.电光调Q射频激励波导CO2激光器[J].中国激光,2000,22,97-100.
    [31]杨泽后,周鼎富,陈建国,等.波导CO2激光器电光腔倒空特性研究[J].激光技术,2004,28(5),485-487.
    [32]王建银,周鼎富,陈建国,等.脉宽可控的腔倒空射频波导CO2激光器[J].激光技术,2007,31(1),25-28.
    [33]杨文林,贺耀坤.声光Q开关波导CO2激光器[J].激光技术,1991,15(1),9-13.
    [34]李军建,陈文友.声光调Q准波导CO2激光器[J].中国激光,1995,22(3),195-198.
    [35] J. J. Xie, R. H. Guo, D. J. Li et al. Theoretical calculation and experimental study ofacousto-optically Q-switched CO2laser [J]. Optics express,2010,18(12),12371-12380.
    [36] J. J. Xie, Q. K. Pan. Acousto-Optically Q-Switched CO2Laser [J]. Laser Systems forApplications. Rijeka. InTech,2012,17-38.
    [37]谢冀江,潘其坤,李殿军,等.声光调Q CO2激光器的理论计算和实验研究[J].中国激光,2011,38(2),30-36.
    [38]陈飞,孟绍贤.光学材料破坏机理[J].物理学进展,1998,18(2),187-206.
    [39]牛燕雄.光电系统的强激光破坏及防护技术研究[D]:[博士论文].天津:天津大学,2005.
    [40]邱荣.强激光诱导光学元件损伤的研究[D]:[硕士论文].北京:中国工程物理研究院,2013.
    [41]孙承纬,陆启生,范正修.激光辐照效应[M].北京:国防工业出版社,2002.
    [42] V. Bespalov, V. Talanov. Filamentary structure of light beams in nonlinear liquids [J]. ZhETFPisma Redaktsiiu,1966,3,471.
    [43] E. S. Bliss, J. T. Hunt, P. Renard et al. Effects of nonlinear propagation on laser focusingproperties [J]. Journal of Quantum Electronics,1976,12(7),402-406.
    [44] B. R. Suydam. Effect of refractive-index nonlinearity on the optical quality of high-powerlaser beams [J]. Journal of Quantum Electronics,1975,11(6),225-230.
    [45] A. Campillo, S. Shapiro, B. Suydam. Periodic breakup of optical beams due to self‐focusing[J]. Applied Physics Letters,2003,23(11),628-630.
    [46] H. S. Carslaw, J. C. Jaeger. Conduction of heat in solids [M].Oxford: Clarendon Press,1959.
    [47] R. Hopper, D. R. Uhlmann. Mechanism of inclusion damage in laser glass [J]. Journal ofApplied Physics,2003,41(10),4023-4037.
    [48] T. W. Walker, A. H. Guenther, P. Nielsen. Pulsed laser-induced damage to thin-film opticalcoatings-part I: experimental [J]. IEEE Journal of Quantum Electronics,1981,17(10),2041-2052.
    [49]沈中华.激光对半导体材料热作用的理论计算[J].光电子.激光,1998,9(4),344-346.
    [50]沈中华,陆建.强激光作用下半导体材料的加热与熔融的解析计算[J].中国激光,1998,25(7),632-636.
    [51] D. R. Rhiger, S. Sen, E. E. Gordon. Strain relief in epitaxial HgCdTe by growth on areticulated substrate [J]. Journal of Electronic Materials,2000,29(6),669-675.
    [52] P. Tribolet, S. Blondel, P. Costa et al. MWIR focal plane arrays made with HgCdTe grown byMBE on germanium substrates [C]. Defense and Security Symposium,2006,62062F.
    [53]蓝慕杰,叶水驰,鲍海飞,等.在横向磁场中用Bridgman法生长HgCdTe晶体[J].材料研究学报,2009,14(1),76-81.
    [54] M. Chu. Effects of annealing on Hg0.79Cd0.21Te epilayers [J]. Journal of Applied Physics,2008,51(11),5876-5879.
    [55] S. Farrell, M. V. Rao, G. Brill et al. Effect of Cycle Annealing Parameters on DislocationDensity Reduction for HgCdTe on Si [J]. Journal of electronic materials,2011,40(8),1727-1732.
    [56]陈传松. HgCdTe脉冲激光损伤机理及等离子体特性研究[D]:[博士论文].济南:山东师范大学,2007.
    [57]刘玫.脉冲激光沉积(PLD)碲镉汞(HgCdTe)薄膜材料结构特性的研究[D]:[硕士论文].济南:山东师范大学,2009.
    [58] C. S. Chen, A. Liu, G. Sun et al. Analysis of laser damage threshold and morphologicalchanges at the surface of a HgCdTe crystal [J]. Journal of Optics A: Pure and Applied Optics,2006,8(1),88-92.
    [59] W. Tang, J. Guo, J. Shao et al. Analysis of damage threshold on HgCdTe crystal irradiated bymulti-pulsed CO2laser [J]. Optics&Laser Technology,2014,58,172-176.
    [60] X. G. Wu, X. R. Hu, Z. P. Liu et al. Pulsed-laser-induced damage on the HgCdTe surface [C].SPIE: International Symposium on Optics, Imaging, and Instrumentation,1994,192-197.
    [61]蔡虎,程祖海,朱海红,等.脉冲强激光破坏Hg0.8Cd0.2Te晶片材料的机理分析[J].强激光与粒子束,2006,18(6),927-930.
    [62]戚树明,陈传松,郭娟,等.准分子激光对半导体材料HgCdTe和Si的损伤实验研究[J].激光杂志,2009,29(6),72-74.
    [63] A. Rogalski. History of infrared detectors [J]. Opto-Electronics Review,2012,20(3),279-308.
    [64]曹扬,金伟其,王霞,等.短波红外焦平面探测器及其应用进展[J].红外技术,2009,31(2),63-68.
    [65]乔辉,周文洪,叶振华,等.碲镉汞光伏型探测器的氢化处理研究[J].红外与毫米波学报,2007,26(5),326-328.
    [66]种明,苏艳梅,张艳冰,等.160×128元多量子阱长波红外焦平面探测器件研制[J].2007.
    [67] Y. X. He, H. M. Jiang. Abnormal response of PV-type HgCdTe detector under intense laserirradiation [J]. High Power Laser and Particle Beams,2008,8,1-8.
    [68] S. Qi, L. L. Li. Numerical Simulation of Dynamic Response of PC-Type HgCdTe DetectorIrradiated by in-Band and Out-of-Band Laser Beams [J]. Acta Optica Sinica,2008,10,25-36.
    [69] S. W. Wang, L. H. Guo, S. H. Zhao et al. Experiments of high-power CO2laser disturbanceto far-field HgCdTe detectors [J]. Opt. Precision Eng,2010,18(4),798-804.
    [70]戚树明.不同波长脉冲激光与半导体材料HgCdTe和Si相互作用研究[D]:[硕士论文].济南:山东师范大学,2009.
    [71]戚树明,陈传松,周新玲,等.准分子激光辐照HgCdTe半导体材料的损伤机理研究[J].量子光学学报,2009,15(1),76-83.
    [72] L. Golovan, B. Markov, P. Kashkarov et al. Evaporation effect on laser induced solid–liquidphase transitions in CdTe and HgCdTe [J]. Solid state communications,1998,108(10),707-712.
    [73] F. Bartoli, L. Esterowitz, R. Allen et al. A generalized thermal model for laser damage ininfrared detectors [J]. Journal of Applied Physics,2008,47(7),2875-2881.
    [74] F. Bartoli, L. Esterowitz, M. Kruer et al. Thermal recovery processes in laser irradiatedHgCdTe (PC) detectors [J]. Applied optics,1975,14(10),2499-2507.
    [75] F. Bartoli, L. Esterowitz, M. Kruer et al. Irreversible laser damage in IR detector materials [J].Applied optics,1977,16(11),2934-2937.
    [76] F. Bartoli, L. Esterowitz, M. Kruer et al. Thermal modelling of laser damage in8–14μmHgCdTe photoconductive and PbSnTe photovoltaic detectors [J]. Journal of Applied Physics,1978,46(10),4519-4525.
    [77] J. Zhao, X. Li, H. Liu et al. Damage threshold of HgCdTe induced by continuous-waveCO2laser [J]. Applied physics letters,1999,74(8),1081-1083.
    [78] A. Garg, A. Kapoor, K. Tripathi et al. Laser induced damage studies in mercury cadmiumtelluride [J]. Optics&Laser Technology,2007,39(7),1319-1327.
    [79] A. Garg, A. Kapoor, K. N. Tripathi et al. Multiple-pulse laser-induced damage in mercurycadmium telluride and cadmium telluride with a1.06μm laser in picosecond regime [C]. SPIE:Boulder Damage Symposium,2004,303-308.
    [80] V. V. Semak, J. G. Thomas, B. R. Campbell. Drilling of steel and HgCdTe with thefemtosecond pulses produced by a commercial laser system [J]. Journal of Physics D: AppliedPhysics,2004,37(20),2925.
    [81] M. M. Jevit, M. J. epanovi. Melting and solidification in laser-irradiated HgCdTe [J].Applied Physics A,1991,53(4),332-338.
    [82] F. X. Zha, M. S. Li, J. Shao et al. Femtosecond laser-drilling-induced HgCdTe photodiodes[J]. Optics letters,2010,35(7),971-973.
    [83] F. X. Zha, S. M. Zhou, H. L. Ma et al. Laser drilling induced electrical type inversion invacancy-doped p-type HgCdTe [J]. Applied Physics Letters,2008,93(15),1511-1513.
    [84] H. Cai, Z. Cheng, H. Zhu et al. Fracture mechanisms of Hg0.8Cd0.2Te induced by pulsed TEACO2laser [J]. Applied surface science,2005,252(5),1685-1692.
    [85]蔡虎. TEA CO2脉冲强激光对Hg0.8Cd0.2Te晶片的破坏研究[D]:[博士论文].武汉:华中科技大学,2005.
    [86] M. epanovi, M. Jevti. Numerical simulations of mercury diffusion in HgCdTe duringlaser annealing [J]. physica status solidi (a),1994,143(2),289-295.
    [87]蔡虎,程祖海,朱海红,等.在TEA CO2强激光脉冲作用下Hg0.8Cd0.2Te晶片表面的组分变化[J].红外与毫米波学报,2006,25(3).
    [88]段晓峰,牛燕雄.激光辐照HgCdTe探测器的温度场数值分析[J].光电子激光,2003,14(2),191-193.
    [89] J. Chu, A. Sher. Physics and properties of narrow gap semiconductors [M]. Springer,2007.
    [90] P. W. Kruse. The emergence of Hg1-xCdxTe as a modern infrared sensitive material [J].Semiconductors and Semimetals,1981,18,1-20.
    [91] P. Capper. Properties of narrow gap cadmium-based compounds [M]. Iet,1994.
    [92] W. Higgins, G. Pultz, R. Roy et al. Standard relationships in the properties of Hg1-xCdxTe [J].Journal of Vacuum Science&Technology A,1989,7(2),271-275.
    [93] A. Ksendzov, F. H. Pollak, J. Wilson et al. Electroreflectance study of the temperaturedependence of the E1transition of Hg0.65Cd0.35Te [J]. Journal of applied physics,1989,66(11),5528-5531.
    [94]褚君浩.窄禁带半导体物理学[M].北京:科学出版社,2005.
    [95] G. L. Hansen, J. L. Schmit. Calculation of intrinsic carrier concentration in Hg1-xCdxTe [J].Journal of Applied Physics,1983,54(3),1639-1640.
    [96] G. L. Hansen, J. L. Schmit, T. N. Casselman. Energy gap versus alloy composition andtemperature in Hg1-xCdxTe [J]. Journal of Applied Physics,1982,53(10),7099-7101.
    [97] J. H. Chu, S. Xu, D. Y. Tang. Energy gap versus alloy composition and temperature inHg1-xCdxTe [J]. Applied physics letters,1983,43(11),1064-1066.
    [98] J. Laurenti, J. Camassel, A. Bouhemadou et al. Temperature dependence of the fundamentalabsorption edge of mercury cadmium telluride [J]. Journal of applied physics,1990,67(10),6454-6460.
    [99] E. Finkman, S. E. Schacham. The exponential optical absorption band tail of Hg1-xCdxTe [J].Journal of applied physics,1984,56(10),2896-2900.
    [100] J. J. Dubowski, T. Dietl, W. Szymańska et al. Electron scattering in CdxHg1-xTe [J]. Journalof Physics and Chemistry of Solids,1981,42(5),351-362.
    [101] M. Gambino, V. Vassiliev, J. Bros. Molar heat capacities of CdTe, HgTe and CdTe-HgTealloys in the solid state [J]. Journal of alloys and compounds,1991,176(1),13-24.
    [102] Y. S. Shiraida, M. Paulson, T. Rosadiuk et al. Pulsed Q-switched CO2waveguide laser [J].Review of scientific instruments,1992,63(7),3575-3578.
    [103] C. H. Su. Heat capacity, enthalpy of mixing, and thermal conductivity of Hg1-xCdxTepseudobinary melts [J]. Journal of crystal growth,1986,78(1),51-57.
    [104] P. Capper, J. Brice. Properties of mercury cadmium telluride [M].UK: IEE,1987.
    [105] D. Bagot, R. Granger, S. Rolland. Thermal expansion coefficient and bond strength inHg1-xCdxTe and Hg1-xZnxTe [J]. physica status solidi (b),1993,177(2),295-308.
    [106] O. Caporaletti, G. M. Graham. The low-temperature thermal expansion of Hg1-xCdxTe alloys[J]. Applied Physics Letters,1981,39(4),338-339.
    [107] K. Liu, J. Chu, D. Tang. Composition and temperature dependence of the refractive index inHg1-xCdxTe [J]. Journal of applied physics,1994,75(8),4176-4179.
    [108] B. Jensen, A. Torabi. Linear and nonlinear intensity dependent refractive index ofHg1-xCdxTe [J]. Journal of applied physics,1983,54(10),5945-5949.
    [109] H. Cui, Z. Li, Z. Liu et al. Modulation of the two-photon absorption by electric fields inHgCdTe photodiode [J]. Applied Physics Letters,2008,92(2),021128-021128-021123.
    [110] Y. Chang, G. Badano, J. Zhao et al. Near-bandgap infrared absorption properties of HgCdTe[J]. Journal of electronic materials,2004,33(6),709-713.
    [111] J. H. Chu, Z. Y. Mi, D. Y. Tang. Band to band optical absorption in narrow gap Hg1-xCdxTesemiconductors [J]. Journal of applied physics,1992,71(8),3955-3961.
    [112] E. Finkman, Y. Nemirovsky. Infrared optical absorption of Hg1-xCdxTe [J]. Journal ofApplied Physics,2008,50(6),4356-4361.
    [113]李标,褚君浩,常勇,等. Hg1-xCdxTe禁带以上的本征光吸收[J].物理学报,1996,45(5),747-753.
    [114] S. E. Schacham, E. Finkman. Recombination mechanisms in p-type HgCdTe: Freezeout andbackground flux effects [J]. Journal of applied physics,1985,57(6),2001-2009.
    [115] J. H. Chu, B. Li, K. Liu et al. Empirical rule of intrinsic absorption spectroscopy inHg1-xCdxTe [J]. Journal of applied physics,1994,75(2),1234-1235.
    [116] V. Nathan. Optical absorption in Hg1-xCdxTe [J]. Journal of applied physics,1998,83(5),2812-2814.
    [117]曾冬梅. CdZnTe晶体的缺陷分析及应力测试[D]:[硕士论文].西安:西北工业大学,2005.
    [118] M. A. Berding, A. Sher, A. B. Chen. Vacancy formation and extraction energies insemiconductor compounds and alloys [J]. Journal of applied physics,1990,68(10),5064-5076.
    [119] M. A. Berding, M. Van Schilfgaarde, A. Sher. First-principles calculation of native defectdensities in Hg0.8Cd0.2Te [J]. Physical Review B,1994,50(3),1519.
    [120]孙立忠,陈效双,周孝好,等.碲镉汞材料中Hg空位缺陷的第一性原理研究[J].物理学报,2005,54(4),1756-1761.
    [121]刘铭,周立庆.碲镉汞液相外延薄膜典型缺陷及其起源分析[J].激光与红外,2009,39(3),280-284.
    [122]曹秀亮. HgCdTe薄膜材料缺陷的研究现状[J].红外,2006,27(8),27-32.
    [123] T. Sasaki, N. Oda. Dislocation reduction in HgCdTe on GaAs by thermal annealing [J].Journal of applied physics,1995,78(5),3121-3124.
    [124]于梅芳,杨建荣,王善力,等.分子束外延HgCdTe薄膜位错密度的研究[J].半导体学报,1999,20(5),378-378.
    [125] R. Koestner, H. Schaake. Kinetics of molecular-beam epitaxial HgCdTe growth [J]. Journalof Vacuum Science&Technology A,1988,6(4),2834-2839.
    [126] T. Aoki, Y. Chang, G. Badano et al. Electron microscopy of surface-crater defects onHgCdTe/CdZnTe (211) B epilayers grown by molecular-beam epitaxy [J]. Journal of electronicmaterials,2003,32(7),703-709.
    [127] T. Aoki, Y. Chang, G. Badano et al. Defect characterization for epitaxial HgCdTe alloys byelectron microscopy [J]. Journal of crystal growth,2004,265(1),224-234.
    [128]魏彦锋,陈新强,曹妩媚. HgCdTe液相外延薄膜生长及缺陷表征[J].红外与激光工程,2006,35(3),294-296.
    [129]魏彦锋,徐庆庆,陈晓静,等. HgCdTe液相外延薄膜表面缺陷的控制[J].红外与毫米波学报,2009,28(4),246.
    [130] B. Garcia, J. Martinez, J. Piqueras. Laser melting of GaAs covered with thin metal layers [J].Applied Physics A,1990,51(5),437-445.
    [131] L. V. Schlie. Ultrafast laser semiconductor interactions [C]. Laser-Induced Damage inOptical Materials:1995,1996,582-594.
    [132] R. Wood, G. Geist. Modeling of nonequilibrium melting and solidification in laser-irradiatedmaterials [J]. Physical Review B,1986,34(4),2606.
    [133]杜少军.高能激光器及其发射系统的热变形研究[D]:[博士论文].长沙:国防科技大学,2001.
    [134]饶鹏.镜面热畸变对高能激光系统内光路光束传输影响的数值计算[D]:[硕士论文].长沙:国防科学技术大学,2009.
    [135] S. Zubair, M. A. Chaudhry. Heat conduction in a semi-infinite solid due to time-dependentlaser source [J]. International Journal of Heat and Mass Transfer,1996,39(14),3067-3074.
    [136] Z. Shen, S. Zhang, J. Lu et al. Mathematical modeling of laser induced heating and meltingin solids [J]. Optics&Laser Technology,2001,33(8),533-537.
    [137] J. Xie, A. Kar. Mathematical modeling of melting during laser materials processing [J].Journal of Applied physics,1997,81(7),3015-3022.
    [138] M. Kalyon, B. Yilbas. Repetitive laser pulse heating analysis: pulse parameter variationeffects on closed form solution [J]. Applied surface science,2006,252(6),2242-2250.
    [139]陈亚娟,廖明成.激光辐照薄板温度场的有限元计算[J].河南理工大学学报(自然科学版),2009,4,502-509.
    [140]柯其锐.重频激光辐照KDP晶体损伤的有限元法研究[D]:[硕士论文]电子科技大学,2012.
    [141]廖敦明,陈立亮,周建新,等.有限差分法在铸造应力场模拟中的应用[J].华中科技大学学报:自然科学版,2011,39(1),45-49.
    [142]高令飞,王海涛,张鸣,等.激光干涉仪反射镜三维温度场的快速多极边界元分析[J].工程力学,2012,29(11),365-369.
    [143]王勖成,邵敏.有限单元法基本原理和数值方法[M].清华大学出版社,1997.
    [144]曹茂林.激光加工石英玻璃小孔的研究[D]:[硕士论文].湖南大学,2007.
    [145]宋林森,史国权,李占国. ANSYS在激光打孔温度场仿真中的应用[J].长春理工大学学报,2006,29(4),19-21.
    [146]汤伟,吉桐伯,郭劲,等.高重频CO2激光损伤HgCdTe晶体的数值分析[J].中国光学,2013,6(5),736-742.
    [147]汤伟,邵俊峰,赵帅,等.高重频CO2激光对Hg0.826Cd0.174Te晶体的损伤[J].红外与激光工程,2013,42(10),2663-2668.
    [148]刘强,林理彬.强激光辐照损伤判别方法[J].激光杂志,2002,23(4),3-5.
    [149]王立斌,马伟新,季来林,等.三倍频激光下金属颗粒对熔石英元件损伤阈值的影响[J].中国激光,2012,39(5),22-26.
    [150]谈恒英,刘鹏程,施柏煊.激光光热偏转成象法无损检测光学薄膜的激光损伤[J].光子学报,2005,34(1),158-160.
    [151] P. Bélanger. Beam propagation and the ABCD ray matrices [J]. Optics Letters,1991,16(4),196-198.
    [152]俞宽新,江铁良,赵启大.激光原理与激光技术[M].北京工业大学出版社,1998.
    [153]李俊昌.激光的衍射作用计热作用计算[M].北京:科学出版社,2003.
    [154] E. L. Klosterman, S. R. Byron. Measurement of subsonic laser absorption wave propagationcharacteristics at10.6μm [J]. Journal ofApplied Physics,2003,45(11),4751-4759.
    [155] W. E. Maher, R. B. Hall. An interferometric investigation of laser-supported absorptionwaves [J]. Journal of Applied Physics,2008,46(2),761-772.
    [156] A. N. Pirri. Analytic solutions for laser-supported combustion wave ignition above surfaces[J]. AIAA Journal,1977,15(1),83-91.
    [157] C. T. Walters, R. H. Barnes, R. E. Beverly. Initiation of laser-supported-detonation (LSD)waves [J]. Journal of Applied Physics,2008,49(5),2937-2949.
    [158] C. S. Lee, N. Koumvakalis, M. Bass. A theoretical model for multiple-pulse laser-induceddamage to metal mirrors [J]. Journal of applied physics,1983,54(10),5727-5731.
    [159] Y. V. Afanasev, O. Krokhin. Vaporization of matter exposed to laser emission [J]. Sov. Phys.JETP,1967,35,639-651.
    [160] R. L. Stegman, J. T. Schriempf, L. R. Hettche. Experimental studies of laser-supportedabsorption waves with5ms pulses of10.6μm radiation [J]. Journal of Applied Physics,2003,44(8),3675-3681.
    [161] A. N. Pirri. Theory for momentum transfer to a surface with a high-power laser [J]. Physicsof Fluids,2003,16(9),1435-1440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700