用户名: 密码: 验证码:
HgCdTe脉冲激光损伤机理及等离子体特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HgCdTe晶体是应用于红外探测器的重要材料之一,作为各种光电导器件的核心工作部件,目前已经成功应用于航空、航天及军事等领域。强激光辐照HgCdTe晶体时产生的热应力,物质的蒸发波和激光支持的爆轰波等冲击波都可对晶体产生破坏。所以研究强激光对Hg_(0.8)Cd_(0.2)Te晶体材料的破坏机理,掌握强激光对Hg_(0.8)Cd_(0.2)Te晶体材料的破坏规律是非常有意义的。
     当功率密度足够高的脉冲激光辐照到Hg_(0.8)Cd_(0.2)Te靶的表面时,靶材会在几纳秒的时间内熔化、蒸发乃至电离,产生高温高密度的等离子体。溅射物中包含有电子、离子、原子、分子和团簇等,由它们携带着一定的质量和能量,可以在靶对面的基底上沉积而形成薄膜,这就是脉冲激光沉积(PLD)制模技术。目前PLD技术已成为一种人们广泛采用的制膜技术,其中氧化物、氮化物、高温超导等物质的高质量薄膜已经被制备出来。虽然Hg_(0.8)Cd_(0.2)Te的薄膜在1982年就已制备出,但是其质量一直不是很好。因此,为了更好的控制薄膜的生长过程,找到最佳的实验条件,以得到高质量Hg_(0.8)Cd_(0.2)Te薄膜,对于沉积过程中等离子体的特性及其膨胀动力学问题进行深入地研究是非常必要的。然而,关于Hg_(0.8)Cd_(0.2)Te激光等离子体的一些基本参量,如电子密度、电子温度、等离子体中各成分的飞行速度等,研究得却非常少。事实上,等离子体的这些参量不仅在理论上有助于更好的理解激光与物质的相互作用过程,而且对PLD制膜的最佳条件的确定起到相当有益的启发。
     本文主要对Hg_(0.8)Cd_(0.2)Te脉冲激光的损伤机理从理论和实验上进行了系统的研究,得到了脉冲激光对Hg_(0.8)Cd_(0.2)Te损伤的主要机制;同时对等离子体进行了光谱诊断,获得了有关原子和离子的时间分辨谱及时间飞行谱,测量了等离子体的电子密度、温度及等离子体羽的速度,并与理论计算进行了比较分析;结合实验结果,对等离子体发射谱的时间演化特性和产生机制进行了详细的研究,并对等离子体光谱的频移进行了定性的分析。在研究过程中,取得了一些创新性的成果。概括起来,本论文研究的主要内容和结果如下:
     1.从一维热传导理论出发推导了Hg_(0.8)Cd_(0.2)Te晶体在脉冲激光辐照作用下的熔化阈值和蒸发阈值的解析表达式,计算了他们各自的值,与我们实验测得的结果符合得很好。首次测得波长为1064nm、脉宽10ns的脉冲激光烧蚀Hg_(0.8)Cd_(0.2)Te的蒸发阈值为5.5×107 W/cm2,理论计算值也与之符合得很好;利用能量守恒定律从理论上计算出了Hg_(0.8)Cd_(0.2)Te的蒸发温度,其值为1741 K;计算得出了Hg_(0.8)Cd_(0.2)Te开始蒸发的时间随激光功率密度的变化关系曲线。从图中可知,当激光功率密度大于4.0×108 W/cm2时,靶材蒸发与激光辐照到靶的表面几乎是同时的。
     2.计算了Hg_(0.8)Cd_(0.2)Te表面的受力情况:(1)计算了脉冲激光辐照Hg_(0.8)Cd_(0.2)Te材料时对其产生的最大热应力的大小;(2)利用蒸发波模型计算了脉冲激光辐照Hg_(0.8)Cd_(0.2)Te晶体时对其表面产生的蒸发波反冲压力;(3)利用爆轰波模型计算了激光辐照Hg_(0.8)Cd_(0.2)Te材料时对其表面产生的激光支持的爆轰波反冲压力。通过比较发现:当高能脉冲激光辐照Hg_(0.8)Cd_(0.2)Te晶体时,在升温熔化、冷却凝固的过程中由于温度差带来的热应力是三种力中最大的。通过实验研究被辐照后的晶片表面形貌,揭示了晶片被损伤的主要原因:热应力和蒸发波的反冲压力是使Hg_(0.8)Cd_(0.2)Te晶体损伤的主要原因。在脉冲激光辐照后,晶体表面在熔化前出现的小裂纹和小鼓泡,起源于热引力;而在熔化、蒸发后,在激光辐照区和未辐照区出现的小颗粒则是主要是由于蒸发波反冲压力造成的。
     3.从理论上分析了烧蚀速率与激光功率密度的关系,同时也得出了他随入射角的变化。结果显示烧蚀速率随入射激光功率密度的增大而增大,当功率密度为1.0×109 W/cm2时,烧蚀速率为1.69μm/pulse。当入射角在0—π/4范围时,烧蚀速率大且稳定。因此在PLD技术中,激光的入射角一般设定在这个范围。
     4.研究了Hg_(0.8)Cd_(0.2)Te激光等离子体辐射机制及光谱随时间的演化特性。连续谱的短波带强度随延迟时间下降的速度比长波带快得多,这是由于连续光谱的发射机制是轫致辐射和复合辐射综合的结果。在温度较高时轫致辐射占主导地位,在温度较低时复合辐射起主要作用。激光等离子体的消失过程并不仅仅是一个能量耗散的过程,而存在着能量的交换,即对另一些原子的再激发;线状谱的发射机制主要是碰撞激发,特别是高能电子的碰撞激发。大气环境中激光辐照Hg_(0.8)Cd_(0.2)Te靶时,在激光功率密度小于空气击穿阈值时也发生了空气的电离,其主要原因是激光辐照Hg_(0.8)Cd_(0.2)Te靶时产生的初始电子引发了雪崩电离过程。我们认为初始电子的主要来源是激光辐照区内的电子热发射。
     5.由理论分析和对激光等离子体谱线的高斯及洛仑兹拟合可知,激光等离子体的展宽机制主要是斯塔克展宽。计算了等离子体电子密度和温度随延迟时间的变化。它们都是随时间先快速下降,而后下降逐渐变慢。初始阶段,电子密度在低背景气压下的减小速度大于在高气压下的速度。从等离子体对发射原子或离子的屏蔽效应,对实验中观察到的发射谱线的频移进行了合理的解释。
     6.根据实验数据,理论上得到了Hg_(0.8)Cd_(0.2)Te激光等离子体的空间角分布函数为F (θ)=cos20θ。利用时间飞行谱测测得了等离子体羽的膨胀速度,在1大气压下速度的数量级为1. 0×103 m/s,在3Pa下速度的数量级为1. 0×104 m/s。1大气压下的速度随比3 Pa时随时间下降得快;等离子体的速度受背景气压的影响很大,相对来说激光能量的影响小一些。由理论模拟结果可知,等离子体中各粒子的速度不同,镉原子的速度最大,汞原子的最小,与实验结果相一致;但由于我们的实验是在3 Pa气压下做的,而理论模拟是在真空环境中,所以理论值比实验值大。在实验中制备出了表面均匀、平滑,结晶较好的HgCdTe单晶薄膜。
HgCdTe is one of the important materials utilized in infrared detectors. As a key component in varied photoconductive apparatuses, it has been successfully used in fields such as aviations, space flight and military. If the pulsed laser with high power density irradiates the surface of Hg_(0.8)Cd_(0.2)Te wafer, the thermal stresses, evaporation wave and laser supported detonation wave (LSDW) exerting on the target surface can damage the wafer. Therefore, it is significant to investigate the mechanism of the damage of Hg_(0.8)Cd_(0.2)Te material irradiated by a high power pulsed laser.
     When the power density of the incident laser pulse exceeds the damage threshold of the material, the surface of the irradiated material instantaneously reaches a temperature higher than the material’s vaporization temperature due to photon and multi-photon absorption and other absorption mechanisms. Thus the material will be melted, vaporized, even ionized within several nanoseconds, causing explosion of the surface and formation of the dense plasma. The laser-induced plasma ejecting from the target surface carries both mass and energy that can be used to grow thin films. At present, pulsed laser deposition (PLD) has been one of the most popular methods employed to prepare high-quality thin films, such as oxides, nitrides, semiconductors and superconductors. Although Hg_(0.8)Cd_(0.2)Te thin films had been fabricated in 1982, the quality of them has not been satisfactory. In order to find the optimum experimental condition and to control the process of the growth of thin films, it is necessary to investigate the properties of the plasma. Unfortunately, very limited works have been focused on the study of fundamental laser plasma parameters, such as the electron density, the electron temperature, the plasma velocity, changing with the delay time and laser power density, and the ejceting particles spatial distribution. In fact, these results are not only essential for understanding the laser material interaction process and clarifying the local behavior of the expanding plasma, but also enabling us to optimize the condition of PLD.
     It is believed that the structure of the thin film deposited by pulsed laser depends largely on the deposition process. The chemical and physical properties of the deposited films are also dependent on the plasma parameters, although the exact relationship has not yet been established. Many approaches can be adopted to detect the ejecting particles generated by laser ablation. Among them, optical emission spectroscopy is the most popular one. It allows us to monitor the ablation process real-time and in-situ without introducing disturbance to the plasma at all. In our experiment, we used the optical emission spectroscopy to quantify some important plasma parameters, such as the electron density, the electron temperature, and the velocity of Hg_(0.8)Cd_(0.2)Te plasma.
     A systematical investigation on the damage of Hg_(0.8)Cd_(0.2)Te induced by the pulsed laser with a wavelength of 1064 nm and a pulse width of 10 ns has been done, getting the main damage mechanism. Meanwhile, spectral diagnosis was used to detect the plasma, obtaining the time-resolved and time-of-flight spectra, further acquiring the electron density, the electron temperature, and the velocity of Hg_(0.8)Cd_(0.2)Te plasma. Besides, a study on the emission mechanism of laser plasma and the law of its evolution has been done, and the line spectral shift has been quantitatively analyzed as well. This thesis contains mainly two parts: one is the investigation on the mechanism of Hg_(0.8)Cd_(0.2)Te damage induced by a pulsed laser and the ablation rate. Another is the study on the emission mechanism of laser plasma and the law of its evolution, and also on the evolution of the electron density, electron temperature and plasma velocity applying the spectral diagnosis. The main work and results are as follows.
     1. A analytical expression of the melting threshold and vaporizing threshold of Hg_(0.8)Cd_(0.2)Te crystal irradiated by pulsed laser were theoretically deduced based on the one-demission thermal conduction theory. The calculated results consist well with the experimental data. The vaporizing threshold of Hg_(0.8)Cd_(0.2)Te crystal irradiated by pulsed laser with a wavelength of 1064 nm and a pulse width of 10 ns was measured for the first time, which value is 5.5×107 W/cm2 or 0.55 J/cm2. Further, the vaporizing temperature was calculated based on the law of energy conservation, which value is 1741 K. In addition, a diagram of vaporization time versus incident power density was drawn.
     2. The study on the force acting onto the surface of Hg_(0.8)Cd_(0.2)Te crystal irradiated by a pulsed laser was completed. At first, the maximum stress was calculated when the Hg_(0.8)Cd_(0.2)Te crystal was irradiated by a pulsed laser. Secondly, the recoil pressure onto the surface by the vaporizing wave, which resulted from the pulsed laser irradiating the Hg_(0.8)Cd_(0.2)Te crystal, was computed applying the vaporization model. Thirdly, the recoil pressure onto the surface by the LSDW was computed using the LSDW model. Through comparing these values and combining the SEM microphotograph, the main reasons for the surface damage are the thermal stress and recoil pressure of vaporization wave. The cracks in the Hg_(0.8)Cd_(0.2)Te surface of wafer were originated from the thermal stress before the wafer’s melt. The small drops of liquid in the surface of Hg_(0.8)Cd_(0.2)Te wafer were originated mainly from the recoil pressure of vaporizing wave.
     3. A theoretical analysis of the ablation rate versus incident laser power density was made. Meanwhile, its change with incident angle was also investigated. The result is that the ablation rate increases with the incident laser power density increasing. When the angles range from 0 toπ/4, the ablation rate was high and stable. So the incident angle is generally chosen in the range in PLD process.
     4. The study on the emission mechanism of laser plasma and the law of its evolution with the delay time was done. The intensity of continuum spectra in short-band decreased more rapidly than that in long-band. This is because the mechanism of the continuum spectra is bremsstrahlung and recombination emission. But the bremsstrahlung dominates only in high temperature. The emission mechanism of line spectrum is collision excitation, especially the excitation of high power electron.
     5. From theoretical analysis and Gaussian fit, as well as Lorentz fit of the line spectra of Hg_(0.8)Cd_(0.2)Te plasma, it is confirmed that the line broadening results mainly from Stark broadening mechanism. The change of electron density and temperature with the delay time was computed. They all decreased quickly with the time delay at initial stage and decreased quite slowly after 200 ns. Furthermore, the electron temperature decreased more rapidly at the pressure of 1 atm than that at 3 Pa. Also the line shift observed in our experiment was explained with the shielding effect of the plasma. 6. Based on the experimental data, the spatial angular distribution of the ejecting plasma was theoretically obtained for the first time. The velocity of the plasma plume was got from the time-of-flight spectra. Their quantity magnitude was 1.0×103 m/s and 1.0×104 m/s at background pressures of 1 atm and 3 Pa respectively. Also the velocity decreased more rapidly at the pressure of 1 atm than that at 3 Pa. The velocity was affected greatly by the ambient pressure, contrasting with the effect of the laser energy. Then the velocity of each particle of Hg_(0.8)Cd_(0.2)Te plasma was computed. The velocity of Cd was the largest and that of Hg was the smallest, which is good agreement with our experimental result. However, because the ambient pressure in our experiment is 3 Pa, the calculation corresponds vacuum, therefore the calculated value of velocity is larger than the corresponding that of experiment.
引文
[1] J. F. Ready, Effect of High-Power Laser Radiation. Academic Press, New York,1871.
    [2] M. Von Allmen, Laser-Beam Interaction with Materials: physical principles and application. Springer-Verlag Press, New York,1987.
    [3] 王家金, 激光加工技术. 中国计量出版社, 北京,1992.
    [4] 王乃彦, 新兴的强激光. 原于能出版社, 北京 1992.
    [5] 周益春, 段祝平,力学与实践, 1995, 17: 10.
    [6] N. Kroll and K. M. Watson, Physical Review A, 1972, 5: 1883.
    [7] E. L. Klosternam and S. R. Byron, J. Appl. Phys., 1974, 45: 4751.
    [8] R. L. Stegman, J. Appl. Phys., 1973, 44: 3675.
    [9] W. E. Maher and R. B. Hall, J. Appl. Phys., 1975, 46: 761.
    [10] A. N. Pirri, AIAA. Journal, 1977, 15: 83.
    [11] C. T. Waltres, Initiation of laser-supported-detonation(LSD) waves. J. Appl. Phys., 1978, 49: 2937.
    [12] B.Y.Man, X.T.Wang, et al., J.Appl.Phys. ,1998, 83: 3509.
    [13] C. L. Chan and J. Mazumder, J. Appl. Phys., 1987, 62: 4579.
    [14] 强希文, 张建泉, 刘峰等, 红外与激光工程, 1999, 28: 47.
    [15] L. Moenke-Blankenburg, Laser microanalysis. New York, Wiley, 1989
    [16] Y. Iida, Spectrochim. Acta. B., 1990, 45: 427.
    [17] P. Arrowsmith, Anal. Chem., 1987, 59: 1437.
    [18] W. T. Han, X. L. Mao and R. E. Russo, Applied Spectroscopy, 1992,46: 1025.
    [19] T. Szorenyi and E. Foqarassy, J. Appl. Phys., 2003, 94: 2097.
    [20] 陈飞, 孟绍贤. 物理学进展, 1998, 18: 187.
    [21] M. Tabak, J. Hammer, M. E. Glinsky et al.,Phys. Plasmas., 1994, 1: 1626.
    [22] J. A. Stamper, R. Papotopouls, R. N. Sudam et al., Phys. Rev. Lett., 1971, 26: 1012.
    [23] C. Demichelis, IEEE Journal of Quantum Electronics, 1969, QE(5): 188.
    [24] 满宝元,苗勇,郭向欣,王公堂,王象泰, 科学通报, 1997, 42: 997
    [25] 强希文, 光学技术, 1999, 5: 37.
    [26] M. Young and M. Hercher, J. Appl.Phys., 1967, 38: 4393.
    [27] R. G. Tomlinsen and E. K. Damon, Physics of Quantum Electronics. New York,elly, Lax. Tannenwald(Eds)McGraw-Hill, 1966.
    [28] W. J. Hao, N. Kawakami, A. Sawada et al., Journal of Vacuum Science & Technology B, 2003, 21: 1734.
    [29] N. Koshizaki, A. Narazaki, T. Sasaki, Applied Surface Science, 2002, 30:624.
    [30] S. S. Harilal, C. V. Bindhu, V. P. N Nampoori et al., Appl. Phys. Lett., 1998,72: 167.
    [31] B.Y.Man, X.R.Hu, X.T.Wang, et al., Applied Spectroscopy, 1997, 51: 1910.
    [32] H. Kurniawan, T. Kobayashi, K. Kagawa, Applied Spectroscopy, 1992, 46: 581.
    [33] 董全力, 满宝元 等, 原子与分子物理学报, 2001,18: 45.
    [34] Yasuo Iida, Spectrochimica. Acta. B., 1990, 45: 1353.
    [35] A. W. Ehle, J. Appl. Phys., 1966, 37: 4962.
    [36] S. A. ramsden and P. Savic, Nature, 1964, 203: 1217.
    [37] R. G. Root, Modeling of post-breakdown phenomena, in Laser-Induced Plasma and Applications. Marcel Dekker, Inc, New York,1989.
    [38] Hongxin Wang, A. P. Salzberg, Brad R. Weiner, Appl. Phys. Lett., 1991, 59: 935.
    [39] Yong-ill Lee, Samuel P. Sawan, Terry L. Thiem et al., Applied Spectroscopy, 1992, 46: 436.
    [40] Hiroshi Fukumura, Hiroshi Nakaminami, Shigeru Eura et al., Jap. J. Appl. Phys., 1989, 28: 412.
    [41] P. Simon, Appl. Phys., 1989, B48: 253.
    [42] J. C. S. Kools, J. Appl. Phys., 1993, 74: 6401.
    [43] D. B. Geohegan, Appl. Phys. Lett., 1992, 60: 2732.
    [44] J. F. Ready, J. Appl. Phys., 1965, 36:462.
    [45] 魏志义, 唐孝威, 张杰等. 自然科学进展, 2003, 13: 533.
    [46] J. E. Michaels, Planetary and Space Science. Pergaman, New York, 1961.
    [47] B. P. Fairand, B. A. Wilcox, W. J. Gallagher et al., J Appl. Phys., 1972, 43:3893.
    [48] R. Fabbro Fournier, J. Ballard, P. Devaux et al., J. Appl. Phys., 1990, 68: 775.
    [49] G. A. Mourou, C. P. J. Barty, M. D. Petty, Phys. Today., 1998, 51: 22.
    [50] J. A. Stamper, R. Papotopouls, R. N. Sudam et al., Phys. Rev. Lett., 1971, 26: 1012.
    [51] R. Dragila and E. G. Gamaliy, Phys. Rev. A., 1991, 44: 6828.
    [52] O. L. Landen, D. G. Stearns, E. M. Campbell, Phys. Rev. Lett., 1989, 63: 1475.
    [53] C. H. Nam, W. Tighe, S. Suckewer et al., Phys. Rev. Lett., 1987, 59:2427.
    [54] K. Boyer, T. S. Luk, C. K. Rhodes, Phys. Rev. lett., 1988, 60: 557.
    [55] M. Tabak, J. Hammer, M. E. Glinsky et al., Phys. Plasmas., 1994, 1: 1626.
    [56] S. C. Wilks, W. L. Kruer, M. Tabak et al., Phys.Rev. L ett., 1992, 69: 1383.
    [57] S. C. Wilks, W. L. Kruer, W. B. Mori, IEEE Trans. on Plasma Sci., 1993, 21:120.
    [58] C. Garban-Labaune, E. Fabre, C. E. Max et al., Phys. Rev. Lett., 1982, 48:1018.
    [59] W. C. Mead, E. M. Campbell, K. G. Estabrook et al., Phys. Rev. Lett., 1981, 47: 1289.
    [60] B. Yaakobi, T. Boehly, B. Bourke et al., Opt. Commun., 1981, 39: 175.
    [61] V. D. Zvorykin, Proceedings of SPIE, 2000, 4065: 128.
    [62] T. J. Goldsack, J. D. Kilkenny, B. J. Mac Gowan et al., Phys. Fluids., 1982,25: 1634.
    [63] F. Cottet, J. P. Romain, R. Fabbro et al., Phys. Rev. Lett., 1984, 52: 1884.
    [64] H. Nishimura, H. Azechi, K. Yamada et al., Physical Review. A. , 1981, 23: 2011.
    [65] F. Dahmani and T. Kerdia, Phys. Fluids. B., 1991, 3: 1232.
    [66] J. DeGroot, S. Cameron, K. Mizumo et al., Phys. Fluids. B., 1991, 3: 1241.
    [67] 宋向阳, 余玮, 韩申生等, 中国激光, 1996, 23: 633.
    [68] J. A. Fox and D. N. Barr, Applied Optics, 1973, 12: 2547.
    [69] G. 贝克菲等. 激光等离子体物理. 上海科学技术出版社, 上海,1983.
    [70] 冯贤平, 陆培祥, 徐至展, 量子电子学, 1990, 7: 313.
    [71] B. Steverding and H. P. Dudel, J. Appl. Phys., 1976, 47: 1940,
    [72] W. L. Wiese, “Line Broadening ” in Plasma Diagnostic Technique, R. H. Huddlestone, S. I. Leonard, Eds, Academic Press, New York, 1965.
    [73] H. R. Griem, Spectral Line Broadening by Plasmas ,Academic Press, New York, 1974.
    [74] J. D. Swift and M. J. R. Rchwar, Electrical Probes for Plasma Diagnostics ,Illiffe Books, London, 1969.
    [75] M. A. Heald and C. B. Wharton, Plasma Diagnostics with Microwaves ,Wiley, New York, 1965.
    [76] G. Bekefi, Radiation Processes in Plasma ,Wiley, New York, 1966.
    [77] M. M. Jevtic and M. J. Scepanovic, Applied Physics A: Solids and Surfaces, 1991, 53:332.
    [78] Liu. Ji, Li. Xiangyang, Hu. Xierong et al., Proceedings of SPIE, 1994, 2274:68.
    [79] M. Scepanovic and M. Jevtic, Physica Status Solidi (A) Applied Research, 1994, 143: 289.
    [80] I. O. Rudyi, I. V. Kurilo, M. S. Fruqynskyi et al., Applied Surface Science, 2000, 154: 206.
    [81] J. T. Cheung and D. T. Cheung, J. Vac. Sci. Technol., 1982, 21: 182.
    [82] F. Bartoli, L. Esterowitz, M. Kruer et al., J. Appl. Phys., 1975, 46: 4519.
    [83] L. A. Golovan, B. A. Markov, P. K. Kashkarov et al., Solid State Communications, 1998, 108: 707.
    [84] 满宝元, 王象泰, 光学学报, 1998,18: 1010.
    [85] 陆启生, 舒柏宏, 蒋志平等, 强激光与粒子束, 1999, 11: 201.
    [86] B.Y.Man, X.T.Wang,et al., J.Appl.Phys. 1998, 83: 3509.
    [87] B.Y.Man, X.R.Hu,X.T.Wang, et al., Applied Spectroscopy, 1997, 51: 1910.
    [88] Yueyuan Xia, Liangmo Mei, Chunyu Tan et al., Appl. Phys. (A), 1991, 52: 425.
    [89] A. D. Sappey and T. K. Gamble, Appl. Phys. 1991, B53: 353.
    [1] M.N 奥齐西克 著/ 俞昌铭, 主译 《热传导》 [美] 高等教育出版社, 1984.
    [2] W. D. Lawson, et al., J. Phys. Chem. Solids, 1959, 9:325.
    [3] 汤定元,童斐明. 窄禁带半导体红外探测器, 《半导体器件研究与进展》, 科学出版社, 北京,1991.
    [4] 汤定元, 红外物理技术,1974,3:359.
    [5] D Long, J L Schmit, 碲镉贡及其密切相关的合金 《红外探测器》(中译本)国防工业出版社, 北京,1982..
    [6] Paul W Kruse. Semimetals and semiconductors Vol. 19, Academic press, New York, 1981.
    [7] G L Hansen, J L Schmit, T N Casselman, J. Appl. Phys. 1982, 53: 7099.
    [8] J H Chu, S C XU, D Y Tang, Appl. Phys. Lett. 1983, 43: 1064.
    [9] 褚君浩 著,《窄禁带半导体物理学》,科学出版社,北京,2005.
    [10] Higgins W M, J. Vac.Sci.Technol. 1989, A7: 271.
    [11] Kssndov A, et al., J. Appl. Phys. 1989, 66: 5528.
    [12] M.M. Jevtic and M. J. Scepanovic, Appl. Phys. 1991, A 53: 332.
    [13] Holland L R and R E Taylor, J. Vac. Sci. Technol. 1983, A1: 1615.
    [14] S E Schacham, E Finkman, J. Appl. Phys. 1985, 57: 2001.
    [15]王威礼, 周赫田, 邢启江, 史守旭, 半导体学报, 1987, 8: 474.
    [1] Bartoli F, Esterowitz L, Kruer M and Allen R, J. Appl. Phys. 1975, 46: 4519.
    [2] Beleznai Cs, Vouagner D, Girardeau-Montaut J P, Templier C and Gonnord H, Appl. Phys. A. 1999, 69: S113.
    [3] Man B Y, Appl. Phys.B. 1998, 67: 241.
    [4] Lai Z W, Tan X H, Lai Z L and Xiang W, High Power Laser and Particle Beams 1992, 4: 255.
    [5] Ivanov D S and Zhigilei L V, Phys. Rev. lett. 2003, 91: 5701.
    [6] Semak V V, Thomas J G and Campbell B R, J. Phys. D: Appl Phys. 2004, 37: 2925.
    [7] Bahir G and Kalish R, Appl.Phys.Lett. 1981, 39: 730.
    [8] Vaidyanathan A, Walker T W and Guenther A H, IEEE. J. Quantum. Elect. 1980, 16: 89.
    [9] Bloembergen N, IEEE. J. Quantum. Elect. 1974, 10: 375.
    [10] Garg Amit, Kapoor Avinashi, Tripathi K N and Bansal S K, Proc. SPIE, 2004, 23: 5273.
    [11] B. Y. Man, X. T. Wang, and A. H. Liu, J. Appl. Phys. 1998, 83: 3509.
    [12] K A Tanaka, R Kadama.,and H Fujita. et al., Phys.Plasmas, 2000, 7: 2014.
    [13] A. Ng, A. Forsman, and P. Celliers, Phys. Rev. E., 1995, 51: R5208.
    [14] R. Evans, A. D. Badger, F. Fellies, M. Mahdieh, T. A. Hall, P. Audebert, J. –P. Geindre, J. –C. Gausthier, A. Mysyrowicz, G. Grillon, and A. Antonetti, Phys. Rev. Lett. 1994, 77: 3359.
    [15] M. L. Knotek, V. O. Jones, and V. Rehn, Phys. Rev. Lett. 1979, 43: 300.
    [16] B. Stritzker, A. Pospieszczyk, and J. A. Tagle, Phys. Rev. Lett. 1981, 47: 356.
    [17] T. T. Tsong and T. J. Kinkus, Phys. Rev. B. 1984, 29: 529.
    [18] G. Kroen, A. Gupta, and R. J. Baseman, Appl. Phys. Lett. 1989, 54: 1920.
    [19] V. V. Semak, J. G. Thomas, and B. R. Campbell, J. Phys. D: Appl. Phys. 2004, 37: 2925.
    [20] I. S. Virt, M. Bester, L. Dumanski, M. Kuzma, I. O. Rudyj, M. S. Frugynskyi, I. V.Kurilo, Appl. Surf. Sci. 2001, 177: 201.
    [21] G. Kroen, A. Gupta, R. J. Baseman, M. L. Lutwyche, and R. B. Laibowitz, Appl. Phys. Lett. 1989, 55: 2450.
    [22] M. M. Jevtic and M. J. Scepanovic, Appl. Phys. A, 1991, 53: 332.
    [23] C S Chen, A H Liu, G Sun, J L He, X Q Wei, M Liu, Z G Zhang and B Y Man, J. Opt. A. 2006, 8: 88
    [1] Bartoli F, Esterowitz L, Kruer M and Allen R, J. Appl. Phys. 1975, 46: 4519.
    [2] Beleznai Cs, Vouagner D, Girardeau-Montaut J P, Templier C and Gonnord H Appl. Phys. A. 1999, 69: S113.
    [3] Man B Y. Appl. Phys.B. 1998, 67: 241.
    [4] Lai Z W, Tan X H, Lai Z L and Xiang W, High Power Laser and Particle Beams 1992, 4: 255.
    [5] Ivanov D S and Zhigilei L V, Phys. Rev. lett. 2003, 91: 105701.
    [6] Semak V V, Thomas J G and Campbell B R, J. Phys. D: Appl Phys. 2004, 37: 2925.
    [7] Bahir G and Kalish R, Appl.Phys.Lett. 1981, 39: 730.
    [8] D. Long and J. L. Schmit. Semiconductors and Semimetals. edited by R. K Willardson and A. C. Beer. Academic Press, New York, 1970.
    [9] O. Caporaletti and G. M. Graham, Appl. Phys. Lett. , 1981, 39: 338.
    [10] O. N. Krokhin. Laser Handbook, V2 ed, Amsterdam: North-Holland, 1972.
    [11] A. N. Pirri, R. G. Root et al., AIAA Journal, 1978,16: 1296.
    [12] C. T. Walters, R. H. Barnes, R. E. Beverly, J. Appl. Phys. 1978,49: 2937.
    [13] D. B. Geohgean, Thin Solid Films, 1992,220:138.
    [14] Y. P. Raizer, SOV. Phys. JEPT, 1965,21:1009.
    [15] L. R. Hettche, T. R. Tucker, J. T. Schriempy, et al., J. Appl. Phys., 1976, 47: 1415.
    [16] A. N. Pirri, Physics of Fluids, 1973, 16: 1435.
    [17] 孙承伟, 陆启生, 范正修等. 激光辐照效应. 国防工业出版社, 北京, 2002.
    [18] Afonso C N, Alonso M, Neira J L H, Sequeira A D, da Silva M F and Soares J C, J. Vac. Sci. Technol A.1989, 7: 3256.
    [19] 刘骥,山东大学博士学位论文,1995.
    [20] 满宝元, 山东大学博士学位论文, 1997.
    [1] Monge E M, Aragon C, Aguilera J A., J. Phys. D: Appl.Phys., 2000, 33: 2252.
    [2] Khater M A, Van Kampen P, et al., Appl. Phys., 1999, A69[Suppl]: s691.
    [3] Momad Sabsa, Paolo Cielo, Appl. Spectrosc., 1995, 49: 499.
    [4] Xu N, Vahid Majidi, Appl. Spectrosc., 1993, 47: 1134.
    [5] Sebastiano Trusso, Cirino Virino Vasi, Fortunato Neri. Thin Solid Films, 1999, 355~356: 219,
    [6] Radziemski L T, Icrochem. J. 1994, 218.
    [7] Li B, Kawakami T, Hramatsu M, Appl. Surf. Sci. 2003, 210: 171.
    [8] Sdorra W and Niemax K, Acta, 1992, 107: 319.
    [9] Y. I. Lee, et al., Appl. Spectros. 1992, 46(11): 1592.
    [10] C. Timmer, Appl. Phys. 1991, 70(3): 1888.
    [11] 张家泰 著, 激光等离子体相互作用与模拟, 河南科学技术出版社, 河南,1999.
    [12] Bekefi G. Radiation Processes in Plasmas. Wiley, New York, 1966.
    [13] P D Gupta, et al., Appl. Phys. 1984, 55(3): 701.
    [14] 黄庆举, 方尔梯. 原子与分子物理学报, 2000, 17 (1): 63.
    [15] B. Y. Man, X. T. Wang, and A. H. Liu, J. Appl. Phys., 1998, 83, 3509.
    [16] R.G. Tomlinson, E .K. Damon, and H. T. Busher, “The Breakdown of Noble and Atmospheric Gases by Ruby and Neodymium Laser Pulses”, Physics of Quantum Electronics, edited by P. L. Kelly, B. Lax, and P. E. Tannenwald ,McGraw-Hill, New York, 1966.
    [17] A. F. Haught, R. F. Meyerand, and D. C. Smith, “Electronic Breakdown of Gases by Optical Frenquency Radiation”, Physics of Quantum Electronics, edited by P. L. Kelly, B. Lax, and P. E. Tannenwald ,McGraw-Hill, New York, 1966.
    [18] D. C. Smith, Berger et al., “Investigation of gas breakdown with 10.6 mico wavelength radiation”United Technologies Research Center, Technical report, February, 1972, AFWL-TR-72-182.
    [19] T. P. Hughes, Plasma and Laser Light, Adam Hilger Ltd , 1975.
    [1] W. L. Wiese, “Line Broadening ” in Plasma Diagnostic Technique, R. H. Huddlestone, S. I. Leonard, Eds ,Academic Press, New York, 1965.
    [2] H. R. Griem, Spectral Line Broadening by Plasmas, Academic Press, New York, 1974.
    [3] J. D. Swift and M. J. R. Rchwar, Electrical Probes for Plasma Diagnostics, Illiffe Books, London, 1969.
    [4] M. A. Heald and C. B. Wharton, Plasma Diagnostics with Microwaves, Wiley, New York, 1965.
    [5] F. C. Jahoda and R. E. Siemon, Los Alamos Scientific Laboratory Report to the U. A. Atomic Energy Commission, No. LA-5058-MS, 1972.
    [6] G. Bekefi, Radiation Processes in Plasma, Wiley, New York, 1966.
    [7] H. J. Kunze, “The Laser as a tool for Plasma Diagnostics” in Plasma Diagnostics, W. Lochte-Holtgreven Ed., Wiley, New York, 1968.
    [8] LANGMUIR 探针实验,邓新绿 编,大连理工大学物理系 http//:mmlab.dlut.edu.cn/plasma-20.doc.
    [9] G. 贝克菲 等著,庄国良,褚成 译,激光等离子体物理, 上海科学技术出版社,1981;G. Bekefi, Principles of laser plasma, Wiley, New York, 1976.
    [10] Hans R. Griem, Plasma Spectroscopy, McGraw-Hill Book Company, New York, 1964.
    [11] Renner O, Salzmann D, Sondhau B P, et al., J. Phys. B., 1998, 31(6): 1379.
    [12] G. C. Junkel, M. A. Gunderson, and C. F. Hooper, Jr., Phys. Rev. E, 2000, 62 (4): 5584.
    [13] ATOMIC TRANSITION PROBABILITIES, Compiled by W. L. Wiese and G. A. Martin.
    [1] G. Bekefi, Radiation Processes in Plasma ,Wiley, New York, 1966.
    [2] 金佑民,樊友三 编著, 低温等离子体物理基础. 清华大学出版社. 北京.1983.
    [3] H. J. Kunze, “The Laser as a tool for Plasma Diagnostics” in Plasma Diagnostics, W. Lochte-Holtgreven Ed. ,Wiley, New York, 1968.
    [4] Renner O, Salzmann D, Sondhau B P, et al., J. Phys. B, 1998, 31: 1379.
    [5] G. C. Junkel, M. A. Gunderson, and C. F. Hooper, Jr., Phys. Rev. E, 62: 5584.
    [6] G. Bekefi: Principles of laser plasmas, Wiley, New York,1976.
    [7] 张家泰 著, 激光等离子体相互作用与模拟, 河南科学技术出版社, 河南,1999.
    [8] Michel Koenig, Philippe Malnoult, and Hoe Nguyen, Physical Review A, 38: 2089.
    [9] 张丽, 李向东, 蒋新革, 物理学报, 55:4501.
    [1] Rajiv K Singh and J Narayan, Phy, Rev. B., 1990,41(13): 8843.
    [2] R. Kelly,J. Chem. Phys., 1990; 92:5047.
    [3] I. S. Virt, M. Bester, L. Dumanski, M. Kuzma, I. O. Rudyj, M. S. Frugynskyi, I. V.Kurilo,Appl. Surf. Sci., 2001, 177: 201.
    [4] I. Weaver and C. L. S. Lewis, J. Appl. Phys., 1996, 79: 7216.
    [5] T. N. Hansen, J. Schou, and J. G. Lunney, Europhys. Lett., 1997, 40: 441.
    [6] W. Svendsen, J. Schou, T. N. Hansen, and O. Ellegaard, Appl. Phys. A: Mater. Sci. Process., 1998, 66: 494.
    [7] A. Thum-Jager and K. Rohr, J. Phys. D., 1999, 32: 2827.
    [8] Th. Muller and Klaus Rohr, J. Phys. D., 2002, 35: 352.
    [9] M Liu, X Q Wei, Z G Zhang, , G Sun, C S Chen, C S Xue, H Z Zhuang, and B Y Man, Applied Surface Science, 2006, 252 : 4321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700