用户名: 密码: 验证码:
纳米通道内流体的分子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米科技的日益发展,迫切需要了解纳米尺度流体特性。本论文采用分子动力学模拟方法,对纳米通道中的流体流动及传质特性进行了研究,主要研究对象为平板形纳米通道、圆孔形纳米通道以及毛细血管壁简化模型等三种纳米通道。
     首先,以平板形纳米通道内的流体为研究对象,利用平衡态分子动力学模拟研究了其中的流体密度特性,重点考察了通道宽度、整体平均密度以及势函数等因素对流体密度分布的影响,并就密度振荡特性对流量的影响进行了考察。计算过程中,选择纳米通道从几个分子直径到上千个分子直径尺寸。结果表明,流体密度在近壁区会出现振荡,该振荡随流体平均密度增大而加剧;壁面与流体之间的吸引力部分对流体的密度分布影响较大。研究还发现,无论对通道宽度是微观尺度还是宏观尺度的流体系统,近壁区流体密度的振荡一直存在,当密度振荡区域长度与通道特征尺度相比很小时,壁面附近流体密度振荡对整体流体特性的影响基本可以忽略;当密度振荡区域长度与通道特征尺度相当时,壁面附近流体对通道内整体流体的影响强烈,从而导致纳米尺度流体特性发生显著变化。
     其次,以圆孔形纳米通道内的流体为对象,研究了加速度场、壁面与流体之间作用力对流动的影响,考察的主要信息包括流体的密度分布、速度分布,以及反映综合效果而且易于测量的流量。研究发现,对于憎水性壁面来说,管内远离壁面的相对均匀区的流体密度明显高于平均密度,这一趋势随着管径的减小和平均密度的降低而加剧;同时,对憎水性壁面来说,即使存在比管径小得多的壁面粗糙度,都会对管内流体产生显著的抑制作用;研究中还对整体平均密度不同时流体的流动特性进行了比较并重点考察了流量,发现在相同的加速度场下,存在密度较小而流量反而大的情况。此外,对圆孔形纳米通道中颗粒传输问题进行了简化模拟分析,发现流体与壁面之间的作用力对纳米颗粒在其中的传输影响显著,颗粒在壁面-流体作用力比较弱时会出现壁面吸附现象。
     最后,针对毛细血管输运问题,在二维简化的基础上,对纳米颗粒在纤维丛中的运动进行了模拟,考察了纳米颗粒通过纤维丛的传输特性。结果表明:在没有纤维丛的情况下,半径大小不同的纳米颗粒的传输特性差别很小,在考虑相应的宏观传输特性的时候,可以不考虑纳米颗粒尺寸大小引起的差别;而有纤维丛时,纳米颗粒的运动行为随其自身尺寸的不同表现出很大的差异,较大的颗粒在运动过程中受纤维丛的阻碍而减缓输运速度。进一步对颗粒群的研究表明,这种尺寸效应对颗粒群来讲更为显著,因为对较大的纳米颗粒来说,多颗粒之间以及颗粒与纤维柱之间的作用大大加剧了对输运的抑制。
With the development of modern science and nanotechnology, the behavior of nanoscale fluid has been attracting more and more attention. In this thesis, an investigation based on three types of nanochannel, including slit, pore and a simplified model of microvessel wall, was carried out by using molecular dynamics (MD) simulation.
     Firstly, a comprehensive investigation on the density properties of confined fluid in nano slit was carried out, in which the density properties was comprehensively investigated by MD simulation, mainly focusing on the effect of channel width, average density and potential on density distribution. And the effect of density distribution on fluid flux was also considered. It was found that: density distribution depends on channel width /average density/potential. No matter nanoscale or macroscale, density oscillation always exists near the wall. With the increase of channel width, oscillation amplitude/length will become stable. The bigger average fluid density, the longer oscillation length. For WCA/LJ fluid, oscillation length is several molecular diameter long. The attraction force takes more effect on density distribution, compared with repulsive part.
     Furthere more, fluid behavior in nanopore was investigated, focusing on the effect of external force/wall-fluid interaction. We mainly pay attention to density and velocity distribution. At the same time, a comparison between the flow flux of different average fluid density was also carried out. It was shown that, the fluid of lower average density corresponds to bigger flux. Then the effect of wall roughness of sinusoidal type on flow was considered, which demonstrated that velocity can be apparently suppressed by wall roughness and the effect is stronger for weaker wall-fluid interaction. We also established a simplified model to trace the movement of nano particle, and found the wall-fluid interaction takes effect and the particle will be adsorbed to the wall when the wall-fluid interaction is weak.
     Finally, the structure of microvessel wall was simplified and the permeable characteristics of nano-particle in microvessel wall were investigated by molecular dynamics simulation. The study is focused on the effect of particle size on transport properties. Traces of particles with different radius was recorded and compared. The result shows size effect must be considered when considering the problem of microvessel permeability. To our knowledge, we reproduce the transport of colloidal particles in the presence of fiber matrix for the first time, which is helpful to understand drug delivery in microvessel.
引文
1.贾宝贤,李文卓.微纳米科学技术导论.化学工业出版社,2007.
    2.Feynman RP,There's plenty of room at the bottom.1961.
    3.过增元,国际传热研究前沿——微细尺度传热.力学进展,2000.30(1):1-7.
    4.秦丰华,微尺度气体流动特性研究.中国科学技术大学博士论文,2005.
    5.(美)卡尼亚达克斯.柏斯考克,微流动 基础与模拟 化学工业出版社.
    6.Gad-el-Hak M,Preface:Transport phenomena in micro- and nanodevices.Physics of Fluids,2005.17:10051.
    7.刘静,微米/纳米尺度传热学.科学出版社,2001.
    8.白春礼,纳米科技及其发展前景.微纳电子技术,2002.38(1):2-5.
    9.朱彤,孙健.纳米:物质世界的新大陆——访中国科学院纳米科技项目首席科学家白春礼院士.Newton-科学世界,2001.2:34-37.
    10.何雅玲,陶文铨,微尺度流动与换热研究进展.PPT from website,2004.
    11.庄礼贤,尹协远,马晖扬,流体力学.中国科学技术大学出版社,1997.
    12.Allen MP and Tildesley DJ,Computer Simulation of Liquids.Oxford University Press,New York,1989.
    13.Rapaport DC,The Art of Molecular Dynamics Simulation.2004,Cambridge,United Kingdom:Cambridge University Press.
    14.Frenkel and Smit(著),分子模拟——从算法到应用.化学工业出版社,2002.
    15.刘娟芳,流体输运特性和物态转变的分子动力学研究.重庆大学博士论文,2005.
    16.徐超,et al.,流体静态和动态平衡性质的分子动力学模拟.工程热物理学报,2004.25(5):725-728.
    17.王遵敬,蒸发与凝结现象的分子动力学研究与实验.清华大学博士论文,2002.
    18.王金照.气泡成核的分子动力学研究及纳米颗粒对成核的影响.清华大学博士论文.2005
    19.Nie XB,Chen SY,and Robbins MO,Hybrid continuum-atomistic simulation of singular corner flow.Physics of Fluids,2004.16(10):p.3579-3591.
    20.李玉秀,徐进良,分子动力学与连续介质力学耦合模型.自然科学进展,2005.15(12):1423-1435.
    21.曹炳阳,速度滑移及其对微纳尺度流动影响的分子动力学研究.清华大学博士论文,2005.
    22.Churaev NV,Sobolev VD,and Somov AN,Slippage of liquids over lyophobic solid suifaces. Journal of Colloid and Interface Science,1984.97(2):574-581.
    23.Tolstoi DM,DoklAkademiia Nauk SSSR.1952.85:1089
    24.Ruckenstein E and Rajora P,On the no-slip boundary condition of hydrodynamics.J.Colloid Interface Sci.,1983.96:488.
    25.Watanabe K,Yanuar,and Mizunuma H,Slip of Newtonianfluids at slid boundary.JSME Int.J..Ser.B,1998.41:525.
    26.Watanabe K,Yanuar,and Udagawa H,Dear reduction of Newtonian fluid in a circular pipe with a highly water-repellant wall.J.Fluid Mech,1999.381:225.
    27.Zhu Y and Granick S,Rate-dependent slip of Newtonian liquid at smooth surfaces.Physical Review Letters,2001.87:096105.
    28.Zhu Y and Granick S,Limits of the Hydrodynamic No-Slip Boundary Condition.Physical Review Letters,2002.88(10):106102.
    29.Tretheway DC and Meinhart CD,Apparent fluid slip at hydrophobic microchannel walls.Physics of Fluids,2002.14(3):L9-L12.
    30.Thompson PA and Robbins MO,Simulations of Contact-Line Motion:Slip and the Dynamic Contact Angle.Physical Review Letters,1989.63(7):766-769.
    31.Qian TZ,Wang XP,and Sheng P,Molecular scale contact line hydrodynamics of immiscible flows.Physical Review E,2003.68:016306.
    32.Qian TZ,Wang XP,and Sheng P,Power-Law Slip Profile of the Moving Contact Line in Two-Phase Immiscible Flows.Physical Review Letters,2004.93(9):094501.
    33.Xu JL and Li YX,Boundary conditions at the solid-liquid surface over the multiscale channel size from nanometer to micron.International Journal of Heat and Mass Transfer,2007.50:2571-2561.
    34.Cieplak M,Koplik J,and Banavar JR,Boundary Conditions at a Fluid-Solid Interface.PhySical Review Letters,2001.86(5):803-806.
    35.Chen YF,et al.,Hydrodynamic lubrication in nanoscale bearings under high shear velocity.J.Chem.Phys.,2006.125:084702.
    36.Hu YZ,et al.,Simulation of lubricant theology in thin lubrication,Part 1:simulation of Poiseuille flow.Wear,1996.196:243-248.
    37.Hu YZ,et al.,Simulation of lubricant theology in thin lubrication,Part 2:simulation of Couette flow.Wear,1996.196:249-253.
    38.温诗铸,纳米摩擦.北京:清华大学出版社.1998.39.Bhushan.B.著,葛世荣译,摩擦学导论.机械工业出版社,2007.40.冷永胜,et al.,纳米摩擦学的分子动力学模拟研究.中国科学A辑,2001.31(3):261-266.
    41.Koplik J,Banavar JR,and Willemsen JF,Molecular dynamics of fluid flow at solid surfaces.phys.Fluids A,1989.1(5):781-794.
    42.Heinbuch U and Fischer J,Liquid flow in pores:Slip,no-slip,or multilayer sticking.Physical Review A,1989.40(2):1144-1146.
    43.Nagayama G and Cheng P,Effects of interface wettability on microscale flow by molecular dynamics simulation.International Journal of Heat and Mass Transfer,2004.47:501-513.
    44.Priezjev NV,Rate-dependent slip boundary conditions for simple fluids.Physical Review E,2007.75:051605.
    45.Priezjev NV,Darhuber AA,and Troian SM,Slip behavior in liquid films on surfaces of patterend wettability:Comparison between continuum and molecular dynamics simulations.Physical Review E,2005.71:041608.
    46.Qian TZ,Wang XP,and Sheng P,Hydrodynamic slip boundary condition at chemically patterned surfaces:A continuum deduction from molecular dynamics.Physical Review E,2005.72:022501.
    47.Ziarani AS and Mohamad AA,A molecular dynamics study of perturbed Poiseuille flow in a nanochannel.Microfluid Nanofluid,2005.2:12-20.
    48.Barrat JL and Bocquet L,Large slip effect at a nonwetting fluid-solid interface,physical Review Letters,1999.82:4671-4674.
    49.Zhang H,et al.,Shear viscosity of simple fluids in porous media:molecular dynamic simulations and correlation models.Chemical Physics Letters,2001.350:247-252.
    50.Zhang H,et al.,Molecular dynamics simulations on the adsorption and surface phenomena of simple fluid in porous media.Chemical Physics Letters,2002.366:24-27.
    51.Mo G and Rosenberger F,Molecular-dynamics simulations of flow with binary diffusion m a two-dimensional channel with atomically rough walls.Physical Review A,1991.44(8):4978-4985.
    52.Jabbarzadeh A,Atkinson JD,and T.RI,Effect of the wall roughness on slip and rehological properties of hexadecane in molecular dynamics simulation of Couette shear flow between two sinusoidal walls.Physical Review E,2000.61(1):690-699.
    53.Aoyagi T,Takimoto J,and Doi M,Molecular dynamics study of polymer melt confined between walls.Journal of Chemical Physics,2001.115(1):552-559.
    54.He L,et al.,The Effect of Surface Features on Nanorheology of LCP Melts in Nanochannel by MD Simulation.Journal of Tribology,2007.129:171-176.
    55.Galea TM and Attard P,Molecular Dynamics Study of the Effect of Atomic Roughness on the Slip Length at the Fluid-Solid Boundary during Shear Flow.Langmuir,2004.20:3477-3482.
    56.Sokhan VP,Nicholson D,and Quirke N,Fluid flow in nanopores:An examination of hydrodynami boundary conditions.Journal of Chemical Physics,2001.115(8):3878-3887.
    57.Yang SC,Effects of surface roughness and interface wettability on nanoscale flow in a nanochannel.Microfluid Nanofluid,2006.2:501-511.
    58.Priezjev NV,Effect of surface roughness on rate-dependent slip in simple fluids.J.Chem.Phys.,2007.127:144708.
    59.Cao BY,Chen M,and Guo ZY,Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation.Physical Review E,2006.74:066311.
    60.Fan XJ,et al.,Molecular dynamics simulation of a liquid in a complex nano channel flow.Physics of Fluids,2002.14(3):1146-1153.
    61.Mi.XB and Chuang AT,Molecular dynamics simulations of nanochannel flows at low Reynolds numbers.Molecules,2003.8:193-206.
    62.Huang CK,et al.,Investigation of entrance and exit effects on liquid transport through a cylindrical nanopore.Physical Chemistry Chemical Physics,2007.10:186-192.
    63.Huang CK,et al.,Molecular dynamics simulation of a pressure-driven liquid transport process in a cylindrical nanopore using two self-adjusting plates.Journal of Chemical Physics,2006.124:234701.
    64.Travis KP,Todd BD,and Evans DJ,Departure from Navier-Stokes hydrodynamics in confined liquids Phys.Rev.E,1997.55:4288-4295.
    65.Travis KP and Gubbins KE,Poiseuille flow of Lennard-Jones fluids in narrow slit pores.J.Chem.Phys.,2000.112:1984-1994.
    66.Bear J,多孔介质流体动力学.中国建筑工业出版社,1982.
    67.孔祥言,高等渗流力学.中国科学技术大学出版社,1999.
    68.Vergeles M,et al.,Stokes Drag at the Molecular Level.Physical Review Letters,1995.75(2):232-235.
    69.Vergeles M,et al.,Stokes drag and lubrication flows:A molecular dynamics study.Physical Review E,1996.53:4852-4864.
    70.Drazer G,et al.,Hysteresis,Force Oscillations,and Nonequilibrium Effects in the Adhesion of Spherical Nanoparticles to Atomically Smooth Surfaces.Physical Review Letters,2005.95:016102.
    71.Drazer G,et al.,Wetting and particle adsorption in nanoflows.Physics of Fluids,2005.17:017102.
    72.Drazer G,Koplik J,and Acrivos A,Adsorption Phenomena in the Transport of a Colloidal Particle through a Nanochannel Containing a Partially Wetting Fluid Physical Review Letters,2002.89(24):244501.
    73.毛细血管壁,www.baidu.com.
    74.Adamson RH,Permeability of frog mesenteric capillaries after partial pronase digestion of the endothelial glycocalyx.J.Physiol.,1990.428:1-13.
    75.Adamson RH and Clough G,Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels.J.Physiol.,1992.445:473-486.
    76.Adamson RH,Huxley VH,and Curry FE,Single capillary permeability to proteins having similar size but different charge Am.J.Physiol.,1988.254:H304-H312.
    77.Adamson RH,et al.,Microcascular permeability and number of tight junctions are modulated by cyclic AMP Am.J.Physiol.,1998.274:H1885-H1894.
    78.Adamson RH,Lenz JF,and Curry FE,Quantitative laser scanning confocal microscopy on single capillaries:permeability measurement.Microcirculation,1994.1(4):251-265.
    79.Adamson RH and Michel CC,Pathways through the inter-cellular clefts of frog mesenteric capillaries.J.Physiol.,1993.466:303-327.
    80.Albelda SM,et al.,Permeability characteristics of cultured endothelial cell monolayers.J.Appl.Physiol.,1988.64:308-322.
    81.Aukland K and Reed RK,Interstitial-lymphatic mechanisms in the control of extracellular fluid volume.Physiol.Rev.,1993.73:1-78.
    82.Fu BM,Adamson RH,and Curry FE,Test of a two-pathway model for small-solute exchange across the capillary wall.American Physiological Society,1998:H2062-H2073.
    83.Fu BM,Microvessel Permeability and Its Regulation,in Advances in Biomechanics.2001:Beijing,China.
    84.Fu BM and Chen B,A Model for the Modulation of Microvessel Permeability by Junction Strands.Transactions of the ASME,2003.125:620-628.
    85.Squire JM,et al.,Quasi-Periodic Substructure in the Microvessel Endothelial Glycocalyx:A Possible Explanation for Molecular Filtering? Journal of Structural Biology,2002.136:239-255.
    86.Alder BJ and Wainwrigh TE,Phase transition for a hard-sphere system.Journal of Chemical Physics,1957.27:p.1208-1209.
    87.文玉华,et al.,分子动力学模拟的主要技术.力学进展,2003.33(1):65-73.
    88.Connell ST and THompson PA,Molecular dynamics-continuum hybrid computations:A tool for studying somplex fluid flow.Physical Review E,1995.52:5792-5795.
    89.Song X and Chen JK,A comparative study on poiseuille flow of simple fluids through cylindrical and slit-like nanochannels.International Journal of Heat and Mass Transfer,2007.
    90.Rapaport DC and Clementi E,Eddy Formation in Obstructed Fluid Flow:A Molecular-Dynamics Study.Physical Review Letters,1986.57(6):695-698.
    91.曹炳阳.陈民,过增元,纳米通道内液体流动的滑移现象.物理学报,2006.55(10):5305-5310.
    92.Priezjev NV and Troian SM,lnfluence of periodic wall roughness on the slip behavior at liquid/solid interfaces:molecular-scale simulations versus continuum predictions.J.Fluid Mech,2006.554:25-46.
    93.Walther JH,et al.,Hydrodynamic properties of carbon nanotubes.Physical Review E,2004.69:062201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700