用户名: 密码: 验证码:
柔性直流输电系统及其无网侧电动势传感器控制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着风能、太阳能、生物能等可再生能源开发规模的不断扩大,其固有的分散性、小型性、远离负荷中心等特点日益突显出来。基于变流技术的柔性直流输电技术具有小型、高效、控制灵活等特点,经济效益和环保价值可观,并能有效地减少输电线路电压降落与闪变,提高电能质量。
     详细阐述了柔性直流输电系统(VSC-HVDC)的组成结构及其功能,并对整个系统的核心部分——电压源型换流器(VSC)作了重点研究,对其调相原理和运行特性进行了理论分析和数学推导,从而归纳出柔性直流输电系统的工作原理。建立了dq旋转坐标系下精确的VSC-HVDC数学模型,对电流内环控制器存在的dq轴相互耦合运用前馈解耦控制理论,成功地实现了有功功率和无功功率的独立控制,对于功率外环则可以根据不同的控制要求而选择相应的控制策略。在此基础上,利用MATLAB 7.1仿真软件搭建了一个新型的柔性直流输电系统仿真平台,并进行了相关的仿真研究。
     针对安装网侧电动势传感器对柔性直流输电系统所带来的不稳定性因素,提出了一种基于柔性直流输电系统的无网侧电动势传感器控制技术。基于电压源型换流器的电流模型,构造了一个新的可调电流模型,运用模型参考自适应理论对两个模型之间的电流误差进行PI调节,分别推导出了网侧电动势的幅值与相位角辨识率,从而有效地辨识出了网侧电动势。仿真结果表明,所提出的无网侧电动势传感器控制技术具有良好的辨识速度,且辨识精度高,系统鲁棒性强。
     相比于柔性直流输电技术在国外工程上的成功应用,国内基本上还处于空白,因此设计了一个小容量的柔性直流输电实验系统,实验结果表明,该实验系统不仅具有良好的稳定性,抗干扰性能也十分优越,具有很强的鲁棒性,符合工程应用的基本要求,为今后的工程应用作了良好的铺垫。
With the rapid development of wind, solar and other renewable energy, the characteristic of inherent dispersion, small structure, far from the load centers and so on are constantly exposed. VSC-HVDC technology has small, efficient and flexible control characteristics and has significant economic and environmental value, reduces the transmission line voltage drop and flicker effectively, improves the power quality.
     The basis of the composition of the VSC-HVDC system structure and function are detailed described, and made an in-depth research on the core of the whole system-voltage sourced converter (VSC), focus on the principles and operational characteristics of modulation theory analysis and mathematical analysis, then concluded VSC-HVDC system Working principle. Established the precise mathematical model of VSC-HVDC under the dq rotating coordinate system, used feedforward decoupling control theory to decouple the dq axis coupling of the current inner loop controller, then successfully achieved the active and reactive power independently controlled, for outer power control loop could select the appropriate control strategy according to different requirements. Built a new type of VSC-HVDC system simulation platform using MATLAB 7.1 and made some relevant simulation research.
     The installation of the source voltage sensor in VSC-HVDC system will bring in some factors of instability, a new source voltage sensorlee control technology based on the VSC-HVDC system has been proposed in this paper. Based on voltage source converters current model, construct a new adjustable current model, using the model reference adaptive theory, regulated the current errors between the two model with PI regulator, then derived the rate of source voltage amplitude and phase angle respectively, thus identified the source voltage effectively. Simulation results show that the designed source voltage sensorless control technology has a good recognition rate, and high identification precision, a strong robustness.
     Compared to the successful application of VSC-HVDC transmission technology foreign projects, there is few application of VSC-HVDC in civil. The paper designed a small-capacity VSC-HVDC experimental system, the relevant experimental results show that the designed experimental system not only has good stability, anti-interference performance is also very superior, and has strong robustness to meet the basic requirements of engineering applications, made a well basis for the future engineering applications.
引文
[1]Ooi B T, Wang X. Voltage angle lock loop control of the boost type PWM converter for HVDC application[J]. IEEE Transaction on Power Electronics, 1990,5(2):229-235.
    [2]Ooi B T, Wang X. Boost type PWM HVDC transmission system[J]. IEEE Transaction on Power Delivery,1991,6(4):1557-1563.
    [3]科技部.柔性(轻型)直流输电系统关键技术研究框架[M].北京:国家电网公司科技部,2006:1-5.
    [4]胡冬良,赵成勇,李广凯.电压源换流器高压直流输电的进展[J].南方电网技术,2008,12(5):19-23.
    [5]徐政,陈海荣.电压源换流器型直流输电技术综述[J].高电压技术,2007,11(1):1-10.
    [6]郑超,周孝信,李若梅,等.VSC-HVDC稳态特性与潮流算法的研究[J].中国电机工程学报,2005,25(6):1-5.
    [7]Nikolas Flourentzou, Vassilios G . Agelidis , Georgios D. Demetriades. VSC-Based HVDC Power Transmission Systems:An Overview[J]. IEEE Transaction on Power Electronics,2009,24(3):592-602.
    [8]Cuiqing Du, Agneholm E, Olsson G. Use of VSC-HVDC for Industrial Systems Having Onsite Generation With Frequency Control[J]. IEEE Transactions on Power Delivery,2008,23(4):2233-2240.
    [9]Cuiqing Du, Evert Agneholm, Gustaf Olsson. Comparison of Different Frequency Controllers for a Vsc-HVDC Supplied System[J]. IEEE Transactions on Power Delivery,2008,23(4):2224-2232.
    [10]H. F. Latorre, M. Ghandhari, L. Soder. Application of Control Lyapunov Functions to Voltage Source Converters-based High Voltage Direct Current for Improving Transient Stability[J]. POWER TECH,2007,23(1):14-23.
    [11]Alejadro Pizano-Matinez, Claudio R. Fuerte-Esquivel, H. Ambriz-Perez, Enrique Acha. Modeling of VSC-Based HVDC Systems for a Newton-Raphson OPF Algorithm[J]. IEEE Transaction on Power Systems,2007,22(4):1794-1803.
    [12]Akshaya Moharana, P. K. Dash. Input-Output Linearization and Robust Sliding-Mode Controller for the VSC-HVDC Transmission Link[J]. IEEE Transactions on Power Delivery,2010,23(1):1-10.
    [13]张桂斌,徐政,王广柱.基于VSC的直流输电系统的稳态建模及其非线性控制[J].中国电机工程学报,2002,22(1):17-22.
    [14]宋瑞华,周孝信.基于LMI方法的VSC-HVDC多重模型阻尼控制器设计[J].电力系统自动化,2007,2(18):16-20.
    [15]赵成勇,孙营,李广凯.双馈入直流输电系统中VSC-HVDC的控制策略[J].中国电机工程学报,2008,28(7):97-103.
    [16]郑超.基于电压源换流器的高压直流输电系统数学建模与仿真分析[D].北京:中国电力科学研究院,2006:23-29.
    [17]周国梁,石新春,魏晓光,朱晓荣,付超.电压源换流器高压直流输电不平衡控制策略研究[J].中国电机工程学报,2008,11(22):137-143.
    [18]殷自力,梁海峰,李庚银,周明,赵成勇.基于模糊自适应PI控制的柔性直流输电系统实验研究[J].电力自动化设备,2008,5(7):49-53.
    [19]Bruckner T, Bernet S, Guldner H. The active NPC converter and its loss-balancing control[J] IEEE Transactions on Industrial Electronics,2005,52 (3):855-868.
    [20]Y. H. Liu, J. Arrillaga, N. R. Watson. Addition of four-quadrant power controllability to multi-level VSC HVDC transmission[J]. IET Gener,2007, 1(6):872-878.
    [21]Chang Hsin Chien, Richard W. G.. Bucknall. Analysis of Harmonics in Subsea Power Transmission Cables Used in VSC-HVDC Transmission Systems Operating Under Steady-State Conditions[J]. IEEE Transactions on Power Delivery,2007,22(4):2489-2497.
    [22]Y. H. Liu, J. Arrillaga, N. R. Watson. Cascaded H-Bridge Voltage Reinjection Part Ⅱ: Application to HVDC Transmission[J]. IEEE Transactions on Power Delivery,2008,23(2):1200-1206.
    [23]Lie Xu, Vassilios G. Agelidis. VSC Transmission Syetem Using Flying Capacitor Multilevel Converters and Hybrid PWM Control[J]. IEEE Transactions on Power Delivery,2007,22(1):693-702.
    [24]方宇,邢岩石,谢勇.二极管箝位型三相三电平PWM整流器研究[J].电力电子技术,2008,11(7):7-8.
    [25]潘武略,徐政,张静,王超.电压源换流器型直流输电换流器损耗分析[J].中国电机工程学报,2008,13(21):7-14.
    [26]石新春,周国梁,王娟,付超,王毅.VSC-HVDC大功率拓扑结构研究 [J].高电压技术,2008,9(8):1622-1627.
    [27]阮思烨,李国杰,孙元章.多端电压源型直流输电系统的控制策略[J].电力系统自动化,2009,10(12):57-60.
    [28]陈海荣,徐政,张静.一种基于电压源型多端直流输电的供电系统[J].高电压技术,2006,12(9):1-5.
    [29]周雒维,彭容,杜雄.单周控制双Buck型电压源换流器[J].中国电机工程学报,2005,6(17):11-14.
    [30]Bresesti P, Kling W. L, Hendriks R. L, Vailati R. HVDC Connection of Offshore Wind Farms to the Transmission System[J]. IEEE Transactions on Energy Conversion,2007,22(1):37-43.
    [31]Xiaoping Zhang. Multiterminal voltage-sourced converter-based HVDC models for power flow analysis[J]. IEEE Transactions on Power Systems,2004,19(4): 1877-1884.
    [32]Cuiqing Du, Evert Agneholm, Gustaf Olsson. VSC-HVDC System for Industrial Plants With Onsite Generators[J]. IEEE Transactions on Power Delivery,2009, 24(3):1359-1366.
    [33]Cuiqing Du, Math H. J. Bollen, Evert Agneholm, Ambra Sannino. A New Control Strategy of a VSC-HVDC System for High-Quality Supply of Industrial Plants[J]. IEEE Transactions on Power Delivery,2007,22(4):2386-2394.
    [34]Lie Xu, Liangzhong Yao, Christian Sasse. Grid Integration of Large DFIG-Based Wind Farms Using VSC Transmission[J]. IEEE Transactions on Power Systems,2007,22(3):976-984.
    [35]Nagesh Prabhu, K. R. Padiyar. Investigation of Subsynchronous Resonance With VSC-Based HVDC Transmission Systems[J]. IEEE Transactions on Power Delivery,2009,24(1):433-440.
    [36]李胜.柔性直流技术在城市电网中应用研究[D].北京:华北电力大学,2009:17-26.
    [37]孙峰.HVDC Light的功率控制及柔性并网策略研究[D].沈阳:沈阳工业大学,2008:23-41.
    [38]魏晓光,汤广福,魏晓云,迟永宁.VSC-HVDC控制器抑制风电场电压波动的研究[J].电工技术学报,2007,11(4):150-156.
    [39]吴俊,艾芊.多端柔性直流输电系统在风电场中的应用[J].电网技术,2009,12(4):22-27.
    [40]魏晓云,魏晓光,徐凤阁.基于VSC-HVDC的风力发电场交直流混合并网 技术[J].中国电力,2006,6(9):45-49.
    [41]李广凯.VSC-HVDC系统及其在电网恢复中的应用研究[D].北京:华北电力大学,2007:42-56.
    [42]Dong-Choon Lee, Dae-Sik Lim. AC Voltage and Current Sensorless Control of Three-Phase PWM Rectifiers[J]. IEEE Transaction on Power Electronics,2002, 17(6):883-890.
    [43]Hong-Seok Song, In-Won Joo, Kwanghee Nam. Source Voltage Sensorless Estimation Scheme for PWM Rectifiers Under Unbalanced Conditions[J]. IEEE Transactions on Industrial Electronics,2003,50(5):1238-1245.
    [44]Abdel-Rady Ibrahim Mohamed Y, El-Saadany E. F, Salama M. Adaptive Grid-Voltage Sensorless Control Scheme for Inverter-Based Distirbuted Generation[J]. IEEE Transactions on Energy Conversion,2009,24(3):683-694.
    [45]Hyunjae Yoo, Kim J. H, Seung-Ki Sul. Sensorless Operation of a PWM Rectifier for a Distributed Generation[J]. IEEE Transactions on Industrial Electronics,2007,22(3):1014-1018.
    [46]Z. Zhou, P. J. Unsworth, P. M. Holland, P. Lgic. Design and analysis of a feedforward control scheme for a three-phase voltage source pulse width modulation rectifier using sensorless load current signal[J]. IET Power Electronics,2008,2(4):421-430.
    [47]赵仁德,贺益康.无电网电压传感器三相PWM整流器虚拟电网磁链定向矢量控制研究[J].中国电机工程学报,2005,12(26):56-61.
    [48]郭文博,杨贵杰,李铁才.无网侧电动势传感器的PWM可控整流的研究[J].微特电机,2008,8(12):1-4.
    [49]吕观顺,李春静.无交流电压传感器PWM整流器启动性能改善[J].电力电子技术,2009,16(9):70-72.
    [50]李时杰,李耀华.PWM整流器无电流传感器前馈控制策略的研究[J].电气传动,2006,11(12):43-46.
    [51]de la Villa Jaen A, Acha E, Exposito A. G. Voltage Source Converter Modelling for Power System State Estimation:STATCOM and vsc-HVDC[J]. IEEE Transactions on Power Systems,2008,23(4):1552-1559.
    [52]周国梁.基于电压源换流器的高压直流输电系统控制策略研究[D].石家庄:华北电力大学,2009:51-58.
    [53]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003: 19-32.
    [54]Tiwari A. N, Agarwal P, Srivastava S. P. Modified hysteresis controlled PWM rectifier[J]. IEE Proceedings-Electric Power Applications,2003,150(4):389-396.
    [55]Akira Nabae, Toshihiko Tanaka. A New Definition of Instantaneous Active-Reactive Current and Power Based on Instantaneous Space Vectors on Polar Coordinates in Three-Phase Circuits[J]. IEEE Transactions on Power Delivery,1996,11(3):1238-1243.
    [56]Jowder F. A. Ra, Boon Teck Ooi. VSC-HVDC station with SSSC characteristics[J]. IEEE Transactions on Power Electronics,2004,19 (4): 1053-1059.
    [57]Espinoza J. R, Joos G. State variable decoupling and power flow control in PWM current-source rectifirers[J]. IEEE Transactions on Industrial Electronics, 1998,45(1):78-87.
    [58]Wasynczuk O, Sudhoff S. D, Tran T. D, Clayton D. H, Hegner H. J. A voltage control strategy for current-regulated PWM inverters[J]. IEEE Transactions on Power Electronics,1996,11(1):7-15.
    [59]刘洪涛.新型直流输电的控制和保护策略研究[D].杭州:浙江大学,2003:55-61.
    [60]梁海峰.柔性输电系统控制策略研究及其实验系统的实现[D].北京:华北电力大学,2009:36-50.
    [61]常东旭.轻型直流输电控制技术及其实现[D].武汉:华中科技大学,2006:14-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700