用户名: 密码: 验证码:
神东和平朔煤在不同反应器中的热解特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以研究西部弱还原性煤一神东煤的热解特性为目的,分别采用热重(TG)和热重-质谱(TG-MS)、固定床热解装置和半连续式亚临界和超临界萃取装置等实验设备进行研究,考察其在不同装置上的产物分布规律以及实验条件对产物分布规律的影响,并对亚临界和超临界萃取所得残渣的性质进行分析;以还原性的平朔煤作为参比对象,比较性地探讨了具有不同还原性的两种煤的热解特性。论文的主要研究内容和结果如下:
     在热重分析装置上,研究两种煤的非等温热解规律,考察了升温速率对热解过程的影响,并进行了热解动力学分析。研究结果表明:神东煤的主要热解温度区间为365-650℃,最大失重速率峰出现在450℃左右;与平朔煤相比,神东煤具有较大的总失重量、较小的最大失重速率以及较低的最大失重速率所对应的温度,最大不同在于神东煤在600-700℃有一明显失重峰;升温速率提高,最大失重速率所对应的温度向高温区移动;动力学分析表明,神东煤热解活化能(118-265kJ/mol)明显低于平朔煤热解活化能(196-280kJ/mol)。
     在热重-质谱联用装置上,考察了两种煤热解逸出物的逸出规律。研究结果表明:在600-700℃之间,神东煤的H_2和CO_2的逸出强度均要高于平朔煤,说明神东煤在600-700℃的失重峰是神东煤的二次热解和其矿物质组分中碳酸盐部分的热分解共同造成的。由低分子碳氢化合物的逸出规律可知,与平朔煤相比,神东煤在主要分解温度段的热解强度要弱些。平朔煤热解气体中的H_2S主要是由煤大分子结构中的含硫键断裂形成的,平朔煤热解气体中的SO_2是由有机硫的逸出和硫铁矿的分解共同造成的:神东煤的热解气体中的H_2S和SO_2主要是由煤中铁铁矿的分解生成的,少部分的SO_2是由有机硫的逸出生成的。
     在固定床热解装置上,考察了两种煤热解和加氢热解过程中温度对产物分布规律的影响,并对所得半焦的性质进行了分析。结果表明:神东煤氮气气氛下焦油产率呈现随温度提高先增加后减小的趋势,在650℃时达到最大值10.5%:在加氢热解条件下,则呈缓慢近线性增大的趋势,在700℃时达到最大值12.1%;无论氮气还是氢气气氛,平朔煤热解的焦油产率均呈现先增加后减小的趋势,均在650℃附近达最大值,分别17.1%和19.8%,均高于神东煤;两种煤热解和加氢热解所得气体的逸出规律相近,但神东煤的气体生成总量稍高于平朔煤;两种煤的半焦产率都随着温度升高而降低,相同终温下,神东煤的半焦产率大于平朔煤的半焦产率。
     在半连续式亚临界和超临界萃取装置上,考察了两种煤在不同溶剂和不同压力下的产物分布规律。研究结果表明:以水为溶剂时,随着压力的升高,液体产率增加,30MPa时,平朔煤和神东煤的液体产率分别为21.3%和16.3%;两种煤液体产物中主要组分均为沥青烯,但神东煤液体产物具有相对较高的油组分,随着温度的增加,液体产物生成速率先增大,在400℃左右出现峰值后再降低;随着压力的增加,液体产物最大生成速率所对应的温度向高温区移动,与平朔煤相比,神东煤具有较低的液体最大生成速率和与之相对应的温度;两种煤气体产率也随着压力的增加而稍有增大,神东煤比平朔煤有更高的气体产率,平均高3%左右,气体组成中H_2、CH_4和CO_2是主要成分;残渣产率为65%-75%,并随着压力的增加而减小,神东煤具有比平朔煤低的残渣产率。以甲苯为溶剂时,液体和气体产物随温度和压力的变化所呈现的规律与以水为溶剂时大体相似,不同的是在变化幅度和具体组成上。30MPa时,平朔煤和神东煤液体产率分别为35.3%和33.8%,液体产物的主要成分为油组分,与以水为溶剂时的结果相比,液体产物在相对较宽的温度范围生成,但最大生成速率变小,最大生成速率对应的温度提高;神东煤的气体产率高于平朔煤,主要气体成分为H_2和CH_4;残渣产率为70%-80%,神东煤比平朔煤具有较高的残渣产率。当以甲苯和四氢萘(9:1,V/V)的混合物为溶剂时,液体产率仍随着反应压力的增加而增大,30MPa下,平朔煤和神东煤的液体产率分别为68.2%和64.0%,油是液体产物的主要成分,其中很大部分液体产物来自于溶剂的反应;液体产物生成速率在低压时随温度的变化规律与以水和甲苯为溶剂时相似,高压时则随着温度的升高而不断增大。在气体产率和组成上,与以甲苯为溶剂时相似,但H_2含量有所增加。残渣产率为65%-75%,神东煤比平朔煤具有较低的残渣产率。
     对两种煤在不同溶剂下亚临界和超临界萃取所得的残渣进行了煤质分析、红外光谱分析和燃烧反应实验。结果表明:以水为溶剂所得残渣与原煤相比,几乎不含水分,具有较高的灰分、较低的挥发份;C元素含量增加,H、O元素含量降低,具有较高的发热量;与平朔煤残渣相比,神东煤残渣有较高的C、N含量,具有略低的挥发份和较低的灰分。通过对原煤与萃取残渣的红外光谱的对比分析发现:大部分的矿物质并未参与到萃取过程中。以水为溶剂得到的神东煤残渣的发热量高于平朔煤残渣,且更容易反应和燃烧,燃烧反应符合一级反应;甲苯为溶剂和采用混合溶剂时所得残渣表现出与以水为溶剂时相似的规律,只是在幅度和具体数值上有所差别。
     对以水为溶剂所得残渣进行了氮吸附和XPS分析,考察亚临界和超临界萃取对煤结构和表面元素赋存状态的影响。研究结果显示:残渣的平均孔径与原煤相比减小,比表面积有较大增加,且随着反应压力的增加而增大,说明亚临界和超临界水萃取对于煤具有一定的活化作用。神东煤残渣具有较大的比表面积和较小平均孔径,具有一定的中孔材料特征。原煤与残渣的表面C的主要赋存状态为C-C,神东煤相对于平朔煤具有较高的C-C和较低的C-H赋存比例;原煤与残渣的表面O的主要赋存状态为C-O;吡啶型氮(N-6)和吡咯型氮(N-5)是原煤表面N的主要赋存形式,吡啶型氮(N-6)是残渣表面N的主要赋存形式。
In this paper, pyrolysis performance of a weakly reductive Shendong (SD) coal was investigated by using thermogravimetric analyzer (TG), thermogravimetric analyzer - mass spectrometer (TG-MS), a fixed bed reactor and a semi-continuous apparatus with sub- and supercritical solvent. The characteristic of residues from coal extraction with sub- and supercritical solvent was also characterized by different methods. Pingshuo (PS) coal, a reductive coal was used as reference coal in comparison with SD coal. Main research works and results are as follows:
     Kinetic characteristics of two coals during pyrolysis were investigated by TG. The results showed that the pyrolysis of SD coal mainly takes place in the temperature range between 365 and 650℃. The temperature corresponding to the maximum weight loss rate appears at about 450℃. In comparison with PS coal, SD coal has a high weight loss and low temperature corresponding to the maximum weight loss rate and another peak of weight loss rate appears at the temperature between 600 and 700℃. with the increase of heating rate, the temperature corresponding to the maximum weight loss rate shifts to high temperature. Activation energy of SD coal and PS coal during pyrolysis at the temperature of 300-650℃are 118-265kJ·mol~(-1) and 196-280kJ·mol~(-1), respectively.
     TG-MS was used to investigate the pyrolysis behaviours of two coals. The results showed that The evolution intensity of H_2 and CO_2 from SD coal is higher than that from PS coal between 600 and 700℃.It means that weight loss peak of SD coal between 600-700℃is attributed to the second reaction of the pyrolysis product and the mineral matter decomposition. The H_2S evolution of PS coal mainly comes from the rupture of sulfur containing bond in coal macromolecule. The SO_2 evolution of PS coal attributed to decomposition of pyrite and the evolution of organic sulfur. The H_2S and SO_2 evolution of SD coal mainly attributed to decomposition of pyrite, and partly come from the evolution of organic sulfur.
     The effect of end temperature on product distribution of two coals was investigated in a fixed bed reactor under N_2 and H_2 atmosphere. With the increase of the temperature, the tar yield of SD coal increases, gets a maximum and then decreases with further increase of the temperature under N_2 atmosphere. The maximum, 10.5%, appears at about 650_. Under H_2 atmosphere, the tar yield of SD coal increases with a increasing of the temperature. The maximum, 12.1%, appears at about 700℃. The tar yield of PS coal has a similar trend as that of SD coal pyrolysis under both N_2 and H_2 atmosphere. The maximum, 17.1 % and 19.8%, respectively, appears at about 650℃, higher than that of SD coal. The gas evolution rule of two coals during pyrolysis and hydropyrolysis shows a similar trend. The total gas volume of SD coal is higher than that of PS coal. The char yield of two coals decreases with an increase of the temperature. At the same final temperature, the char yield of SD coal is higher than that of PS coal.
     On a semi-continuous apparatus, SD coal and PS coal were non-isothermally extracted with sub- and supercritical solvent to explore the differences between the two coals. The effect of temperature on extract formation rate, conversion and product composition under different pressures was investigated. Water, toluene, and toluene-tetralin (9:1, V/V) were used as solvent. When the solvent is water, the results indicate that the liquid formation rate of two coal samples increases to a maximum at temperature about 400℃and then decreases with further increase of the temperature. With increasing pressure, the liquid yield increase. At a pressure of 30MPa, the liquid yield of SD coal and PS coal is 16.3% daf, 21.3% daf respectively. The conversion and the liquid formation rate also increases and the temperature corresponding to maximum of liquid formation rate moves to higher temperature. In comparison with PS coal, SD coal has high conversion, low liquid yield and low temperature corresponding to the maximum formation rate: The main fraction in liquid product from PS coal is asphaltene, while that from SD coal has relatively higher content of oil fraction. The yield of gas formed during coal extraction increases with the increase of the pressure and the main gas components are CO_2, CH_4 and H_2. In comparison with PS coal, SD coal has a high gas yield. The main product in coal extraction is extraction residue, about 65-75% of coal. SD coal has lower residue yield than PS coal.
     When the toluene is solvent, the results indicate that the rule of the liquid and gas product with the change of the temperature and pressure is similar with that using water as solvent. The difference is the change intensity and composition. For example, the liquid yield of PS coal is 35.3% daf and that of SD coal is 33.8% daf at the pressure of 30MPa. The main fraction in liquid product from two coals is oil. The liquid formation rate and the maximum liquid formation rate are smaller than that using water as solvent, while the temperature corresponding to the maximum liquid formation rate is higher than that using water as solvent. SD coal has higher gas yield than PS coal, although the main gas components change to CH4 and H_2. About 70-80% of coal became the extraction residue. SD coal has higher residue yield than PS coal.
     When the toluene-tetralin (9:1, V/V) is used as solvent, the results indicate that with increasing pressure, the liquid yield increase. At a pressure of 30MPa, the liquid yield of SD coal and PS coal is 64.0% daf, 68.2% daf respectively. The main fraction in liquid product from two coals is also oil. The liquid formation rate under the low pressure has the similar as that using water and toluene as solvent, while that under the high pressure increases with an increase of the temperature. The main gas components are CH_4 and H_2, although the content of H_2 has a small increment. About 65-75% of coal became the extraction residue. SD coal has lower residue yield than PS coal.
     The residues, obtained from extraction of SD coal and PS coal with sub- and supercritical solvent were characterized by proximate analysis, ultimate analysis, calorific value analysis, FTIR analysis and combustion experiment. The results indicate that the residues from the extraction of two coals with sub- and supercritical water have higher carbon content, lower hydrogen, oxygen content and higher calorific value than coal samples. In compared with the extraction residues of PS coal (PSER), the extraction residues of SD coal (SDER) has a high calorific value and carbon, hydrogen content and a low volatile matter and ash yield. The results of the FT-IR comparison between raw coal and the extraction residues indicate that the main part of mineral matter is not involved in extraction. The results of combustion indicate that the extraction residues of SD coal are more reactive and can be more easily burned than that from PS coal. The characteristics of the residues using the toluene and toluene-tetralin (9:1, V/V) as solvent have the similar trend, the difference is the change intensity and the actual value.
     The residues from extraction of two coals with sub- and supercritical water were characterized by XPS analysis and N_2 adsorption. The results indicate that the average pore diameter has a decrease after extraction, and the surface area of residue becomes larger with the increase of pressure. The sub- and supercritical water extraction has an activation effect to the samples, although this effect is limited. In compared with PSER, SDER have high surface area and small average pore diameter, which shows the character of mesopore materials. C-C and C-0 are the main form of carbon, oxygen element on the surface of coal samples and extraction residues. Pyridinic nitrogen (N-6) and pyrrolic nitrogen (N-5) are the main form of nitrogen element on the surface of coal samples. Pyridinic nitrogen (N-6) is the main form of nitrogen element on the surface of extraction residues. In comparison with PS coal, SD coal has a high C-C content and a low C-H content.
引文
[1]http://www.china.com.cn.原油进口依存度逼近50%.2008.6
    [2]http://www.okokok.com.cn.2006年中国一次能源消费结构.2008.5.6
    [3]范维唐.中国工业报.2004.3.25
    [4]2004中国经济年鉴[M],北京,中国经济年鉴社.2004,11:963.
    [5]http://www.cnmn.com.cn.产业联动促进西部能源工业发展.2008.4.10
    [6]赵师庆.我国腐植煤的还原性质及其与沉积环境的关系[J].沉积学报,1984,2(2):53-65.
    [7]李濂清.煤的还原程度的研究[J].煤田地质与勘探,1987,5:15-18.
    [8]王天亮.浅谈神东煤田侏罗纪煤的工艺性质[J].煤质技术,2004,4:45-46.
    [9]郭崇涛.煤化学(第一版)[M].北京:化学工业出版社,1994.
    [10]Penninger J M L,Slotboom H W.Kinetics and mechanisms of primary cracking reactions in high pressure hydrogenolysis of tetralin and indin[J].Rec.Tray.Chim.Pays-Bas,1973,92:513-530.
    [11]Suuberg E M,Peters W A,Howard J B.Product compositions in rapid hydropyrolysis of coal[J].Fuel,1980,59(6):405-412.
    [12]Petrakis L,Grandy D W.Free radicals in coals and coal conversion 3.Investigation of the free radicals of selected macerals upon pyrolysis[J].Fuel,1981,60(2):115-119.
    [13]Miura K.Mild conversion of coal for producing valuable chemicals[J].Fuel Process.Technol.,2000,62(2):119-135.
    [14]Yang Y,Watkinson A P.Gasification reactivity of some western Canadian coals[J].Fuel,1994,73(11):1786-1791.
    [15]Wanzl W,Bittner D.Experiments on pyrolysis behaviour of different coals[J].Fuel Process.Technol.,1990,24(1-3):11-17.
    [16]Ekwenchi M M,Imobighe G A,Adejumo M A.Estimation of degree of thermal maturity of coals[J].Fuel Process.Technol.,1991,28(3):239-246.
    [17]Zoller D L,Johnston M V,Wang X G et al.Thermogravimetry-photoionization mass spectrometry of different rank coals[J].Energy & Fuels,1999,13(5):1097-1104.
    [18]Alonso M J G,Alvarez D,Borrego A G et al.Systematic effects of coal rank and type on the kinetics of coal pyrolysis[J].Energy & Fuels,2001,15(2):413-428.
    [19]Hu H Q,Zhou Q,Zhu S W et al.Product distribution and sulfur behavior in coal pyrolysis[J].Fuel Process.Technol.,2004,85(8-10):849-861.
    [20]Alvarez R,Pis J J,Diez M A et al.Studies on generation of excessive coking pressure.1.Semicoke contraction versus thermoplastic properties of coals[J].Energy & Fuels,1997,11(5):978-981.
    [21]Telfer M A,Heidenreich C A,Zhang D K.Effect of particle size and heating rate on the transformation of sulphur during pyrolysis of a South Australian low-rank coal[J].Developments in Chemical Engineering and Mineral Processing,1999,7(3):409-426.
    [22]Fuertes A B,Pis J J,Perez A J et al.Kinetic study of the reaction of a metallurgical coke with CO_2[J].Solid State Ionics,1990,38(1-2):75-80.
    [23]Shibaoka M,Ohtsukat Y,Wornat M J et al.Application of microscopy to the investigation of brown coal pyrolysis[J].Fuel,1995,74(11):1648-1653.
    [24]Sathe C,Hayashi J I,Li C Z.Release of volatiles from the pyrolysis of a Victorian lignite at elevated pressure[J].Fuel,2002,81:1171-1178.
    [25]Veronika S,Josef P,Gernot S.Effects of particle size,heating rate and pressure on measurement of pyrolysis kinetics by thermogravimetric analysis[J].Fuel,1997,76(3):1277-1282.
    [26]Lemaignen L,Zhuo Y,Reed G P et al.Facrors governing reactivity in low temperature coal gasification.Part Ⅱ.An attempt to correlate conversions with inorganic and mineral constituents[J].Fuel,2002,81:315-326.
    [27]Oztas N A,Yurum Y.Pyrolysis of Turkish Zonguldak bituminous coal.Part Ⅰ.Effect of mineral matter[J].Fuel,2000,79:1221-1227.
    [28]Quyn D M,Wu H W,Li C Z.Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal.Part Ⅱ.Effects of chemical form and valence[J].Fuel,2002,81:181-158.
    [29]廖洪强,李保庆,张碧江.工艺条件对煤-废塑料在焦炉气气氛下共热解特性的影响[J].煤炭转化,1998,21(4):58-61.
    [30]Wiktorsson L P,Wanzl W.Kinetic paramenters for coal pyrolysis at low and high heating rates-a comparison of data from different laboratory equipment[J].Fuel,2000,79:701-716.
    [31]Hyok B K,Francis J V.Thermal analysis of coal under conditions of rapid of heating[J].Fuel Process.Technol.,1995,44:13-24.
    [32]张建雨,王波,颜涌捷等.煤裂解特性研究[J].华东理工大学学报,2000,26(6):642-645.
    [33]陈皓侃,李保庆,张碧江.反应条件对煤加氢热解产物分布的影响[J].燃料化学学报,1997,25(1):49-54.
    [34]Podder J,Hossain T,Mannan K M.An investigation into the thermal behaviour of Bangladeshi coals[J].Thermochimica Acta,1995,255:221-226.
    [35]Seewald J S,Eglinton L B,One Y L.An experimental study of organic-inorganic interactions during vitrinite maturation[J].Geochimica et Cosmochimica Acta,2000,64(9):1577-1591.
    [36]张军,袁建伟,徐益谦.矿物质对煤粉热解的影响[J].燃烧科学与技术,1998,4(1):64-68.
    [37]缪岩,蒋君衍,张鹤声.煤催化热解过程的动力学研究[J].燃烧科学与技术,1995,1(4):140-150.
    [38]Slaghuis H J,Ferreiral L C,Judd M R.Volatile material in coal:effect to inheret mineral matter[J].Fuel,1991,70(3):471-473.
    [39]李凡,张永发,谢克昌.矿物质对煤显微组分热分解的影响[J].燃料化学学报,1992,20(3):300-306.
    [40]Zhuo Y,Lemaignen LChatzakis I N et al.Attempt to correlate conversions in pyrolysis and gasification with FT-IR spectra of coals[J].Energy Fuels,2000,14(5):1049-1058.
    [41]Kok M V,Ozbas E,Karacan O.Effect of particle size on coal pyrolysis[J].Journal of Analytical and Applied Pyrolysis,1998,45(2):103-110.
    [42]徐建国,魏兆龙.用热分析法研究煤的热解特性[J].燃烧科学与技术,1999,5(2):175-179.
    [43]Unger P E,Suugberg E M.Molecular weight distributions of tars produced by flash pyrolysis of coals[J].Fuel,1984,43:606-611.
    [44]Solomon P R,Serio M A,Carangelo R M et al.Very rapid coal pyrolysis[J].Fuel,1986,65:182-191.
    [45]Teo K C,Watkinson A P.Rapid pyrolysis of Canndian coals in a miniature spouted bed reactor[J].Fuel,1986,65:949-959.
    [46]Anthony D B,Hooward J B,Hottel H C et al.The second reaction in coal pyrolysis[J].Fuel,1976,55(2):121-124.
    [47]Khan M R.A literature survey and an experimental study of coal devolatilization at mild and severe conditions:influences of heating rate,temperature and reactor type on products yield and composition[J].Fuel,1989,68:1522-1530.
    [48]Ledsmal E B,Kalishc M A,Nelsona P F et al.Formation and fate of PAH during the pyrolysis and fuel-rich combustion of coal primary tar[J].Fuel,2000,79:1801-1814.
    [49]Yu L E,Hildemann L M.Trends in aromatic ring number distributions of coal tars during secondary pyrolysis[J].Energy &Fuels,1998,12(3):450-456.
    [50]Cypres R,Furfari S.Fixed-bed pyrolysis of coal under hydrogen pressure at low heating rates[J].Fuel,1981,60(9):768-778.
    [51]Arendt P,Van Heek K H.Comparative investigations of coal pyrolysis under inert gas and H_2 at low and high heating rates and pressures up to 10MPa[J].Fuel,1981,60(9):779-787.
    [52]Bolton C,Snape C E,O'Brien R J et al.Influence of carrier gas flow and heating rates in fixed bed hydropyrolysis of coal[J].Fuel,1987,66(10):1413-1417.
    [53]李保庆.煤加氢热解研究Ⅰ.宁夏灵武煤加氢热解的研究[J].燃料化学学报,1995,23(1):57-61.
    [54]Furfari S.IEA,Report Number 1 CTIS/TR 20,1982.
    [55]Snape C E,Bolten C,Dosch R G et al.High liquid yiedls from bituminous coal via hydropyrolysis with dispersed catalysts[J].Energy & Fuel,1989,3(3):421-432.
    [56]Schroeder W C.Solid phase hydrogenation cuts cost[J].Hydrocarbon Processing,1976,55(1):131-138.
    [57]Graff R A,Dobner S,Squiresm A M.Flash hydrogenation of coal:1.Experiment methods and preliminary results[J].Fuel,1976,55(2):109-112.
    [58]Graff R A,Dobner S,Squiresm A M.Flash hydrogenation of coal 2.Yield structure for Illinois 6~# at 100 atm[J].Fuel,1976,55(2):113-115.
    [59]Anthony D B,Howard J B,Hottel H C et al.Rapid devolatilization and hydrogasfication of bituminous coal[J].Fuel,1976,55(2):121-128.
    [60]Russel W B,Saville D A,Greene M L.Model for short residence time hydropyrolysis of single coal particles[J].J.AIChE.,1979,25(1):65-80.
    [61]Van Heek K H,Hodek W.Structure and pyrolysis behaviour of different coals and relevant model substances[J].Fuel,1994,73(6):886-896.
    [62]李保庆.我国煤加氢热解研究Ⅲ.神府煤加氢、催化加氢及H_2-CH_4气氛下热解的研究[J].燃料化学学报,1995,23(2):192-198.
    [63]艾利奥特.煤利用化学(上册)[M].化学工业出版社,1991:580-586.
    [64]Suuberg E M,Peter W A,Howard J B.Product compositions in rapid hydropyrolysis of coal[J].Fuel,1980,59(6):405-412.
    [65]Cypres R,Furfari S.Fixed-bed pyrolysis of coal under hydrogen pressure at low heating rates[J].Fuel,1981,60(9):768-778.
    [66]Xu W C,Tomita A.Effect of temperature on the flash pyrolysis of various coals[J].Fuel,1987,66(5):632-636.
    [67]Sulimma A,Leonhardt P,Van Heek K H et al.Thermogravimetric study on catalytic hydropyrolysis of coal[J].Fuel,1986,65(10):1457-1461.
    [68]Xu W C,Tomita A.Effect of coal type on the flash pyrolysis of various coals[J].Fuel,1987,66(5):627-631.
    [69]Cypres R,Mingels W,Lardinois J P et al.Feasibility study of the hydropyrolysis of coal[R].Brussels:Commission of European Communities,1990.
    [70]Hayashia J I,Takahashia H,Iwatsukia M et al.Rapid conversion of tar and char from pyrolysis of a brown coal by reactions with steam in a drop-tube reactor[J].Fuel,2000,79:439-447.
    [71]Wiktorsson L P,Wanzl W.Kinetic parameters for coal pyrolysis at low and high heating rates-a comparison of date from different laboratory equipment[J].Fuel,2000,79:701-716.
    [72]Badzioch S,Hawksley P G W.Kinetics of thermal decomposition of pulverized coal particles.Ind.Eng.Chem[J].Process Design and Dev.,1970,9(7):521-530.
    [73]陈彩霞,孙学信,张小可.层流曳带流反应器内流动和温度特性的数值模拟[J].华中理工大学学报,1994,22(3):30-35.
    [74]Krevelen D W V,Hunties F J et al.Chemical structure and properties of coal ⅩⅤⅠ-P lastic behaviour on heating[J].Fuel,1956,36(4):462-475.
    [75]Marinov V N.Self-ignition and mechanisms of interaction of coal with oxygen at low temperatures.2.Changes in weight and thermal effects on gradual heating of coal in air in the range 20-300℃[J].Fuel,1977,56(2):158-164.
    [76]McCown S M,Harrison D P.Pyrolysis and hydropyrolysis of Louisiana lignite[J].Fuel,1982,61(11):1149-1154.
    [77]Janikowski S K,Stenberg V I.Thermal analysis of coals using differential scanning calorimetry and thermogravimetry[J].Fuel,1989,68(1):95-99.
    [78]Ghetti P.DTG combustion behaviour of coal:Correlations with proximate and ultimate analysis data[J].Fuel,1986,65(5):636-639.
    [79]Lopez-Peinado A J,Tromp P J J,Moulijn J A.Quantitative heat effects associated with pyrolysis of coals,ranging from anthracite to lignite[J].Fuel,1989,68(8):999-1004.
    [80]Zaidi S A H.Coal reactivity:correlations with fuel and NMR data[J].Fuel Process.Technol.,1995,41(3):253-259.
    [81]Berkovich A J,Young B R,Ray A et al.The effect of minerals on retorting enthalpies of some Australian tertiary oil shales[J].Fuel,1998,77(9-10):987-993.
    [82]Torrente M C,Galan M A.Kinetics of the thermal decomposition of oil shale from Puertollano(Spain)[J].Fuel,2001,80(3):327-334.
    [83]Vijayakumar C T,Vinayagamoorthi S,Fink J K et al.Characterization of low rank alpine coals:Thermogravimetric studies[J].J.Anal.Appl.Pyrolysis,76:191-197.
    [84]Olivella M A,De las Heras F X C.Kinetic analysis in the maximum temperature of oil generation by thermogravimetry in.Spanish fossil fuels[J].Energy & Fuels,2002,16:1444-1449.
    [85]郭树才,袁庆春,朱盛维.褐煤热重法热解动力学研究[J].燃料化学学报,1989,17(1):55-56.
    [86]毛健雄,阎得中,赵宝终.用热分析技术研究煤的热解特性[J].燃料化学学报,1987,15(3):225-226.
    [87]魏兴海,顾永达.在三个升温速率下用热天平研究煤的热解及其反应动力学[J].燃料化学学报,1993,21(4):430一434.
    [88]崔洪,朱珍平,刘振宇等.程序升温热重法研究扎赉诺尔煤的气化动力学[J].燃料化学学报,1996,24(5):399-403.
    [89]刘柏谦.桦甸油页岩燃烧过程的热重分析[J].燃烧科学与技术,1998,4(1):51-54.
    [90]朱学栋,朱子彬,朱学余等.煤化程度和升温速率对热分解影响的研究[J].煤炭转化,1999,22(2):43-47.
    [91]周静,何品晶,于遵宏.用热失重仪研究煤快速热解[J].煤炭转化,2004,27(2):30-36.
    [92]孙庆雷,李文,李保庆.神木煤显微组分热解特性和热解动力学[J].化工学报,2002,53(11):1122-1127.
    [93]孙庆雷,李文,陈皓侃等.神木煤显微组分加氢热解特性的研究[J].燃料化学学报,2002,30(1):11-15.
    [94]路继根,邱建荣,沙兴中等.用热重法研究我国四种煤显微组分的燃烧特性[J].燃料化学学报,1996.24(4):329-334.
    [95]Cui H,Yang J,Li Y et al.Liquefaction of Yanzhou coal and TG analysis of the heavy products[C].Proc.Annu.Int.Pittsburgh Coal Conf.,Taiyuan,1997:34-41.
    [96]周俊虎,方磊,程军等.神华煤液化残渣的热解特性[J].燃烧科学与技术,2006,12(4):295-299.
    [97]陆昌伟,奚同庚.热分析质谱法[M].上海科学技术文献出版社,2002。
    [98]Carangelo R M,Solomon P R,Gerson D J.Application of TG-FT-i.r.to study hydrocarbon structure and kinetics[J].Fuel,1987,66:960-967.
    [99]Glaude P A,Battin-Leclerc F,Judenherc B et al.Experimental and modeling study of the gas-phase oxidation of methyl and ethyl tertiary butyl ethers[J].Combustion and Flame,2000,121:345-355.
    [100]Zoller D L,Johnston M V.Thermogravimetry-Photoionization Mass Spectrometry of Different Rank Coals[J].Energy & Fuels,1999,13:1097-1104.
    [101]Lu R,Purushothama S,Yang X D et aI.TG/FTIR/MS study of organic compounds evolved during the co-firing of coal and refuse-derived fuels[J].Fuel Process.Zechnol.,1999,59:35-50.
    [102]Fei Y,Giroux L,Marshall M et al.A comparison of primary lignite structure as determined by pyrolysis techniques with chemical characteristics determined by other methods[J].Fuel,2006,85:998-1003.
    [103]Oja V.Characterization of tars from Estonian Kukersite oil shale based on their volatility[J].J.Anal.Appl.Pyrolysis,2005,74:55-60.
    [104]Jakab E,Till F,Vdrhegyi G.Thermogravimetric-mass spectrometric study on the low temperature oxidation of coals[J].Fuel Process.Technol.,1991,28(3):221-238.
    [105]Matuschek G,Kettrup A A.Thermal analysis:mass spectrometry as a tool for studying environmental pollution by coal gasification[J].J.Anal.Appl.Pyrolysis,1999,51:223-237.
    [106]Cara J,Vargas M,Moran A et al.Biodesulphurization of a coal by packed-column leaching.Simultaneous thermogravimetric and mass spectrometric analyses[J].Fuel,2006,85:1756-1762.
    [107]Arenillas A,Rubiera F,Pis J J et al.Thermal behaviour during the pyrolysis of low rank perhydrous coals[J].J.Anal.Appl.Pyrolysis,2003,68-69:371-385.
    [108]Li X,Matuschek G,Herrera M et al.A study on combustion of Chinese coals by TA/MS[J].J.Anal.Appl.Pyrolysis,2003,67:393-406.
    [109]吴国光.低阶煤的热重-傅里叶变换红外光谱的研究[J].中国矿业大学学报,1998,27(2):181-184.
    [110]熊方勋,吴少华,林伟刚.应用TG-FTIR研究鹤岗烟煤的热解特性[J].电站系统工程,2006,22(5):26-28.
    [111]苏桂秋,卢洪波,崔畅林.基于热重-红外联用方法的煤质热解特性分析[J].节能技术,2003,21(6):28-30.
    [112]李淑娥,王晓东,颜国纲.热重-质谱联用技术(TG-MS)及系统优化研究[J].山东科学,2008,21(2):9-14.
    [113]闫金定,崔洪,杨建丽.热重质谱联用研究兖州煤的热解行为[J].中国矿业大学学报,2003,32(3):311-315.
    [114]孙庆雷,李文,陈皓侃等.神木煤显微组分热解的TG-MS研究[J].中国矿业大学学报,2003,32(6):664-669.
    [115]孙庆雷,李文,陈皓侃等.神木煤显微组分加氢热解的TG/MS研究[J].燃料化学学报,2004,32(6):647-651.
    [116]白宗庆,陈皓侃,李文等.热重-质谱联用研究焦炭在甲烷气氛下的热行为[J].燃料化学学报,2004,33(4):426-430.
    [117]hi D T,Li W,Chen H K et al.The adjustment of hydrogen bonds and its effect on pyrolysis property of coal[J].Fuel Process.Technol.,2004,85:815-825.
    [118]Andrews T.On the properties of matter in gaseous and liquid state under various conditions of temperature and pressure[J].Phil Trans Roy Soc(London),1869,178:45-50.
    [119]侯爱芹,戴瑾瑾.超临界流体技术在染整加工中的应用研究[J].纺织学报,2001,22(6):69-71.
    [120]亓玉台,李会鹏,赵胜利等.超临界流体技术及在石油化工和环境保护种的应用[J].石油炼制与化工,2000,31(3):27-33.
    [121]Savage P E,Gopalan S,Martino C J et al.Reaction at supercritical conditions:Application and Fundamentals[J].AIChE J,1995,41(7):1723-1778.
    [122]Gopalan S,Savage P E.A Reaction Network Model for Phenol Oxidation in supercritical water[J].AIChE J,1995,41(8):1864.
    [123]Hanny J B,nogarth J.On the solubility of solids in gases[J].Proc Roy Soc(London).,1879,29:234-240.
    [124]Zosel K et al.Angrew.Chem.Int.Ed.Engl.,1978.
    [125]Zosel K.Process for the Decaffeination of Coffee.US 4247570[P],1981.
    [126]Schneider G M.Physicochemical aspect of fluid extraction[J].Fluid Phase Equilib,1983,10:141-157.
    [127]Maiwald M,Schneider G M.Near-infrared spectroscopic investigations on phase behaviour and hydrogen bonding of 'w' -heptanolactam in supercritical chlorotrifluoromethane[J].J.Supercrit.Fluids,1995,8:25-29.
    [128]Bj(o|)rn W,Mamoru N,Dirk T et al.Sample purification for spectroscopic high-pressure investigations by dynamic supercritical fluid extraction[J].J.Supercrit.Fluids,1996,16:157-165.
    [129]Hu H Q,Zhang J,Guo S C et al.Extraction of Huadian oil shale with water in sub-and supercritical states[J].Fuel,1999,78(6):645-651.
    [130]Hu H Q,Guo S C,Heden K.Extraction of lignite with water in sub-and supercritical states[J].Fuel process.Technol,1998,11(7):269-277
    [131]Hu H Q,Guo S C.Kinetic study of supercritical extraction of oil shales[J].Fuel Process.Technol.,1992,31(2):79-90.
    [132]Song C C,Hu H Q,Zhu S W et al.Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water[J].Energy & Fuels.2004,18(1):90-96.
    [133]Hu H Q,Guo S C,Heden K.Extraction of lignite with toluene in sub-and supercritical states[J].Fuel Science&Technology International,1993,11(7):883-895.
    [134]Ye S M,Jiang C Y,Pan Q M et al.Dynamic supercritical fluid devolatilization of polymers[J].Chinese Journal of Chemical Engineering,2005,13(6):732-735.
    [135]蒋春跃,程榕,高建荣等.超临界流体增强聚酯薄膜中的质量传递[J].化工学报,2005,56(7):187-1191.
    [136]Wang L H,Cheng Y Y.Solubility of puerarin in ethanol+supercritical carbon dioxide[J].Journal of Chemical and Engineering Data,2005,50(5):1747-1749.
    [137]张镜澄.超临界流体萃取[M].化学工业出版社,2000.
    [138]Iwai Y,Amiya M,Murozono T et al.Drying of Coals by Using Supercritical Carbon Dioxide[J].Ind.Eng.Chem.Res.,1998,37:2893-2896.
    [139]Amestica L A,Wolf E E.Catalytic liquefaction of coal with supercritical water/CO/solvent media[J].Fuel,1986,65(9):1226-1232.
    [140]Wang T,Zhu X F.Conversion and kinetics of the oxidation of coal in supercritical water[J].Energy & Fuels,2004,18:1569-1572.
    [141]朱小峰,王涛.煤炭在超临界水中氧化的初步实验[J].过程工程学报,2002,2(2):177-182.
    [142]Bartle K D,Martin T G,Williams D F.Chemical nature of a supercritical-gas extract of coal at 350℃[J].Fuel,1975,54:226-235.
    [143]Deshpande G V,Holder G D,Bishop A A et al.Extraction of coal using supercritical water[J].Fuel,1984,63(7):956-960.
    [144]Shishido M,Mashiko T,Adschiri T et al.The gasofication reactivity of residual coal chars from supercritical fluid extraction of coal[J].Fuel,1991,70:539-543.
    [145]Yasunari M,Atsushi I.In 4th International Symposium on Supercritical Fluids.Sendai:1997(B):559-562.
    [146]Penninger J M L.Selectivity effects in aqueous supercritical fluid extraction of subbituminous coal[J].Fuel,1989,68(8):983-989.
    [147]Canel M,Hedden K,Wilheim A.Hydrogenating supercritical coal extraction with toluene,tetralin,molecular hydrogen and their mixtures[J].Fuel,1990,69:471-475
    [148]Shishido M,Mashiro T,Aria K.Co-solvent of tetralin or enthanol on supercritical toluene extraction of coal[J].Fuel,1991,70:545-549.
    [149]Aida T M,Sato r,Sekiguch G et al.Extraction of Taiheiyo coal with supercritical water-phenol mixtures[J].Fuel,2002,81:1453-1461.
    [150]Adschiri T,Sato T,Shibuichi H et al.Extraction of Taiheiyo coal with supercritical water-HCOOH mixture[J].Fuel,2000,79:243-248.
    [151]Sangon S,Ratanavaraha S,Ngamprasertsith S.Coal liquefaction using supercritical toluene-tetralin mixture in a semi-continuous reactor[J].Fuel Process.Technol.,2006,87:201-207.
    [152]Adschiri T,Tanaka S,Abe S et al.A new two-stage process for supercritical fluid extraction of coal with tetralin pretreatment[J].Fuel,1996,75(9):1124-1128.
    [153]Matsumura Y,Nonaka H,Yokura H et al.Co-liquefaction of coal and cellulose in supercritical water[J].Fuel,1999,78:1049-1056.
    [154]Wang J,Takarada T.Role of Calcium Hydroxide in Supercritical Water Gasification of Low-Rank Coal[J].Energy & Fuels,2001,15:356-362.
    [155]郭树才,韩威,黄光伟等.中国几种油页岩超临界萃取研究[J].化工学报,1988,2:198-205.
    [156]李文,郭树才.超临界醇萃取脱煤中有机硫[J].大连理工大学学报,1995,35(3):325-329.
    [157]陈昌华,王承宪,曾蒲君.不同溶剂可保煤超临界萃取产物成分分析[J].煤炭转化,1994,17(2):68-73.
    [158]陈昌华.煤的超临界萃取液化特征[J].煤炭转化,1995,18(4):68-74.
    [159]王旭珍,薛文华,朱玖玖等.褐煤超临界抽提产物中芳烃的组成特征[J].燃料化学学报,1994,22(4):418-425.
    [160]樊文苓,田弋夫.超临界水条件下煤的脱硫实验研究[J].矿物学报,1998,18(1):55-61.
    [161]赵宗彬,王旭珍,陈受斯等.先锋褐煤CO/H_2O超临界萃取研究[J].煤炭转化,1995,18(3):81-87
    [162]Yuan Q C,Zhang Q M,Hu H Q et al.Investigation of extracts of coal by supercritical extraction[J].Fuel,1998,77(11):1237-1241.
    [163]Meng M,Hu H Q,Zhang Q M et al.Extraction of Tumuji Oil Sand with Sub- and Supercritical Water[J].Energy & Fuels,2006,20:1157-1160.
    [164]王安杰,郭树才,王瑶.混合溶剂超临界萃取大柳塔煤的研究[J].燃料化学学报,1994,22(2):209-214.
    [165]Cheng L M,Zhang R,Bi J C.Pyrolysis of a low-rank coal in sub- and supercritical water[J].Fuel Process.Technol.,2004,85:921-932.
    [166]程乐明,张荣,毕继诚.KOH对低阶煤在超临界水中制取富氢气体的影响[J].化工学报,2004,55:44-49.
    [167]程乐明,姜炜,张荣等.CaO对超临界水中褐煤制取富氢气体的影响[J].燃料化学学报,2007,35(3):257-261.
    [168]Yu H G,Song J Y,Chen L H et al.Study on solvent extraction experiments of bituminous coal with splitted by-product of petroleum[J].Shandong keji daxue xuebao,ziran kexueban,2001,20(1):3?-40.
    [169]闫秋会,郭烈锦,梁兴.煤及生物质共超临界水气化过程中的协同效应[J].西安交通大学学报,2006,40(5):506-509.
    [170]Kershaw J R.Comments on the role of the solvent in supercritical fluid extraction of coal[J].Fuel,1997,76(5):453-454.
    [171]Vostrikov A A,Psarov S A,Dubov D Y et al.Kinetics of Coal Conversion in Supercritical Water[J].Energy & Fuels,2007,21(5):2840-2845.
    [172]Yoneyama Y,Okamura M,Morinaga K et al.Role of water in hydrogenation of coal without catalyst addition[J].Energy & Fuels,2002,16:48-53.
    [173]Gorbaty Y E,Bondarenko G V.The physical state of supercritical fluids[J].Journal of Supercritical Fluids,1998,14:1-8.
    [174]Mendez-Santiago J,Teja A S.The solubility of solids in supercritical fluids[J].Fluid Phase Equilibria,1999,158-160:501-510.
    [175]Bazaev A R,Abdulagatov I M,Magee J W et al.PVT measurements for toluene in the near-critical and supercritical regions[J].J.Chem.Eng.Data,2001,46:1089-1094.
    [176]Brunner E,Thies M C,Schneider G M.Fluid mixtures at high pressures:Phase behavior and critical phenomena for binary mixtures of water with aromatic hydrocarbons[J].The Journal of Supercritical Fluids,2006,39(2):160-173.
    [177]周健,陆小华,王延儒等.超临界水的分子动力学模拟[J].物理化学学报,1999,15(11):1017-1022.
    [178]杨馗,徐明仙,林春绵.超临界水的物理化学性质[J].浙江工业大学学报,2001,29(4):386-390.
    [179]居艳,张立麒,黄文瀛.超临界流体萃取相平衡模型[J].江西化工,1998,4:11-16.
    [180]Yarzab R F,Given P H,Spackman W et al.Dependence of coal liquefaction behaviour on coal characteristics.4.Cluster analyses for characteristics of 104 coals.Fuel,1980,59(2):81-92.
    [181]Gan H,Nandi S P,Walker P L et al.Nature of the porosity in American coals.Fuel,1972,51(4):272-277.
    [182]李文华,陈亚飞,陈文敏等.中国主要矿区煤的显微组分分布特征.煤炭科学技术,2000,9(28):31-35.
    [183]孙庆雷,李文,李保庆.神木煤的挥发分收率与岩相组成的关系.化工学报,2003,54(2):269-272.
    [184]Coats A W,Redfern J P.Kinetic parameters from thermogravimetric data[J].Nature,1964,201(1):682-691.
    [185]Doyle C D.Kinetic analysis of thermogravimetric data[J].J.Appl.Polymer Sci.,1961,5(15):2852-2921.
    [186]Kissinger H E.Variation of peak temperature with heating rate in different rate in differential thermal analysis[J].J.Res.Nat ButStandards.,1956,57(2):2172-2211.
    [187]Pitt G J.The kinetics of the evolution of volatile products from coal[J].Fuel,1962,41(3):2672-2741.
    [188]Cypres R,Mingels W,Lardinois J P et al.Feasibility study of the hydropyrolysis of coal.Brussels:Commission of European Communities,1990.
    [189]Cypres R,Li B.Effects of pretreatment by various gases on hydropyrolysis of a Belgian coal[J].Fuel Process.Technol,1988,20(1-3):337-347.
    [190]周强.煤的热解行为及硫的脱除[D]:博士学位论文.大连:大连理工大学化工学院,2004.
    [191]Solomon P R,Hamblen D G.Can coal science be predictive.Fuel Chem.Prep.,1991,36:268-297.
    [192]Weingartner H,Franck,E U.Supercritical water as a solvent.Angew.Chem.Int.Ed.,2005,44:2672-2692.
    [193]王安杰.神府大柳塔煤的超临界萃取研究[D]:博士学位论文.大连:大连理工大学化工学院,1991.
    [194]Sharma R K,Wooten J B,Baliga V L et al.Characterization of chars from pyrolysis of lignin[J].Fuel,2004,83:1469-1482.
    [195]Zhuo Y,Lemaignen L,Chatkazis I N et al.An attempt to correlate conversions in pyrolysis and gasification with FT-IR spectra of coals[J].Energy & Fuels,2000,14:1049-1058.
    [196]Gorbaty M L,Kelemen S R.Characterization and reactivity of organically bound sulfur and nitrogen fossil fuels.Fuel Process.Technol.,2001,71:71-78.
    [197]Kelemen S R,Gorbaty M L,George G Net al.Thermal reactivity of sulphur forms in coal[J].Fuel,I991,70(3):396-402.
    [198]Wallace S,Bartle K D,Perry D L.Quantification of nitrogen functional groups in coal and coal derived products[J].Fuel,1989,68(11):1450-1455.
    [199]Pietrzak R,Wachowska H.The influence of oxidation with HNO3 on the surface composition of high-sulphur coals:XPS study[J].Fuel Process.Technol.,2006,87(11):1021-1029.
    [200]Mieczyslaw K.XPS study of reductively and non-reductively modified coals[J].Fuel,2004,83(3):259-265.
    [201]Perry D L,Grint A.Application of XPS to coal characterization[J].Fuel,1983,62(9):1024-1033.
    [202]Kelemen S R,Afeworki M,Gorbaty M L.Characterization of organically bound oxygen forms in lignites,peats,and pyrolyzed peats by X-ray photoelectron spectroscopy(XPS) and solid-state ~(13)C NMR methods[J].Energy & Fuels,2002,16:1450-1462.
    [203]Desimoni E,Casella G I,Morone A et al.XPS determination of oxygen-containing functional groups on carbon-fibre surfaces and the cleaning of these surfaces[J].Surface and Interface Analysis,1990,15(10):627-634.
    [204]Kelemen S R,Freund H,Gorbaty M L et al.Thermal chemistry of nitrogen in kerogen and low-rank coal[J].Energy & Fuels,1999,13:529-538.
    [205]Kelemen S R,Afeworki M,Gorbaty M Let al.XPS and ~(15)N NMR study of nitrogen forms in carbonaceous solids[J].Energy & Fuels,2002,16(6):1507-1515.
    [206]Kapteijn F,Moulijn J A,Matzner S et al.The development of nitrogen functionality in model chars during gasification in CO_2 and O_2[J].Carbon,1999,37(7):1143-1150.
    [207]Raymundo-Pinero E,Cazorla-Amoros D,Linares-Solano A et al.Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin[J].Carbon 2002,40(4):597-608.
    [208]Kelemen S R,Gorbaty M L,Kwiatek P J et al.Nitrogen transformations in coal during pyrolysis[J].Energy Fuels,1998,12(1):159-173.
    [209]Ma S,Hill J O,Heng S J.A thermal analysis study of the combustion characteristics of Victorian brown coal[J].J.Therm.Anal.,1989,35:1985-1996.
    [210]Crelling J C,Hippo E J,Woerner B A et al.Combustion characteristics of selected whole coals and macerals[J].Fuel,1992,71(2):151-158.
    [211]Su S,Pohl J H,Holcombe D et al.Techniques to determine ignition,flame stability and burnout of blended coals in p.f.power station boilers[J].Progress in Energy and Combustion Science,2001,27(1):75-98.
    [212]Umar D F,Santoso B,Usui H.The effect of upgrading processes on combustion characteristics of berau coal[J].Energy & Fuels,2007,21(6):3385-3387.
    [213]赵世永.神木煤与半焦混合燃烧特性的热重分析[J].煤炭科学技术,2007,35(7):80-82.
    [214] Ozbas K E, Hicyilmaz C, Kok M V et al. Effect of cleaning process on combustion characteristics of lignite[J]. Fuel Process. Technol.,2000, 64(1-3):211-220.
    
    [215] Rubiera F, Arenillas A, Pevida C et al. Coal structure and reactivity changes induced by chemical demineralization[J]. Fuel Process. Technol., 2002, 79(3):273-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700