用户名: 密码: 验证码:
杂原子类煤结构模型化合物的热解及含硫化合物脱除的量子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤中氧、氮和硫在煤的利用过程中起着不容忽视的作用。氧在煤中存在的总量和形态直接影响煤的性质,而氮和硫在煤的热解过程中释放出的NOx和SO2对环境造成污染。尤其是含硫的热解煤气会对后续的工艺造成影响,如:催化剂的中毒,设备的腐蚀等。因此,如何有效地将煤中的氧转化成化工产品,且有效地控制煤利用过程中污染物质的释放一直是煤化工领域的一个研究课题。量子化学的迅速发展使得从分子结构和反应机理方面探讨煤热解过程中氧、氮和硫的迁移和释放以及热解煤气中主要含硫化合物的脱除等成为可能。
     本文根据典型的动力煤热解产物的信息,选取和构建了一系列合适的类煤结构含氧、含氮和含硫的模型化合物,采用量子化学计算方法对这些模型化合物的热解机理进行了详细的研究,总结出煤中氧、氮和硫在热解过程中的迁移和释放规律。对热解煤气中的有机含硫化合物的转化机理和H_2S在脱硫剂作用下的反应机理进行了详细的研究。主要结论如下:
     (1)类煤结构含氧模型化合物的热解机理
     含醚氧键的类煤结构含氧模型化合物苯甲醚热解异构化生成邻甲基苯酚和对甲基苯酚的过程实际存在两条平行的连串反应路径;苯甲醚热解过程中的苯氧基自由基的三种共振结构,给出了甲基取代的环己二烯酮中间体的理论依据;甲基取代的环己二烯酮中间体经不同的分子内H转移路径而生成邻甲基苯酚和对甲基苯酚。
     含羧基和羰基的类煤结构含氧模型化合物苯甲酸和苯甲醛的热解机理研究表明:煤中气体分子CO_2、CO的逸出与脱羧、脱羰基反应相对应,羧基的脱除反应活化能较小,即煤中CO_2的产生较CO早;相对于分子内化学键发生均裂的自由基反应机理,脱羧反应经由分子内H转移机理所需活化能较小,是煤低温热解时较易发生的过程,从而得出煤早期脱羧反应与煤的交联并无直接关系。
     (2)类煤结构含氮模型化合物的热解机理
     对于类煤结构含氮模型化合物喹啉和异喹啉的热解,提出了一个合理的包含了八条反应路径和一个共同的互变异构中间体的机理;中间体1-茚亚胺的两种互变异构结构在喹啉和异喹啉的热解过程中起到了一个中心作用,它决定了热解产物是相同的,并且热解的速率也是相同的;这种中间体的互变异构结构,只有通过量子化学计算才能发现它们的存在以及所起的重要作用。
     (3)类煤结构含硫模型化合物的热解机理
     确定了类煤结构含硫模型化合物噻吩和苯硫酚热解释放H_2S的反应路径;苯硫酚中的S在热解时迁移导致生成H_2S、CS和噻吩的研究表明:苯硫酚中的S最容易迁移导致H_2S的生成,且能量最有利的路径为硫醇官能团上的H转移到和硫相连的C上,然后S自由基离开并结合煤热解过程中的H自由基生成H_2S;比较噻吩和苯硫酚热解的动力学得出:苯硫酚热解所需要的活化能较小,这表明煤中的噻吩类结构较硫醇类结构稳定。
     (4)类煤结构模型化合物热解过程中的分子内H转移
     分子内H转移在类煤结构的含氧、含氮和含硫模型化合物的热解过程中普遍存在,并起着重要的作用。其作用可以总结为以下四点:I)分子内H转移为产物的形成提供了更合理的反应路径;II)通过分子内H转移机理能更合理地解释实验现象;III)反应经分子内H转移机理所需的活化能较小;IV)分子内H转移调节产物的分配。
     (5)脱硫反应机理
     对热解煤气中的有机含硫化合物CS_2的水解分别提出了经COS中间体的两步法反应机理和一步法反应机理,研究表明:CS_2水解转化成H_2S的过程是一步法和两步法竞争的过程。
     对热解煤气中的H_2S和有机含硫物质转化生成的H_2S在Fe_2O_3、ZnO、CaO和CeO_2脱硫剂作用下的反应进行了研究,提出了一个详细的脱硫反应机理,其中脱硫剂表面的两类不同形式的自再生过程均有效地促进了脱硫反应的进行;分别对脱硫剂在脱除H_2S过程中所起的催化作用和作为反应物的作用进行了分析,从本质上了解了各脱硫剂的脱硫反应过程;认为增加脱硫剂既含金属又含氧的两性面的比率,是在微观水平上通过催化剂分子改性改进催化脱硫性能的方向。
The oxygen, nitrogen and sulfur in coal have great influence on coal ultilization. The content and form of oxygen in coal affect the properties of coal directly, and the NOx and SO2 released during coal pyrolysis has been an important environmental problem. More importantly, the pyrolysis gas with sulfur-containing compounds affects the subsequent processes, such as leading to the poisoning of catalysts, the corrosion of equipment, and so on. So how to transfer oxygen in coal to chemical products, and control the emission of these harmful gases effectively has been being a difficult problem to coal chemical industry. Recently, it is possible to study the migration of oxygen, nitrogen and sulfur during coal pyrolysis, and the conversion and removal of sulfur-containing compounds in pyrolysis gas from molecular structure and reaction mechanism with the rapid development of quantum chemistry.
     The conception of coal-related model compounds was proposed and a series of reasonable oxygen-containing, nitrogen-containing and sulfur-containing model compounds were selected based on the information of pyrolysis pouducts of typical power coal. The pyrolysis mechanisms of these model compounds were studied in detail by using quantum chemistry method, and the migration and release rules of oxygen, nitrogen and sulfur in coal during pyrolysis were summarized. The conversion mechanism of organic sulfur-containing compounds in pyrolysis gas, and the desulfurization reaction mechanism of H2S under the effect of desulfurizer were studied.
     The main results were listed following:
     1. Anisole was selected as coal-related oxygen-containing model compounds with ether-oxygen functional group. There were two parallel consecutive paths to the formation of o-, p-cresoles via anisole pyrolysis isomerizaiton reaction. Three resonance configurations of phenoxy radical existed in the pyrolysis of anisole provided theoretical basis for the important intermediates o-, p-methyl-cyclohexadienone, which resulted in the formation of o-, p-cresoles via different intramolecular hydrogen migration paths.
     Benzoic acid and benzaldehyde were selected as coal-related oxygen-containing model compounds with carboxyl and carbonyl functional groups, respectively. The release of CO_2, CO was corresponding to decarboxylation and decarbonylation in coal, activation energy of decarboxylation was lower than that of decarbonylation, which indicated that CO2 was easier to escape than CO. The intramolecular hydrogen migration mechanism was more feasible than radical mechanism via bond homolysis for decarboxylation of benzoic acid by kinetic analysis, which showed that decarboxylation process was not directly related to cross-linking reaction in coal.
     2. Quinoline and isoquinoline were selected as coal-related nitrogen -containing model compounds with six-membered ring, and a rational reaction mechanism involving eight reaction paths and a common tautomeric intermediate was proposed to study the pyrolysis of them. The conformational tautomerism of 1-indene imine intermediate played an important role in the mechanism, which decided that both of the reactants had the same pyrolysis products and toal disappearance rate. The existence of tautomeric intermediate and its significant effect could only be found by quantum chemistry calculation.
     3. Thiophene and benzenethiol were selected as coal-related sulfur -containing model compounds, and the reaction paths of releasing H_2S via thiophene and benzenethiol pyrolysis were determined. The migration of sulfur in benzenethiol resulting in the formation of H_2S、CS and thiophene was studied, respectively, and the lowest energy path was H of the thiol group migrated to the ipso C and S radical was eliminated by beta scission reaction, then the S radical combined with H radical formed during coal pyrolysis resulting in the formation of H_2S. Comparing with the pyrolysis of the two sulfur-containing model compounds, it could be got that a lower activation enery was needed during benzenethiol pyrolysis than thiophene, which showed that thiophenes were more stable than the thiol compounds.
     4. The intramolecular hydrogen migration widely appeared in the pyrolysis paths of oxygen-containing, nitrogen-containing and sulfur-containing model compounds, and played an important role, which could be summarized as following: (I) offering more reasonable reaction paths for the formation of products; (II) interpreting experimental results more reasonable; (III) needing less activation energy than radical mechanism; (IV) adjusting the distribution of products.
     5. The two-step and one-step reaction mechanisms with and without COS intermediate were proposed to study the hydrolysis mechanism of CS_2, respectively, it showed that the two mechanisms are competitive in the process of CS_2 converting into H_2S.
     H_2S released by coal pyrolysis and converted by organic sulfur-containing compound hydrolysis must be removed, and Fe2O3, ZnO, CaO and CeO2 were selected to study the desulfurization reaction. A detailed desulfurization reaction mechanism was proposed, in which two types of self regeneration processes occurred on the desulfurizer surface accelerated the desulfurization reaction. The catalytic effect and the action of desulfurizer as reactant were analyzed respectively, and the desulfurization reaction process of every desulfurizer was understood in essence. It was proposed that increasing the ratio of amphoteric surface with both metal and oxygen of desulfurizer by modifying desulfurizer could improve desulfurization performance.
引文
[1]刘振宇.煤炭能源中的化学问题[J].化学进展, 2000, 12(4): 458-462.
    [2]谢克昌.煤结构与反应性[M].北京:科学出版社, 2002, 52.
    [3]刘生玉.中国典型动力煤及含氧模型化合物热解过程的化学基础研究[D].山西:太原理工大学博士论文, 2004, 13.
    [4]罗陨飞.煤的大分子结构研究-煤中惰质组结构及煤中氧的赋存形态[D].煤炭科学研究总院硕士学位论文, 2002, 98.
    [5] Solum M S, Pugmire R J, Grant D M, et al.. 15N CPMAS NMR of the argonne premium coals [J]. Energ. Fuel., 1997, 11(2): 491-494.
    [6] Nolson P F, Kelly M D, Wornat M J. Conversion of fuel nitrogen in coal volatiles to Nox precursors under rapid heating conditions [J]. Fuel, 1991, 70(3): 403-407.
    [7] Kelemen S R, Gorbaty M L, Kwiatek P J. Quantification of nitrogen forms in argonne premium coals [J]. Energ. Fuel., 1994, 8(4): 896-906.
    [8] Wojtowicz M A, Pels J R, Moulijn J A. The fate of nitrogen functionalities in coal during pyrolysis and combustion [J]. Fuel, 1995, 74(4): 507-516.
    [9] Burchill P, Welch L S. Variation of nitrogen content and functionality with rank for some UK bituminous coals [J]. Fuel, 1989, 68 (1): 100-104.
    [10] Miura K, Mae K, Shimada M, et al. Analysis of formation rates of sulfur-containing gases during the pyrolysis of various coals [J]. Energ. Fuel., 2001, 15(3): 629-636.
    [11] Gryglewicz G, Jasieńko S. Sulfur groups in the cokes obtained from coals of different ranks [J]. Fuel Process. Technol., 1988, 19(1): 51-59.
    [12] Gorbaty M L, George G N, Keleman S R. Direct determination and quantificaiton of sulphur forms in heavy petroleum and coals (2): The sulphur K edge X-ray absorption spectrocopy approach [J]. Fuel, 1990, 69: 945-949.
    [13] Brown J R, Kasrai M, Bancroft G M, et al. Direct identificaiton of organic sulphur species in Rasa coal from sulphur L-edge X-ray absorption near-edge spectra [J]. Fuel, 1992, 71: 649-653.
    [14]朱子彬,朱宏斌,吴勇强,等.烟煤快速加氢热解的研究(V)煤和半焦中有机硫化学形态剖析[J].燃料化学学报, 2001, 29: 44-47.
    [15]孙成功,李保庆, Snape C E.煤中有机硫形态结构和热解过程硫变迁特性的研究[J].燃料化学学报, 1997, 25(4): 358-362.
    [16]朱之培,高晋生.煤化学[M] .上海:上海科技出版社, 1984 : 62 , 125.
    [17]谢建军,杨学民,吕雪松,等.煤热解过程中硫氮分配及迁移规律研究进展[J].化工进展, 2004, 23(11): 1214-1218.
    [18] Mrazikova J, Beverka S S L, Macak J. Evolution of organic oxygen bonds during pyrolysis of coal [J]. Fuel, 1986, 65: 342-346.
    [19]刘生玉.中国典型动力煤及含氧模型化合物热解过程的化学基础研究[D].山西:太原理工大学博士论文, 2004, 39.
    [20]刘生玉.中国典型动力煤及含氧模型化合物热解过程的化学基础研究[D].山西:太原理工大学博士论文, 2004, 47.
    [21] Cyprès R, Furfari S. Hydropyrolysis of a high-sulphur-high-calcite Italian Sulcis coal. 1. Hydropyrolysis yields and catalytic effect of the calcite [J]. Fuel, 1982, 61(5): 447-452.
    [22] Colussi A J, Zabel F, Benson S W. The very low-pressure pyrolysis of phenyl ethyl ether, phenyl allyl ether, and benzyl methyl ether and the enthalpy of formation of the phenoxy radical [J]. Int. J. Chem. Kinet., 1977, IX: 161-178.
    [23] Brezinsky K, Pecullan M, Glassman I. Pyrolysis and oxidation of phenol [J]. J. Phys. Chem. A, 1998, 102(4): 8614-8619.
    [24] Lovell A B, Brezinsky K, Glassman I. The gas phase pyrolysis of phenol [J]. Int. J. Chem. Kinet., 1989, 21(7): 547-560.
    [25]刘生玉.中国典型动力煤及含氧模型化合物热解过程的化学基础研究[D].山西:太原理工大学博士论文, 2004, 117-121.
    [26] Lifshitz A, Bidani M, Bidani S. Thermal reactions of cyclic ethers at high temteratures. 3. pyrolysis of furan behind reflected shocks [J]. J. Phys. Chem., 1986, 90: 5373-5377.
    [27] Grela M A, Amorebieta V T, Colussi A J. Very low pressure pyrolysis of furan, 2-methylfuran, and 2,5-dimethylfuran. The stability of the furan ring [J]. J. Phys. Chem, 1985, 89: 38-41.
    [28]冯志华,常丽萍,任军,等.煤热解过程中氮的分配及存在形态的研究进展[J].煤炭转化, 2000, 23(3): 6-12.
    [29] Aho M J, H?m?l?inen J P, Tumavuori J L. Importance of solid properties to Nitrogen oxide formation through HCN and NH3 in small particle combustion [J]. Combust. Flame, 1993, 95: 22-30.
    [30] Marek A, Jan R, Jacob A. The fate ofnitrogen functionalities in coal during pyrolysis andcombustion [J]. Fuel, 1995, 74: 507-516.
    [31]刘海明,张军营,郑楚光,等.煤中吡咯型和吡啶型氮热解稳定性研究[J].华中科技大学学报(自然科学版), 2004, 32(11): 13-15.
    [32] Lappalahti L, Koljonan T. Nitrogen evolution from coal, peat and wood during gasification: Literature review [J]. Fuel Process. Technol., 1995, 43(1): 1-45.
    [33] Perry D L, Kapteijn F, Moulijn J A, et al. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis [J]. Carbon, 1995, 35(11): 1641-1653.
    [34] Chang L P, Li C Z, Xie K C. Release of fuel-nitrogen during the gasificaiton of shenmu coal [J]. Fuel Process. Technol., 2004, 85(8-10): 1053-1063.
    [35] Hayashi J, Kusakabe K, Morooka S, et al. Role of iron catalyst impregnanted by solvent swelling method in pyrolysis removal of coal nitrogen [J]. Energ. Fuel., 1995, 9(6): 1028-1034.
    [36] Xie K C, Lin J Y, Li W Y, et al. Formation of HCN and NH3 during coal macerals pyrolysis and gasificaiton with CO2 [J]. Fuel, 2005, 84: 271-277.
    [37] Wu Z H, Ohtsuka Y. Nitrogen distribution in a fixed-bed pyrolysis of coals with different ranks: formation and source of N2 [J], Fuel, 1997, 76: 477-482.
    [38] Tsubouchi N, Abe M, Xu C B, et al. Nitrogen release from low rank coals during rapid pyrolysis with a drop tube reactor [J]. Energ. Fuel., 2003, 17: 940-945.
    [39]孙林兵,倪中海,张丽芳,等.煤热解过程中氮、硫析出形态的研究进展[J].洁净煤技术, 2002, 8(3): 47-50.
    [40] Kelemen S R, Vaughn S N, Gorbaty M L, et al. Transformation kinetics of organic sulphur forms in Argonne premium coals during pyrolysis [J]. Fuel, 1993, 72(5): 645-653.
    [41] Calkins W H. Investigation of organic sulfur-containing structures in coal by flash pyrolysis experiments [J]. Energ. Fuel., 1987, 1(1): 59-64.
    [42] Gryglewicz G, Jasieńko S. The behavior of sulphur forms during pyrolysis of low-rank coal [J]. Fuel, 1992, 71(11): 1225-1229.
    [43]谢建军,杨学民,吕雪松,等.煤热解过程中硫氮分配及迁移规律研究进展[J].化工进展, 2004, 23(11): 1214-1218.
    [44]王宝俊,张玉贵,谢克昌.量子化学计算在煤的结构与反应性研究中的应用[J],化工学报, 2003, 54,177-179.
    [45]孙庆雷,李文,陈皓凯,等.煤显微组分分子结构模型的量子化学研究[J],燃料化学学报, 2004, 32(3): 282-286.
    [46]候新娟,杨建丽,李永旺.煤大分子结构的量子化学研究[J],燃料化学学报, 1999, 27(增刊), 142-148.
    [47]魏贤勇,宗志敏,秦志宏,等.煤液化化学[M].北京:科学出版社, 2002, 40.
    [48]王宝俊.煤结构与反应性的量子化学研究[D].山西太原理工大学, 2006, 25-28.
    [49]李凡,张永发,谢克昌.平朔烟煤大分子结构中的小分子相研究[J].燃料化学学报, 1993, 21(3): 293-297.
    [50] Li F, Zhang Y F, Xie K C. Charactersitization of the macromolecular structure of pingshuo coal macerlas using 13C-NMR, XPS, FTIR and XRD [J], Fuel. Sci. Tech. Int., 1993, 11(8): 1113-1131.
    [51] Wang B J, Wu Z M, Li F, et al. The Study on the electronic structures and molecular models of coal macerals [C], ICCS, 1999, ?, 271-274.
    [52] Guo W J, Leu W-T, Hsiao S H, et al. Thermal degradation behavior of aromatic poly(ester-amide) with pendant phosphorus groups investigated by pyrolysis-GC/MS [J]. Polym. Degrad. Stabil., 2006, 91: 21-30.
    [53] Plum A, Engewald W, Rehorek A. Rapid qualitative pyrolysis GC-MS analysis of carcinogenic aromatic amines from dyed textiles [J]. Chromatographia Supplement, 2003, 57: S-243-S-248.
    [54] Perng L H. Thermal decomposition characteristics of poly (phenylene sulfide) by stepiwse Py-GC/MS and TG/MS techniques [J]. Polym. Degrad. Stabil., 2000, 69: 323-332.
    [55] Eglinton T I, Sinninghe DamstéJ S, Kohnen M E L, et al. Rapid estimation of the organic sulpur content of kerogens, coals and asphaltenes by pyrolysis-gas chromatography [J]. Fuel, 1990, 69(11): 1394-1404.
    [56] Eglinton T I, Irvine J E, Vairavamurthy A, et al. Formation and diagenesis of macromolecular organic sulfur in Peru margin sediments [J]. Org. Geochem., 1994,22(3-5): 781-799.
    [57] Song C S, Hou L, Saini A K, et al. CPMAS 13C NMR and pyrolysis-GC-MS studies of strucutre and liquefaction reactions of Montana subbituminous coal [J]. Fuel Process. Technol., 1993, 34: 249-276.
    [58] Selsbo P, Almén P, Ericsson I. Quantitative analysis of sulfur in coal by pyrolysis-gas chromatography and multivatiate date analysis [J]. Energ. Fuel., 1996, 10(3): 751-756.
    [59] BlazsóM, Jakab E. Study of thermal decomposition reactions in coals by pyrolysis-gas chromatography-mass spectrometry [J]. J. Anal. Appl. Pyrol., 1985, 8: 189-194.
    [60] Almén P, Ericsson I, Selsbo P. Studies of the yield of sulphur from a coal sample by pyrolysis-gas chromatography [J]. J. Anal. Appl. Pyrol., 1993, 25: 243-254.
    [61] Olivella M A, Palacios J M, Vairavamurthy A, et al. A study of sulfur functionalities in fossil fuels using destructive-(ASTM and Py-GC-MS) and non-destructive-(SEM-EDX, XANES and XPS) techniques [J]. Fuel, 2002, 81: 405-411.
    [62] Zang X, Hatcher P G. A Py-GC-MS and NMR spectroscopy study of organic nitrogen in Mangrove Lake sediments [J]. Org. Geochem., 2002, 33: 201-211.
    [63]黄充,张军营,陈俊,等.煤中噻吩型有机硫热解机理的量子化学研究[J].煤炭转化, 2005, 28(20): 33-35.
    [64] Doughty A, Mackie J C. Kinetic of pyrolysis of a coal model compound, 2-picoline, the nitrogen heteroaromatic analogue of toluene. 2. the 2-picolyl radical and kinetic modeling [J]. J. Phys. Chem., 1992, 96: 10339-10348.
    [65] Brezinsky K, Pecullan M, Glassman I. Pyrolysis and oxidation of phenol [J]. J. Phys. Chem. A, 1998, 102: 8614-8619.
    [66] Horn C, Roy K, Frank P, et al. Shock-tube study on the high-temperature pyrolysis of phenol [C]. Twenty-Seventh Symposium (International) on Combustion/ The Combustion Institute, 1998, 321-328.
    [67] Lovell A B, Brezinsky K, Glassman I. The gas phase pyrolysis of phenol [J]. Int. J. Chem. Kinet., 1989, 21(7): 547-560.
    [68] Olivella S, Sole A, Garcia-Raso A. Ab Initio calculations of the potential surface for the thermal decomposition of the phenoxyl radical [J], J. Phys. Chem., 1995, 99,10549-10556.
    [69] Colussi A J, Zabel F, Benson S W. The very low-pressure pyrolysis of phenyl ethyl ether, phenyl allyl ether, and benzyl methyl ether and the enthalpy of formation of the phenoxy radical [J]. Int. J. Chem. Kinet., 1977, IX: 161-178.
    [70] Lin C Y, Lin M C. Unimolecular decomposition of the phenoxy radical in shock waves [J]. Int. J. Chem. Kinet., 1985, 17(10): 1025-1028.
    [71] Liu R F, Morokuma K, Alexander M M, et al. Ab Inition study of the mechanism for the thermal decomposition of the phenoxy radical [J], J. Phys. Chem., 1996, 100: 9314-9322.
    [72] Bruinsma O S L, Tromp P J J, de Sauvage nolting H J J, et al. Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor 2. Heterocyclic compounds, their benzo and dibenzo derivatives [J], Fuel, 1988, 67: 334-340.
    [73] Grela M A, Amorebieta V T, Colussi A J. Very low pressure pyrolysis of furan, 2-methylfuran, and 2,5-dimethylfuran. The stability of the furan ring [J]. J. Phys. Chem., 1985, 89: 38-41.
    [74] Liu R F, Zhou X F, Zhai L. Theoretical investigation of unimoleclar decomposition channels of furan 4 [J]. J. Comput. Chem., 1998, 19(2): 240-249.
    [75] Liu R F, Zhou X F, Zuo T M. The pyrolysis mechanism of furan revisited [J]. Chem. Phys. Lett., 2000, 325: 457-464.
    [76] Organ P P, Mackie J C. Kinetics of pyrolysis of furan [J]. J. Chem. Soc. Faraday Trans., 1991, 87(6): 815-823.
    [77] Lifshitz A, Bidani M, Bidani S. Thermal reactions of cyclic ethers at high temperatures 3. Pyrolysis of furan behind reflected shocks [J]. J. Phys. Chem. 1986, 90: 5373-5377.
    [78] Sendt K, Bacskay G B, Mackie J C. Pyrolysis of furan: ab initio quantum chemical and kinetic modeling studies [J]. J. Phys. Chem. A, 2000, 104: 1861-1875.
    [79]尤先锋,刘生玉,吴争鸣,等.煤热解过程中氮和硫化合物分配及生成机理[J].煤炭转化, 2001, 24(3): 1-5.
    [80] Kelemen S R, Gorbaty M L, Kwiatek P J. Nitrogen transformations in coal during pyrolysis [J]. Energ. Fuel., 1998, 12: 159-173.
    [81] Kidena K, Hirose Y, Aibara T, et al. Analysis of nitrogen-containing species during pyrolysis of coal at two different heating rates [J]. Energ. Fuel., 2000, 14: 184-189.
    [82] Lifshitz A, Tamburu C, Suslensky A. Isomerization and decomposition of pyrrole at elevated temperatures. Studies with a single-pulse shock tube [J]. J. Phys. Chem., 1989, 93: 5802-5808.
    [83] Mackie J C, Colket M B, Nelson P F, et al. Shock tube pyrolysis of pyrrole and kinetic modeling [J]. Int. J. Chem. Kinet., 1991, 23: 733-760.
    [84] Zhai L, Zhou X F, Liu R F. A theoretical study of pyrolysis mechanism of pyrrole [J]. J. Phys. Chem. A, 1999, 103: 3917-3922.
    [85] Martoprawiro M, Bacskay G B, Mackie J C. Ab initio quantum chemical and kinetic modeling study of the pyrolysis kinetics of pyrrole [J]. J. Phys. Chem. A, 1999, 103: 3923-3934.
    [86] Laskin A, Lifshitz A. Isomerization and decomposition of indole. Experimental results and kinetic modeling [J]. J. Phys. Chem. A, 1997, 101: 7787-7801.
    [87] Zhou X F, Liu R F. A density functional theory study of the pyrolysis mechanism of indole [J]. J. Mol. Struc-THEOCHEM, 1999, 461-462: 569-579.
    [88] Houser T J, McCarville M E, Biftu T. Kinetics of the thermal decomposition of pyridine in a flow system [J]. Int. J. Chem. Kinet., 1980, 555-568.
    [89] Mackie J C, Colket III M B, Nelson P F. Shock tube pyrolysis of pyridine [J]. J. Phys. Chem., 1990, 94: 4099-4106.
    [90] Winkler J K, Karow W, Rademacher P. Gas phase pyrolysis of heterocyclic compounds, part 3. flow pyrolysis and annulation reactions of some nitrogen heterocycles. A product oriented study [J]. Arkivoc, 2000, 1(4): 576-602.
    [91] Ninomiya Y, Dong Z B, Suzuki Y, et al. Theoretical study on the thermal decomposition of pyridine [J]. Fuel, 2000, 79: 449-457.
    [92] Liu R F, Huang Thomas T S, Tittle J, et al. A theoretical investigation of the decomposition mechanism of pyridyl radicals [J]. J. Phys. Chem. A, 2000, 104: 8368-8374.
    [93]刘海明,张军营,郑楚光,等.煤中吡啶型氮热解机理的量子化学研究[J].煤炭转化, 2004, 27(2): 19-22.
    [94] Patterson J M, Issidorides C H, Papadopoulos E P, et al. The thermal interconversion of quinoline and isoquinoline [J]. Tetrahedron. Lett., 1970, 15: 1247-1250.
    [95] Axworthy A E, Dayan V H, Martin G B. Reactions of fuel-nitrogen compounds under conditions of inert pyrolysis [J]. Fuel, 1978, 57: 29-35.
    [96] Laskin A, Lifshitz A. Thermal decomposition of quinoline and isoquinoline. The role of 1-indene imine radical [J]. J. Phys. Chem A, 1998, 102: 928-946.
    [97] Sugawara K, Enda Y, Sugawara T, et al. XANES analysis of sulfur form change during pyrolysis of coals [J]. J. Synchrotron Radiat., 2001, 8: 955-957.
    [98] Cullis C F, Norris A C. The pyrolysis of organic compounds under conditions of carbon formation [J]. Carbon, 1972, 10: 525-537.
    [99] Memon H U R, Williams A, Williams P T. Shock tube pyrolysis of thiophene [J]. Int. J. Energy Res, 2003, 27: 225-239.
    [100] Johnson D E. Pyrolysis of benzenethiol [J]. Fuel, 1987, 66: 255-260.
    [101] Shagun1 L G, Papernaya1 L K, Deryagina1 E N, et al. The formation of diaryl sulfides in the pyrolysis of aromatic thiols [J]. Russ. Chem. Bull., 1979, 28(10): 2213.
    [102]王惠,杨海峰,翟高红,等.碳源甲基苯热裂解机理的密度泛函动力学研究[J].化学学报, 2001, 59(1): 17-21.
    [103]王惠,杨海峰,冉新权,等.甲苯热裂解机理的AM1研究(Π)动力学分析[J].无机化学学报, 2001, 17(4): 545-550.
    [104] Elsaesser T, Kaiser W, Visible and infrared spectroscopy of intramolecular proton transfer using picosecond laser pulses [J]. Chem. Phys. Lett., 1986, 128(3): 231-237.
    [105] Sun D J, Fang J H, Yu G H, et al. Intramolecular hydrogen bonding and photoinduced intramolecular proton and electron transfer in 2-(2`-hydroxy phenyl) Benzothiazole [J]. J. Mol. Struc-THEOCHEM, 2007, 806, 105-112.
    [106]刘润静. COS液相吸收剂筛选及其在NaOH溶液中吸收动力学研究[D].上海:华东理工大学, 1990.
    [107] Rhodes C, Riddel S A, West J, et al. The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: a review [J]. Catal. Today, 2000, 59: 443-464.
    [108] Tong S, Dalla Lana I G, Chuang K T. Appraisal of catalysts for the hydrolysis of carbon disulfide [J]. Can. J. Chem. Eng., 1992, 70: 516-522.
    [109] George Z M. Kinetics of cobalt-molybdate-catalyzed reactions of SO2 with H2S and COS and the hydrolysis of COS [J]. J. Catal., 1974, 32 (2): 261-271.
    [110] Chuang T T, Dalla Lana I G, Lui C L. CO2 poisoning of theγ-alumina-catalyzed reaction of COS with SO2 [J]. J. Chem. Soc., Faraday Trans.1, 1973, 69: 643-651.
    [111] Wilson C, Hirst D M. High-level ab initio study of the reaction of OCS with OH radicals [J]. J. Chem. Soc. Faraday Trans., 1995, 91(5): 793-798.
    [112] Deng C, Li Q G, Ren Y, et al. A comprehensive theoretical study on the hydrolysis of carbonyl sulfide in the netural water [J]. J. Comput. Chem., 2008, 29: 466-480.
    [113] Coward R S, Skaret W M. Sulfur recovery hiked in Claus/Sulreen units at Ram River [J]. Oil & Gas Journal, 1985, 83(14): 93-94.
    [114]上官炬,郭汉贤.氧化铝基催化剂上二硫化碳水解反应性的研究[J].燃料化学学报, 1997, 25(3): 277-283.
    [115] Laperdrix E, Justin I, Costentin G, et al. Comparative study of CS2 hydrolysis catalyzed by alumina and titania [J]. Appl. Catal. B: Environmental, 1998, 17: 167-173.
    [116]王丽,李福林,吴迪镛,等.低温催化水解二硫化碳的研究[J].天然气化工, 2005, 30: 1-5.
    [117] Sahibed-Dine A, Aboulayt A, Bensitel M, et al. IR study of CS2 adsorption on metal oxides: relation with their surface oxygen basicity and mobility [J]. J. Mol. Cata. A: Chemical, 2000, 162: 125-134.
    [118] McKee M L. Computational study of the addition of OH radical to S=C=S [J]. Chem. Phys. Lett., 1993, 201(1-4): 41-46.
    [119]沈芳,李春虎,上官炬,等.高温煤气铁系脱硫剂的研究[J].煤炭转化, 2004, 27(2): 54-56.
    [120] Westmoreland P R, Harrison D P. Evaluation of candidate solids for high-temperature desulfurization of low-btu gases [J]. Environ. Sci. Technol., 1976, 10(7): 659-661.
    [121]赵苏杭,袁宏伟,刘晶敏.高温煤气脱硫技术进展[J].煤质技术, 2008, 3(2): 43-46.
    [122]姜圣阶.合成氨工学(第二卷) [M].北京:石油化学工业出版社, 1978, 117.
    [123]梁美生.铁酸锌高温煤气脱硫行为及气氛效应研究[D].山西:太原理工大学,博士学位论文, 2005, 5.
    [124]葛晓华,郭波,常丽萍.高温煤气脱硫剂的研究进展[J].工业催化, 2005, 13(11): 6-11.
    [125] Zeng Y, Zhang S, Groves F R, et al. High temperature gas desulfurizaiton with elemental sulfur production [J]. Chem. Eng. Sci., 1999, 54: 3007-3017.
    [126] Zeng Y, Kaytakoglu S, Harrison D P. Reduced ceriumoxide as efficient and durable high temperature desulfurization sorbent [J]. Chem. Eng. Sci., 2000, 55: 4893-4900.
    [127] Westmoreland P R, Glbson J B, Harrison D P. Comparative kinetics of high-temperature reaction between H2S and selected metal oxides [J]. Environ. Sci. Technol., 1977, 18(5): 488- 491.
    [128] Wieckowska J. Catalytic and adsorptive desulphurization of gases [J]. Catal. Today, 1995, 24: 405-465.
    [129]高春珍.氧化铈高温煤气脱硫剂的制备与活性评价[D].山西:太原理工大学,硕士学位论文, 2004, 17-19.
    [130]樊惠玲.氧化铁高温煤气脱硫行为及助剂影响规律的研究[D].山西:太原理工大学,博士学位论文, 2004, 12.
    [131] Kim C-Y, Escuadro A A, Bedzyk M J. Interaction of H2S withα-Fe2O3(0001) surface [J]. Surf. Sci., 2007, 601: 4966-4970.
    [132] Kim C-Y, Escuadro A A, Bedzyk M J. Interaction of H2S withα-Fe2O3(0001) surface [J]. Surf. Sci., 2007, 601: 4966-4970.
    [133] Yin S X, Ma X Y, Ellis D E. Initial stages of H2O adsorption and hydroxylation of Fe-terminatedα-Fe2O3(0001) surface [J]. Surf. Sci., 2007, 601: 2426-2437.
    [134] Yin S X, Ellis D E. H2O adsorption and dissociation on defective hematite (0001) surfaces: A DFT study [J]. Surf. Sci., 2008, 602: 2047-2054.
    [135] Casarin M, Maccato C, Tondello E, et al. A theoretical investigation of Br?nsted acids chemisorption on ZnO (0001) [J]. Surf. Sci., 1995, 343: 115-132.
    [136] Casarin M, Maccato C, Vittadini A. An LCAO-LDF study of the chemisorption of H2Oand H2S on ZnO(0001) and ZnO(10-10) [J]. Surf. Sci., 1997, 377-379: 587-591.
    [137] Rodrigue J A, Maiti A. Adsorption and decomposition of HS on MgO (100), NiMgO(100), and Zn(0001) surfaces: a first-principles density functional study [J]. J. Phys. Chem. B, 2000, 104(15): 3630-3638.
    [138] Valentin C D, Figini A, Pacchioni G. Adsorption of NO and NO2 on terrace and step sites and on oxygen vacancies of the CaO(100) surface [J]. Surf. Sci., 2004, 556: 145-158.
    [139] Valentin C D, Pacchioni G, Bernasconi M. Ab initio molecular dynamics simulation of NO reactivity on the CaO(001) surface [J]. J. Phys. Chem. B, 2006, 110: 8357-8362.
    [140] Kantorovich L N, Gillan M J. The energetics of N2O dissociation on CaO(001) [J]. Surf. Sci., 1997, 376: 169-176.
    [141] Chen H-T, Choi Y M, Liu M L, et al. A first-principles analysis for sulfur tolerance of CeO2 in solid oxide fuel cells [J]. J. Phys. Chem. C, 2007, 111: 11117-11122.
    [142]温晓东. MoS2催化剂的结构及加氢脱硫机理的量子化学研究[D].山西:中国科学院山西煤炭化学研究所, 2007, 60.
    [143]曹梅娟.苯和吡啶在铜族金属表面吸附的理论研究[D].福建:福州大学, 2006, 11.
    [144] Reddy B V, Jena P. Signature of crystalline order in ultra-small metal-oxide clusters [J]. Chem. Phys. Lett., 1998, 288: 253-260.
    [145] Sun Q, Rao B K, Jena P, et al. Appearance of bulk properties in small tungsten oxide clusters [J]. J. Chem. Phys., 2004, 121(19): 9417-9422.
    [146] Lei X L, Wang X M, Zhu H J, et al. Appearance of metallic features in small tungsten clusters [J]. Chinese Physics B, 2009, 18(6): 2264-2270.
    [147]周玉芳.大气臭氧层损耗机理及非晶态材料局部性质的原子簇模型计算[D].山东:山东大学, 1999, 12-13.
    [148]刘书红.甲醇在固体催化剂表面吸附和分解的理论研究[D].福建:福州大学, 2006, 22-23.
    [149]徐昕,中迕博,江原正博,等.金属氧化物SPC簇模型方法-嵌入簇点电量的确定[J].中国科学(B辑), 1998, 18(1): 40-46.
    [150]帅志刚,邵久书.理论化学原理与应用.北京:科学出版社, 2008, 810-811
    [151]吕鑫,徐昕,王南钦,等.簇模型选取的配位数原则-CO/ZnO吸附体系的ab initio研究[J].高等学校化学学报, 1998, 19(5): 783-788.
    [152]张海东. TiO2簇模型的从头计算及DFT研究[D].重庆:重庆大学, 2001, 11-12.
    [153] Hwang D Y, Mebel A M. Theoretical study of the reaction mechanism of nitrogen hydrogenation on transition metal oxides (TiO, VO, and CuO) [J]. Chemical Physics, 2004, 304: 301-313.
    [154]王继仁.煤自燃量子化学理论[M].北京:科学出版社, 2007, 371-375
    [1]林梦海.量子化学计算方法与应用[M].北京:科学出版社. 2004, 1.
    [2]徐翠香.量子化学发展的哲学启示[J].云南化工, 2009, 36(3): 62-65.
    [3] Levine I N, Quantum Chemistry [M], Fifth Ed. Beijing: Prentice Hall, Inc., 2004, 366-369.
    [4]李军,冯杰,李文英.神府东胜煤镜质组和惰质组的热化学反应差异[J].物理化学学报, 2009, 25(7): 1311-1319.
    [5]李军,冯杰,李文英,等.强弱还原煤聚集态对可溶性影响的分子力学和分子动力学分析[J].物理化学学报, 2008, 24(12): 2297-2303.
    [6]曾凡桂,贾建波.霍林河褐煤热解甲烷生成反应类型及动力学的热重-质谱实验与量子化学计算[J].物理化学学报, 2009, 25(6): 1117-1124.
    [7]范康年.物理化学(第二版) [M].北京:高等教育出版社, 1995, 208-209.
    [8] Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev. B., 1964, 136: 864-871.
    [9]刘阳.手性分子比旋光度的TDDFT计算[D].山西:山西大学, 2009, 17-18.
    [10]张颖,徐昕.密度泛函理论及其应用. 10000个科学难题-化学卷[M].北京:科学出版社, 2009, 234-236.
    [11] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, A140: 1133-1138.
    [12] Becke A D. Density-functional thermochemistry. III. The role of exact exchange [J]. J. Chem. Phys., 1993, 98: 5648-5652.
    [13]傅献彩,沈文霞,姚天扬.物理化学[M],第四版,北京:高等教育出版社,1990: 798-812
    [14]韩德刚,高盘良.化学动力学基础[M].北京:北京大学出版社, 2001, 133.
    [15]林梦海.量子化学计算方法与应用[M].北京:科学出版社, 2004, 61-62.
    [16]林梦海.量子化学计算方法与应用[M].北京:科学出版社, 2004, 60.
    [17] Levine I N, Quantum Chemistry[M], Fifth Ed. Beijing: Prentice Hall, Inc., 2004, 5-7.
    [18]范康年.物理化学(第二版) [M].北京:高等教育出版社, 1995, 22-23.
    [19] van Helden P, van Steen E. Coadsorption of CO and H on Fe(100) [J]. J. Phys. Chem. C., 2008, 112: 16505-16513.
    [20] Hoogenboom R, Meier M A R, Schubert U S. Combinatorial methods, automated synthesis and high-throughput screening in polymer research: past and present [J]. Macromol. Rapid Commun., 2003, 24: 15-32.
    [21] Schmatloch S, Meier M A R, Schubert U S. Instrumentation for combinatorial and high-throughput polymer research: a short overview [J]. Macromol. Rapid Commun., 2003, 24: 33-46.
    [22] Xiao J J, Fang G Y, Ji G F, et al. Simulation investigations in the binding energy and mechanical properties of HMX-based polymer-bonded explosives [J]. Chinese Science Bulletin, 2005, 50(1): 21-26.
    [23] Legoas S B, Coluci V R, Coura P Z, et al. Molecular-dynamics sumulations of carbon nanotubes as gigahertz oscillators [J]. Phys. Rev. Lett., 2003, 90: 1-4.
    [24] Gao Y H, Bando Y, Liu Z W, et al. Temperature measurement using a gallium-filled carbon nanotube nanothermometer [J]. Appl. Phys. Lett., 2003, 83: 2913.
    [25] Andzelm J, Govind N, Fitzgerald G, et al. DFT study of methanol conversion to hydrocarbons in a zeolite catalyst [J]. Int. J. Quantum Chem., 2003, 91(3): 467-473.
    [26] Govind N, Andzelm J, Reindel K, et al. Zeolite-catalyzed hydrocarbon formation from methanol: density functional simulations [J]. Int. J. Mol. Sci., 2002, 3: 423-434.
    [27] Jordaan M, van Helden P, van Sittert C G C E, et al. Experimental and DFT investigation of the 1-octene metathesis reaction mechanism with the Grubbs 1 precatalyst [J]. J. Mol. Catal. A: Chemical, 2006, 254: 145-154.
    [28]孟华平,赵炜,章日光,等.半焦对富含甲烷气体转化制备合成气的作用(IV)理论分析半焦表面含氧官能团的催化机理[J].煤炭转化, 2008, 31(3): 31-35.
    [29]章日光,黄伟,王宝俊. CH4和CO2合成乙酸中CO2与H?和CH3?相互作用的理论计算[J].催化学报, 2007, 28(7): 641-645.
    [1]谢克昌.煤的结构与反应性[M].北京:科学出版社, 2002, 69.
    [2] Tan L L, Li C Z. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part ?. Effects of reactor configuration on the determined yields of HCN and NH3 during pyrolysis [J]. Fuel, 2000, 79: 1883-1889.
    [3]林建英.煤及煤岩显微组分热解、气化过程中氮的迁移机理[D].山西:太原理工大学博士论文, 2006.
    [4] Mrazikova J, Beverka S S L, Macak J. Evolution of organic oxygen bonds during pyrolysis of coal [J]. Fuel, 1986, 65: 342-346.
    [5]刘生玉.中国典型动力煤及含氧模型化合物热解过程的化学基础研究[D].山西:太原理工大学博士论文, 2004, 119-121.
    [6]朱学栋,朱子彬,韩崇家,等.煤的热解研究Ⅲ.煤中官能团与热解生成物[J],华东理工大学学报, 2000, 26(1): 14-17.
    [7] Mackie J C, Colket M B, Nelson P F, et al. Shock tube pyrolysis of pyrrole and kinetic modeling [J]. Int. J. Chem. Kinet., 1991, 23: 733-760.
    [8] Mackie J C, Colket M B, Nelson P F. Shock tube pyrolysis of pyridine [J]. J. Phys. Chem., 1990, 94: 4099-4106.
    [9] Memon H U R, Bartle K D, Taylor J M, et al. The shock tube pyrolysis of pyridine [J]. Int. J. Energ. Res., 2000, 24: 1141-1159.
    [10] Laskin A, Lifshitz A. Isomerization and decomposition of indole. Experimental results and kinetic modeling [J]. J. Phys. Chem A, 1997, 101: 7787-7801.
    [11] Terentis A., Doughty A., Mackle J. C. Kinetics of pyrolysis of a coal model compound, 2-picoline, the nitrogen heteroaromatic analogue of toluene. 1. product distributions. J.Phys. Chem., 1992, 96: 10334-10339
    [12] Doughty A, Mackie J C. Kinetic of pyrolysis of a coal model compound, 2-picoline, the nitrogen heteroaromatic analogue of toluene. 2. the 2-picolyl radical and kinetic modeling [J]. J. Phys. Chem., 1992, 96: 10339-10348.
    [13] Dubnikova F, lifshitz A. Isomerization of pyrrole. Quantum chemical calculations and kinetic modeling [J]. J. Phys. Chem A, 1998, 102: 10880-10888.
    [14] Zhai L, Zhou X F, Liu R F. A theoretical study of pyrolysis mechanisms of pyrrole [J]. J. Phys. Chem A, 1999, 103: 3917-3922.
    [15] Martoprawiro M, Bacskay G B, Mackie J C. Ab initio quantum chemical and kinetic modeling study of the pyrolysis kinetics of pyrrole [J]. J. Phys. Chem A, 1999, 103: 3923-3934.
    [16] Bacskay G B, Martoprawiro M, Mackie J C. The thermal decomposition of pyrrole: an ab initio quantum chemical study of the potential energy surface associated with the hydrogen cyanide plus propyne channel [J]. Chem. Phys. Lett., 1999, 300: 321-330.
    [17] Liu R F, Huang T T-S, Tittle J, et al. A theoretical investigation of the decomposition mechanism of pyridyl radicals [J]. J. Phys. Chem A, 2000, 104: 8368-8374.
    [18] Ninomiya Y, Dong Z B, Suzuki Y, et al. Theoretical study on the thermal decomposition of pyridine [J]. Fuel, 2000, 79: 449-457.
    [19] Zhou X F, Liu R F. A density functional theory study of the pyrolysis mechanisms of indole [J]. J. Mol. Struc- THEOCHEM, 1999, 461-462: 569-579.
    [20]王宝俊.煤结构与反应性的量子化学研究[D].山西太原:太原理工大学, 2006, 148-162.
    [21] Delley B. From molecules to solids with the Dmol3 approach [J]. J. Chem. Phys., 2000, 113: 7756-7764.
    [22] Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B, 1992, 46: 6671-6687.
    [23]章日光,黄伟,王宝俊. CH4和CO2合成乙酸中CO2与·H及·CH3相互作用的理论计算[J].催化学报, 2007, 28(7): 641-645.
    [24]赵俐娟,凌丽霞,章日光,柳学芳,王宝俊.煤相关含氧模型化合物苯甲醚热解机理的量子化学研究[J].化工学报, 2008, 59(8): 2095-2102.
    [25] Lide D R. Handbook of Chemistry and Physics [M] 82nd, CRC Press, New York, Washington, D.C, 2001-2002, 9-40.
    [26]赵俐娟.类煤结构含氧模型化合物热解机理的量子化学研究[D].山西:太原理工大学硕士学位论文, 2008.
    [27] Lin C Y, Lin M C. Thermal decomposition of methyl phenyl ether in shock waves: the kinetics of phenoxy reactions [J]. J. Phys. Chem., 1986, 90: 425-431.
    [28] Schlosberg R H, Szajowski P F, Dupre G D, et al. Pyrolysis studies of organic oxygenates 3. High temperature rearrangement of aryl alkyl ethers [J]. Fuel, 1983, 62: 690-694.
    [29] Isabel W C E, Arends, Robert L, Peter M. Kinetic study of the thermolysis of anisole in a hydrogen atmosphere [J]. J. Phys. Chem., 1993, 97: 7914-7925.
    [30] Mulcahy M F R, Williams D J. Reactions of free radicals with aromatic compounds in the gaseous phase [J]. Aust. J. Chem., 1965, 18: 20-38.
    [31] Mackie J C, Doolan R K, Nelson P F. Kinetics of the thermal decomposition of methoxybenzene (anisole). J. Phys. Chem., 1989, 93: 664-670
    [32] Pecullan M, Brezinsky K, Glassman I. Pyrolysis and oxidation of anisole near 1000K [J]. J. Phys. Chem. A., 1997, 101: 3305-3316.
    [33] Mulcahy M F R, Williams D J. Reaction of phenoxy radicals with methyl radicals in the gaseous phase [J]. Nature, 1963, 24: 761-762.
    [34]凌丽霞,赵俐娟,章日光,等.苯甲酸和苯甲醛热解机理的量子化学研究[J].化工学报, 2009, 60(5): 1224-1230.
    [35]谢克昌.煤的结构与反应性[M].北京:科学出版社, 2002, 212.
    [36]刘生玉.中国典型动力煤及含氧模型化合物热解过程的化学基础研究[D].山西:太原理工大学博士论文, 2004, 3.
    [37] Ibarra J V, Moliner R, Gavilan M P. Functional group dependence of cross-linking reactions during pyrolysis [J]. Fuel, 1991, 70(3): 408-413.
    [38] Deshpande G V, Solomon P R, Serio M A. Crosslinking reactions in coal pyrolysis [J].Am. Chem. Soc. Div. Fuel Chem. Prepr., 1988, 33 (2): 310-321.
    [39] Solomon P R, Serio M A, Despande G V, et al. Cross-linking reactions during coal conversion [J] . Energ. Fuel., 1990, 4: 42-54.
    [40] Suuberg E M, Lee D, Larsen J W. Temperature dependence of crosslinking processes in pyrolysing coals [J]. Fuel, 1985, 64: 1668-1671.
    [41] Suuberg E M, unger P E, Larsen J W. Relation between tar and extractables formation and cross-linking during coal pyrolysis [J]. Energ. Fuel., 1987, 1: 305-308.
    [42] Eskay T P, Britt P F, Buchanan III A C. Does decarcoxylation lead to cross-linking in low-rank coals [J]. Energ. Fuel., 1996, 10(6): 1257-1261.
    [43] Eskay T P, Britt P F, Buchanan III A C. Pyrolysis of aromatic carboxylic acid: potential involvement of anhydrides in retrograde reactions in low-rank coal [J]. Energ. Fuel., 1997, 11: 1278-1287.
    [44] Manion J A, McMillen D F, Malhotra R. Decarboxylation and coupling reactions of aromatic acids under coal-liquefaction conditions [J]. Energ. Fuel., 1996, 10: 776-788.
    [45]朱学栋,朱子彬,韩崇家,等.煤的热解研究Ⅲ.煤中官能团与热解生成物[J],华东理工大学学报, 2000, 26(1): 14-17.
    [46] Artok L, Schobert H H, Reaction of carboxylic acids under coal liquefaction condition. 2. under hydrogen atmosphere[J], J. Anal. Appl. Pyrol., 2000, 54: 235-246
    [47]赵丽红,郭慧卿,马青兰.煤热解过程中气态产物分布的研究[J].煤炭转化, 2007, 30(1): 5-8.
    [48] Liu S Y, Li W Y, Xie K C. The fate of organic oxygen during coal pyrolysis [J]. Energ. Source, 2003, 25: 479-488.
    [49] Ling L X, Zhang R G, Wang B J, etc. Pyrolysis mechanisms of quinoline and isoquinoline with density functional theory [J]. Chin. J. Chem. Eng., 2009, 17(5): 805-813.
    [50] Patterson J M, Issidorides C H, Papadopoulos E P, et al. The thermal interconversion of quinoline and isoquinoline [J]. Tetrahedron. Lett., 1970, 15: 1247-1250.
    [51] Laskin A, Lifshitz A. Thermal decomposition of quinoline and isoquinoline. The role of 1-indene imine radical [J]. J. Phys. Chem A, 1998, 102: 928-946.
    [52] Winkler J K, Karow W, Rademacher P. Gas phase pyrolysis of heterocyclic compounds, part 3. Flow pyrolysis and annulation rection of some nitrogen heterocycles. A product oriented study [J]. Arkivoc, 2000, 1(4): 576-602.
    [53] Bruinsma O S L, Tromp P J J, De Sauvage Nolting H J J, et al. Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor 2. Heterocyclic compounds, their benzo and dienzo derivatives [J]. Fuel, 1988, 67: 334-340.
    [54]王惠,杨海峰,翟高红,等.碳源甲基苯热裂解机理的密度泛函动力学研究[J].化学学报, 2001, 59(1): 17-21.
    [55]王惠,杨海峰,冉新权,等.甲苯热裂解机理的AM1研究(Π)动力学分析[J].无机化学学报, 2001, 17(4): 545-550.
    [1]宋振玲,杨奎奇,赵跃民.煤炭燃前脱硫技术研究进展[J].江苏煤炭, 2003, 4: 43-44.
    [2] Klein J. Technological and economic aspects of coal biodesulfurisation [J]. Biodegradation, 1998, 9: 293-300.
    [3]周强.煤的热解行为及硫的脱除[D].大连:大连理工大学博士论文, 2004, 2.
    [4]冯玉斌.煤的热解及硫析出特性试验研究[D].山东:山东大学硕士论文, 2005, 9.
    [5] Ling L X, Zhang R G, Wang B J, etc. Density functional theory study on the pyrolysis mechanism of thiophene in coal [J]. J. Mol. Struct (THEOCHEM)., 2009, 905: 8-12.
    [6] Cullis C F, Norris A C. The pyrolysis of organic compounds under conditions of carbon formation [J]. Carbon, 1972, 10: 525-537.
    [7] Winkler J K, Karow W, Rademcher P. Gas-phase pyrolysis of heterocyclic compounds,part 1 and part 2: flow pyrolysis and annulation reactions of some sulfur heterocycles: thiophene, benzo[b]thiophene, and dibenzothiophene. A product-oriented study [J]. J. Anal. Appl. Pyrolys, 2002, 62: 123-141.
    [8] Memon H U R, Williams A, Williams P T. Shock tube pyrolysis of thiophene [J]. Int. J. Energy Res, 2003, 27: 225-239.
    [9]孙林兵,倪中海,张丽芳,等.煤热解过程中氮/硫析出形态的研究进展[J].洁净煤技术, 2002, 8(3): 47-50.
    [10]黄充,张军营,陈俊,等.煤中噻吩型有机硫热解机理的量子化学研究[J].煤炭转化, 2005, 28(20): 33-35.
    [11] Ling L X, Zhao L J, Wang B J. The Thermodynamic Study on the Sulfur-containing Compound in coal Using Quantum Chemistry [C]. The 9th China-Japan Symposium on Coal and C1 chemistry proceedings, Chengdu City, China, Oct., 2006, 57-58.
    [12] Bajus M, Vesely V, Baxa J. Stream cracking of hydrocarbons. 5. effect of thiophene on reaction kinetics and coking [J]. Ind. Eng. Chem. Prod. Res. Dev. 1981, 20: 741-745.
    [13] Martoprawiro M, Bacskay G B, Mackie J C. Ab initio quantum chemical and kinetic modeling study of the pyrolysis kinetics of pyrrole [J]. J. Phys. Chem A, 1999, 103: 3923-3934.
    [14] Hore N R, Russell D K. The thermal decomposition of 5-membered rings: a laser pyrolysis study [J]. New. J. Chem., 2004, 28: 606-613.
    [15] Hurd C D, Levetan R V, Macon A R. Pyrolysis formation of arenas. II. benzene and other arenas from thiophene, 2-methylthiophene and 2-(methyl-14C)-thiophene [J]. J. Am. Chem. Soc., 1962, 84: 4515-4519.
    [16] Bruinsma O S L, Tromp P J J, De Sauvage Nolting H J J, et al. Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor 2. heterocyclic compounds, their benzo and dibenzo derivatives [J]. Fuel, 1988, 67: 334-340.
    [17] Barckholtz C, Barckholtz T A, Hadad C M. C-H and N-H bond dissociation energies of small aromatic hydrocarbons [J]. J. Am. Chem. Soc., 1999, 121(3): 491-500.
    [18] Mackie J C, ColketⅢM B, Nelson P F, et al. Shock tube pyrolysis of pyrrole and kinetic modeling [J]. Int. J. Chem. Kinet., 1991, 23: 733-760.
    [19]南京大学化学系有机化学教研室.有机化学[M].北京:高等教育出版社, 1986, 78.
    [20] Bacskay G B, Martoprawiro M, Mackie J C. The thermal decomposition of pyrrole: an ab initio quantum chemical study of the potential energy surface associated with the hydrogen cyanide plus propyne channel [J]. Chem. Phys. Lett., 1999, 300: 321-330.
    [21]魏运洋,李建.化学反应机理导论[M].北京:科学出版社, 2004, 23-27.
    [22]傅献彩,沈文霞,姚天扬.物理化学[M],第四版.北京:高等教育出版社, 1990, 798-812.
    [23] Ling L X, Zhang R G, Wang B J, etc. DFT study on the migration during benzenethiol pyrolysis in coal. J. Mole. Struct. (THEOCHEM), 2010, doi:10.1016/j.theochem. 2010.04.001.
    [24]孙林兵,倪中海,张丽芳,等.煤热解过程中氮/硫析出形态的研究进展[J].洁净煤技术, 2002, 8(3): 47-50.
    [25] Johnson D E. Pyrolysis of benzenethiol [J]. Fuel, 1987, 66: 255-260.
    [26] Van Buren R L, Baltisberger R J, Woolsey N F, et al. Formic acid and the high-temperature reductive desulfurization of aromatic sulfides [J]. J. Org. Chem., 1982, 47: 4107-4110.
    [27] Nam P-C, Flammang R, Le H T, et al. Protonation and methylation of thiophenol, thioanisole and their halogenated derivatives: mass spectrometric and computational study [J]. Int. J. Mass Spectrom., 2003, 228: 151-165.
    [28] Olivella S, SoléA, García-Raso A. Ab initio calculation of the potential surface for the thermal decomposition of the phenoxyl radical [J]. J. Phys. Chem., 1995, 99: 10549-10556.
    [29] Xie Z L, Feng J, Zhao W, et al. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part IV. Pyrolysis of a set of Australian and Chinese coals [J]. Fuel, 2001, 80: 2131-2138.
    [30] Chang L P, Xie Z L, Xie K C, et al. Formation of NOx precursors during the pyrolysis of coal and biomass. Part VI. Effects of gas atmosphere on the formation of NH3 and HCN [J]. Fuel, 2003, 82: 1159-1166.
    [31] Mulcahy M F R, Williams D J. Reactions of free radicals with aromatic compounds inthe gaseous phase [J]. Aust. J. Chem., 1965, 18: 20-38.
    [32] Mackie J C, Doolan R K, Nelson P F. Kinetics of the thermal decomposition of methoxybenzene (anisole) [J]. J. Phys. Chem., 1989, 93: 664-670.
    [33] Pecullan M, Brezinsky K, Glassman I. Pyrolysis and oxidation of anisole near 1000K [J]. J. Phys. Chem. A., 1997, 101: 3305-3316.
    [34] Eskay T P, Britt P F, Buchanan III A C. Does decarcoxylation lead to cross-linking in low-rank coals [J]. Energ. Fuel., 1996, 10(6): 1257-1261.
    [35] Eskay T P, Britt P F, Buchanan III A C. Pyrolysis of coal compounds containing aromatic carboxylic acids, the role of carboxylic acids in cross-linking reaction in low-rank coals [C]. Proceedings of ICCS’97, Essen, Germany, 1997: 1356-1385.
    [36] Manion J A, McMillen D F, Malhotra R. Decarboxylation and coupling reactions of aromatic acids under coal-liquefaction conditions [J]. Energ. Fuel., 1996, 10: 776-788.
    [37] Mills P, Korlann S, Bussell M E, et al. Vibrational study of organometallic complexes with thiophene ligands: Models for adsorbed thiophene on hydrodesulfurization catalysts [J]. J. Phys. Chem. A, 2001, 105: 4418-4427.
    [38] Laskin A, Lifshitz A. Thermal decomposition of quinoline and isoquinoline. The role of 1-indene imine radical [J]. J. Phys. Chem. A, 1998, 102: 928-946.
    [39]朱学栋,朱子彬,韩崇家,等.煤的热解研究Ⅲ.煤中官能团与热解生成物[J],华东理工大学学报, 2000, 26(1): 14-17.
    [40] Attar A. Chemistry, thermodynamics and kinetics of reactions of sulphur in coal-gas reactions: a review [J]. Fuel, 1978, 57(14): 201-212.
    [1]王丽,吴迪镛,王树东,等.稀土氧化物CeO2脱除二硫化碳的研究[J].中国稀土学报, 2005, 23: 35-39.
    [2]王丽,李福林,吴迪镛,等.催化水解-氧化耦合一步法脱除二硫化碳的研究[J].燃料化学学报, 2004, 32(4): 466-470.
    [3]上官炬,郭汉贤.氧化铝基催化剂上二硫化碳水解反应性的研究[J].燃料化学学报, 1997, 25(3): 277-283.
    [4] Laperdrix E, Justin I, Costentin G, et al. Comparative study of CS2 hydrolysis catalyzed by alumina and titania [J]. Appl. Catal B: ENVIRON, 1998, 17: 167-173.
    [5]王丽,李福林,吴迪镛,等.低温催化水解二硫化碳的研究[J].天然气化工, 2005, 30: 1-5.
    [6] Sahibed-Dine A, Aboulayt A, Bensitel M, et al. IR study of CS2 adsorption on metal oxides: relation with their surface oxygen basicity and mobility [J]. J. Mol. Catal A-CHEM, 2000, 162: 125-134.
    [7] Lide D R. Handbook of chemistry and physics, 82nd. 2001-2002, 9-19-9-21
    [1]沈芳,李春虎,上官炬,等.高温煤气铁系脱硫剂的研究[J].煤炭转化, 2004, 27(2): 54-56.
    [2] Kim C-Y, Escuadro A A, Bedzyk M J. Interaction of H2S withα-Fe2O3(0001) surface [J]. Surf. Sci., 2007, 601: 4966-4970.
    [3] Yamada T, Noto M, Shirasaka K, et al. Photoassisted adsorption of allylamine and 1-butene on H:Si(111) studied by surface vibrational spectroscopics [J]. J. Phys. Chem. B., 2006, 110: 6740-6749.
    [4]章日光,黄伟,王宝俊. Co/Pd催化剂上CH4/CO2等温两步反应直接合成乙酸的热力学[J].催化学报, 2008, 29(9): 913-920.
    [5] Zuriaga-Monroy C, Martínez-Magadán J M, Ramos E, et al. A DFT study of the electronic strucutre of cobalt and nickel mono-substituted MoS2 triangular nanosized clusters [J]. J. Mol. Catal A: Chemical, 2009, 313: 49-54.
    [6] Catti M, Valerio G, Dovesi R. Theoretical study of electronic, magnetic, and structural properties ofα-Fe2O3 (hematite) [J]. Physical Review B, 1995, 51(12): 7441-7450.
    [7] Sandratskii L M, Kübler J. Band theory for electronic and magnetic properties ofα-Fe2O3 [J]. J. Phys.: Condens. Matter, 1996, 8: 983-989.
    [8] Punkkinen M P J, Kokko K, Hergert W, et al. Fe2O3 within the LSDA+U approach [J]. J. Phys.: Condens. Matter, 1999, 11: 2341-2349.
    [9] Rollmann G, Rohrbach A, Entel P, et al. First-principles calculation of the structure and magnetic phases of hematite [J]. Physical Review B, 2004, 69: 165107-1- 165107-12.
    [10] Lee E K, Jung K D, Joo O S, et al. Support effects in catalytic wet oxidation of H2S to sulfur on supported iron oxide catalysts [J]. Appl. Catal. A - GEN, 2005, 284: 1-4.
    [11] Cantrell K J. Yabusaki S B, Engelhard M H, et al. Oxidation of H2S by iron oxides in unsaturated conditions [J]. Environ. Sci. Technol., 2003, 37(10): 2192-2199.
    [12] Reshetenko T V, Khairulin S R, Ismagilov Z R, et al. Study of the reaction of high-temperature H2S decomposition on metal oxides (γ-Al2O3,α-Fe2O3, V2O5) [J]. Int. J. Hydrogen Energ., 2002, 27: 387-394.
    [13] Davydov A, Chuang K T, Sanger A R. Mechanism of H2S oxidation by ferric oxide and hydroxide surfaces [J]. J. Phys. Chem. B, 1998, 102: 4745-4752.
    [14] Wi?ckowska J. Catalytic and adsorptive desulphurization of gases [J]. Catal. Today, 1995, 24: 405-465.
    [15] Trainor T P, Chaka A M, Eng P J, et al. Strucutre and reactivity of the hydrated hematite (0001) surface [J]. Surf. Sci., 2004, 573: 204-224.
    [16] Chambers S A, Yi S I. Fe termination forα-Fe2O3(0001) as grown by oxygen-plasma- assisted molecular beam epitaxy [J]. Surf. Sci., 1999, 439: L785-L791.
    [17] Wang X G, Weiss W, Shaikhutdinov S K, et al. The hematite (α-Fe2O3) (0001) surface: evidence for domains of distinct chemistry [J]. Phys. Rev. Lett., 1998, 81: 1038-1041.
    [18] Thevuthasan S, Kim Y J, Yi S I, et al. Surface structure of MBE-grownα-Fe2O3(0001) by intermediate-energy X-ray photoelectron diffraction [J]. Surf. Sci., 1999, 425: 276-286.
    [19] Wasserman E, Rustad J R, Felmy A R, et al. Ewald methods for polarizable surfaces with application to hydroxylation and hydrogen bonding on the (012) and (001) surfaces ofα-Fe2O3 [J]. Surf. Sci., 1997, 385: 217-239.
    [20] Yin S X, Ma X Y, Ellis D E. Initial stages of H2O adsorption and hydroxylation of Fe-terminatedα-Fe2O3(0001) surface [J]. Surf. Sci., 2007, 601: 2426-2437.
    [21] Lide D R. Handbook of Chemistry and Physics [M] 82nd, CRC Press, New York, Washington, D.C, 2001-2002, 9-21.
    [22] Kokes R J. Characterization of adsorbed intermediates on zinc oxide by infrared [J]. Acc. Chem. Res., 1973, 6(7): 226-233.
    [23] Sojka Z, Herman R G, Klier K. Selective oxidation of methane to formaldehyde over doubly copper-iron doped zinc oxide catalysts via a selectivity shift mechanism [J]. J. Chem. Soc. Chem. Commun., 1991, 185-186.
    [24] Fan H L, Li C H, Guo H X, et al. Compensation effect on the desulfurizaiton of hydrogen sulfide by zinc oxide [J]. Energy Source, 2003, 25: 395-404.
    [25] Lin J, May J A, Didziulis S V, et al. Variable-energy photoelectron spectroscopic studies of H2S chemisorption on Cu2O and ZnO single-crystal surfaces: HS- bonding to copper(I) and zinc(II) sites related to catalytic poisoning [J]. J. Am. Chem. Soc., 1992, 114(12): 4718-4727.
    [26] Casarin M, Maccato C, Tondello E, et al. A theoretical investigation of Br?nsted acids chemisorption on ZnO (0001) [J]. Surf. Sci., 1995, 343: 115-132.
    [27] Casarin M, Maccato C, Vittadini A. An LCAO-LDF study of the chemisorption of H2O and H2S on ZnO(0001) and ZnO(10-10) [J]. Surf. Sci., 1997, 377-379: 587-591.
    [28] Rodrigue J A, Maiti A. Adsorption and decomposition of HS on MgO (100), NiMgO(100), and Zn(0001) surfaces: a first-principles density functional study [J]. J. Phys. Chem. B, 2000, 104(15): 3630-3638.
    [29] Martins J B L, Longo E, Rodríguez Salmon O D, et al. The interaction of H2, CO, CO2, H2O and NH3 on ZnO surfaces: an Oniom study [J]. Chem. Phys. Lett., 2004, 400: 481-486.
    [30] Martins J B L, Andrés J, Longo E, et al. A theoretical study of (10-10) and (0001) ZnO surfaces: molecular cluster model, basis set and effective core potential dependence [J]. J. Mol. Struc-THEOCHEM, 1995, 330: 301-306.
    [31] Martins J B L, Moliner V, Andrés J, et al. A theoretical study of water adsorption on (10-10) and (0001) ZnO surfaces: molecular cluster, basis set and effective core potential dependence [J]. J. Mol. Struc-THEOCHEM, 1995, 330: 347-351.
    [32] Abrahams S C, Bernstein J L. Remeasurement of the structure of hexagonal ZnO [J]. Acta. Cryst., 1969, B25: 1233-1236.
    [33] Meyer B, Marx D. Density-functional study of the structure and stability of ZnO surfaces [J]. Phys. Rev. B., 2003, 67: 035403-1-035403-11.
    [34] Westmoreland P R, Gibson J B, Harrison D P. Comparative kinetics of high-temperature reaction between H2S and selected metal oxides [J]. Environ. Sci. Technol., 1977, 11(5): 488-491.
    [35] Borgwardt R H, Roache N F, Bruce R B. Surface area of calcium oxide and kinetics of calcium sulphide formation [J]. Environ. Prog., 1984, 3: 129-135.
    [36] Heesink A B M, Van Swaaij W P M. The sulphidation of calcined limestone with hydrogen sulphide and carbonyl sulphide [J]. Chem. Engin. Sci., 1995, 50: 2983-2996.
    [37] Agnihotri R, Chauk S S, Mahuli S K, et al. Mechanism of CaO reaction with H2S: diffusion through CaS product layer [J]. Chem. Engin. Sci., 1999, 54: 3443-3453.
    [38] Primak W, Kaufman H, Ward R. X-ray diffraction studies of systems involved in the preparation of alkaline earth sulfide and selenide phosphors [J]. J. Am. Chem. Soc., 1948, 70(6): 2043-2046.
    [39] Henrich V E. The surfaces of metal oxides [J]. Rep. Prog. Phys., 1985, 48: 1481-1541.
    [40] Prutton M, Walker J A, Welton-Cook M R, et al. LEED studies of the structures of the (100) surfaces of divalent metal oxides [J]. Surf. Sci., 1979, 89: 95-101.
    [41] Rodriguez J A, Jirsak T, Chaturvedi S. Reaction of H2S with MgO(100) and Cu/MgO(100) surfaces: Band-gap size and chemical reactivity [J]. J. Chem. Phys., 1999, 111(17): 8077-8087.
    [42] Str?mberg D. The bonding and migration of an O atom on a CaO (100) surface: a theoretical study [J]. Surf. Sci., 1992, 275: 473-481.
    [43] Kaieda M, Samukawa T, Kondo A, et al. Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system [J]. J. Biosci. Bioeng., 2001, 91(1): 12-15.
    [44] Oliveira D, Oliverira J V. Enzymatic alcoholysis of palm kernet oil in n-hexane and SCCO2 [J]. J. Supercrit. Fluid, 2001, 19(2): 141-148.
    [45] Chen H-T, Choi Y M, Liu M L, et al. A first-principles analysis for sulfur tolerance of CeO2 in solid oxide fuel cells [J]. J. Phys. Chem. C, 2007, 111: 11117-11122.
    [46] Lyons D M, McGrath J P, Morris M A. Surface studies of ceria and mesoporous ceria powders by solid-state 1HMAS NMR [J]. J. Phys. Chem. B, 2003, 107(19): 4607-4617.
    [47] Watkins M B, Foster A S, Shluger A L. Hydrogen cycle on CeO2(111) surface: density functional theory calculations [J]. J. Phys. Chem. C, 2007, 111: 15337-15341.
    [48]王清高,杨宗献,危书义.水分子和二氧化铈(111)表面相互作用的DFT+U研究[J].物理化学学报, 2009, 25 (X): 0001-0009.
    [49] Li H Y, Wang H F, Gong X Q, et al. Multiple configurations of the two excess 4felectrons on defective CeO2(111): origin and implications [J]. Phys. Rev. B, 2009, 79: 193401.
    [50] Mei D H, Deskins N A, Dupuis M, et al. Methanol adsorption on the clean CeO2(111) surface: a density functional theory study [J]. J. Phys. Chem. C, 2007, 111(28): 10514-10522.
    [51] R·霍夫曼.郭洪猷,李静译.固体与表面[M].北京:化学工业出版社, 1996, 75-76.
    [52]罗渝然.化学键能数据手册[M].北京:科学出版社, 2005, 263.
    [53] Wieckowska J. Catalytic and adsorptive desulphurization of gases [J]. Catal. Today, 1995, 24: 405-465.
    [54]郭波,常丽萍,谢克昌.氧化铈型高温煤气脱硫剂的研究进展[J].现代化工, 2006, 26增刊(2): 23-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700