用户名: 密码: 验证码:
北京山区典型流域森林植被多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北京山区由于多年治理,森林覆盖率不断增加,然而,目前该地区森林仍以人工林为主,树种较单一,中幼林、纯林比例较高,生物多样性也较低。因此,如何按照森林植被演替规律提高森林植被的物种多样性,进而提高森林的健康水平成为该地区面临的新问题。本文以密云县古北口潮关西沟流域天然次生林植被为研究对象。在对主要群落进行数量分类和排序的基础上,综合演替梯度分析法、演替度法和各群落中龄级分配分析法,三种演替研究方法,结合群落的生态位研究,对天然林的次生演题,及演替片段上的多样性进行了较深入的研究,并提出多样性的保育措施。
     本研究应用数量学分类方法TWINSPAN,在六级水平上对潮关西沟森林植被进行类型划分。结合《中国植被》的3级分类系统,建立了潮关西沟流域的植被分类系统,将主要森林植被被划分为10个群系、17个群丛。在调查的14个环境因子中,海拔高度、土壤含水量、土壤速效N含量、全N含量、坡向、坡度等,对植被分布的影响较大;而全K、速效K含量,以及全P、速效P、坡位等,对植被分布的影响相对不明显。
     由潮关西沟森林植被乔灌木的生态位研究可知,白蜡、臭椿、蒙古栎、胡桃楸,荆条、胡枝子、薄皮木、孩儿拳头、酸枣、土庄绣线菊等,生态位宽度很大,为泛化种;而臭檀、黑桦、山荆子,六道木、接骨木等,为特化种。北京丁香、鹅耳枥为白蜡的伴生种,桑树、山桃、小叶朴为臭椿的伴生种,杜梨、鹅耳枥为臭檀的伴生种。薄皮木、孩儿拳头、胡枝子、花木蓝、酸枣等为荆条的伴生种,平榛多为土庄绣线菊的伴生种,杭子梢、南蛇藤、溲疏等常为雀儿舌头的伴生种。而与其他物种生态位重叠度都不高的油松、蒙古栎、蒙椴、土庄绣线菊,在自然演替中,其资源占用率比较高,竞争优势较大。
     通过对潮关西沟流域天然次生林的调查,分别采用演替梯度分析法、演替度法和各群落中龄级分配分析法,及枯树和幼树更新状况分析,最后结合生态位研究和分类结果,得出此典型流域森林植被的演替规律。阳坡演替趋势为:灌丛—→栾树—→山杏—→臭椿—→臭檀—→蒙古栎;阴坡演替趋势为:灌丛—→胡桃楸—→小叶朴、臭椿、山杏—→山杨、白榆、桑树—→白蜡、北京丁香—→黑桦—→蒙椴、糠椴—→蒙古栎、油松;沟底的演替趋势为:灌丛—→栾树—→臭椿—→臭檀。总体演替趋势为:荆条灌丛—→荆条、土庄绣线菊混交灌丛—→栾树林—→小叶朴、山杏、臭椿林—→臭檀林—→鹅耳枥、胡桃楸林—→山杨、白榆、桑树林—→白蜡、大果榆、元宝槭、色木槭林—→黑桦、蒙椴—→蒙古栎、油松林。
     应用3大类、8种生物多样性测度指标,对潮关西沟流域处于不同演替阶段的群落进行多样性分析,最终得出群落各层次多样性随演替规律的变化趋势,以及各层次之间物种多样性变化的规律,和多样性指数之间的关系。物种丰富度方面,群落乔木层随着演替进展的变化呈现出逐渐上升的变化趋势;而灌木层呈现出先升高后降低的单峰变化;草本层则为先降低后升高的变化趋势。草本层的丰富度则与乔木、灌木层表现为明显的负相关关系。人工干扰的群落中,丰富度值均小于天然群落。物种均匀度方面,群落乔木层随着演替进展的变化呈现出先升高后降低的单峰变化;各群落中灌木层均匀度相差不大;草本层的变化趋势则变化规律复杂。灌木层的均匀度不受乔木层的影响;而草本层的均匀度,受到乔木层和灌木层的双重影响,表现较为凌乱。而在有人工干扰的群落中,混交林各层次均匀度均要比纯林要高。物种综合多样性方面,群落乔木层随着演替进展的变化呈现先升高后降低的单峰变化;灌木层各群落相互间变化不大;草本层则表现为先降低后升高的变化趋势。灌木层的多样性并没有受到乔木层的太多影响;而草本层的多样性与乔木层表现为较明显的负相关关系。在有人工干扰的群落中,乔木和草本层均显示具有较低的多样性。
     在以上三类多样性测度指标对比中,丰富度指数与综合多样性指数,总体而言呈显著相关,随着丰富度指数的增加多样性指数也呈增长的趋势;丰富度指数与均匀度指数的相关性很小,甚至出现负相关;而综合多样性指教与均匀度指数间存在极显著的相关性,且为正相关关系。
     对于生物多样性的保育,不仅应当加强保护区建设,保护濒危物种和种质资源,防卫外来种入侵,从而维护合理的群落结构促进植物物种的天然更新和发展,而且应当加强科研工作,重视水土保持工作,为生物多样性保育提供更多的理论指导和技术支撑。同时,还应当建立健全生物多样性保育的法律法规保障体系,加强生态教育宣传,以及加强区域间的合作和国际间的交流,并制定相应的生物多样性保育规划。
In the rocky mountain area of Beijing, forest coverage has increased continuously after soil and water treatment. However,some new problems have appeared. For example, the afforestration area is too large compared with natura1 forest; and planted tree species are less; proportions of pure forest, and half-mature, sapling forest are too high; forest biodiversity is low. Therefore, we have to solve the new problem in this region about how to raise forest vegetation biodiversity and then the 1evel of forest healthy according to forest vegetation succession law.
     In this research, we mainly research on natural secondary forest succession rule, and biodiversity in succession series. With natural secondary forest of Chaoguanxigou in Miyun county Gubeikou town as the research object, we applied three kinds of succession methods are, such as, the succession gradient analytic method, degree succession method, and the analytic method of the age grade distribution in the community, and combined with ecological niche study. Finally puts forward the biodiversity conservation measures.
     In this research, application quantity classification method TWINSPAN, classify to Chaoguanxigou forest vegetation in six grades. Combining 3 grades of classification systems in“China vegetation”, and has built the vegetation classification system of Chaoguanxigou watershed. The forest vegetation is divided and is tied into 10 groups and 17 groups of clusters.
     The influence that to the vegetation distributes is bigger to altitude, soil moisture, hydrolyable N, total N and slope aspect and slope gradient etc in 14 environment factors investigated. And total K and available K, as well as total P, available P and slope position etc, and the influence that distributes to the vegetation opposites to each other unknownly to be apparent.
     Acoording to the research of ecological niche in Chaoguanxigou: the ecological niche is very greatly to Vitex negundo, Lespedeza bicolor, Leptodermis oblonga, Grewia biloba vra. parviflora, Ziziphus jujuba var.spinosa and Spiraea pubescens etc to Fraxinus chinensis, Ailanthus altissima, Quercus mongolica and Juglans mandshurica, for generalization plant, and Evodia daneillii, Betula dahurica malus baccata, Abelia biflora and Sambucus williamsii etc, for specialization plant.
     Companion that Syringa pekinensis and Carpainus turczaninowii is the Fraxinus chinensis is living and plants, and companion that Morus alba, Amygdalus davidiana and Celtis bungeana serve as the Ailanthus altissima is living and plants, Pyrus betulifolia and Carpainus turczaninowii serve as the companion of Evodia daneillii living plant . Companion for the Vitex negundo such as Leptodermis oblonga and Grewia biloba vra. parviflora, Lespedeza bicolor, Indigofera kirilowii and Ziziphus jujuba var.spinosa etc is living and is planted, puts down Corylus heterophylla mostly for Spiraea pubescens living plants, the companion of Leptopus Chinensis such as Campylotropis macrocarpa, Celastrus orbiculatus and Deutzia scabra etc living plant. Rather than and the high Pinus tabulaeformis of species niche overlap, Quercus mongolica, Tilia mongolica and Spiraea pubescens, its resources occupying rate is fairly higher in nature succession, and the competitive advantage is than greatly.
     By way of the investigation to the natural secondary forest in Chaoguanxigou watershed, uses the succession gradient analytic method, degree succession method, and the analytic method of the age grade distribution in the community, reaches withered tree and young tree renews condition analysis, finally combine ecological niche study and classify result ,reaches the succession law of this typical watershed forest vegetation.
     Succession trend on sunny slope is: The shrubbery—Koelreuteria paniculata—Prunus armeniaca var. ansu—Ailanthus altissima—Evodia daneillii—Quercus mongolica. Shady slope succession trend is: The shrubbery—Juglans mandshurica—Celtis bungeana, Ailanthus altissima, Prunus armeniaca var. ansu,—Populus davidiana, Ulmus pumila, Morus alba—Fraxinus chinensis, Syringa pekinensis—Betula dahurica—Tilia mongolica, Tilia mandshurica—Quercus mongolica, Pinus tabulaeformis. The ditch bottom succession trend is: The shrubbery—Koelreuteria paniculata—Ailanthus altissima—Evodia daneillii.
     Overall succession trend is: Vitex negundo—Vitex negundo, Spiraea pubescens—Koelreuteria paniculata—Celtis bungeana, Prunus armeniaca var. ansu, Ailanthus altissima—Evodia daneillii—Carpainus turczaninowii, Juglans mandshurica—Populus davidiana, Ulmus pumila, Morus alba—Fraxinus chinensis, Ulmus macrocarpa, Acer truncatum, Acer mono—Betula dahurica, Tilia mongolica—Quercus mongolica, Pinus tabulaeformis.
     Applying eight kinds of biodiversity measure indexes, and analysis is carried on in the community to what tide Chaoguanxigou watershed was in different succession stage. Finally, the change trend that the succession law was followed to biodiversity of each hierarchy of community is reached, as well as the law of diversity of species change between each hierarchy, and the relation between diversity indexes.
     In the aspects of species richness: Change a trend that moves upward is gradually appeared along with the change that succession makes progress in the community arbor layer. And the shrub layer is appeared to go up first and reduce after. But the herbaceous layer reduces back change trend that goes up for first. The richness of the arbor and shrub layer show of herbaceous layer is the clear negative correlation relation. In the community of man-made interference, the degree the richness value all is smaller than the natural community .
     In the aspects of species evenness: a single peak change that a change that along with succession makes progress on the community arbor layer reduces after appearing to go up first. The shrub layer evenness differs not very in each community. But the change trend of herbaceous layer is apparent in disorderly slightly. The influence not receiving the arbor layer of evenness of shrub layer And herbaceous layer the evenness suffering arbor the double influence with the bush layer of layer, and shows comparatively in disorderly. And each hierarchy of mixed forest is even degree all high than the pure forest is wanted in the community that someone worker disturbed. In the aspects of synthetical diversity: a single peak change that a change that along with succession makes progress on the community arbor layer reduces after appearing to go up first. The mutual change of each community of shrub layer is not very. That but the herbaceous layer shows reduces back change trend that goes up for first. Diversified nature of shrub layer does not suffer too many influences of arbor layer. And diversified nature of herbaceous layer shows to the clearer negative correlation relation with the arbor layer. The arbor all shows and possesses lower diversified nature with the herbaceous layer in the community that someone worker disturbed.
     At above three kinds of diversified nature estimate in the quota contrast, the richness index and syntheticals diversity index, assumes the notable correlation, along with diversity of increase index of the richness index also assumes the trend of increase. The richness index is very small with the correlation of evenness index, negative correlation has even to the extent that appeared. And synthetical diversity is instructed with existing the extremely notable correlation between evenness, just for the positive correlation relation .
     As for biodiversity conservation, not only should strengthen protecting area build, and protects species in imminent danger and kind nature resources, and defend outside kind invading, thus the community structure safeguarded reasonably promotes natural regeneration and the development of plant species, and should strengthen scientific research work, and attach importance to water and soil conservation work, theory guidances that diversified nature of thing child care made a living provides even more and the technology is put up. At the same time, still should build the law regulations guarantees systems of perfect diversified nature of living things child care, and strengthen ecology education conducing propaganda, as well as the exchange strengthened between the region between cooperation and internation, and corresponding diversified nature of the living things child care planning of formulation.
引文
[1] Abrams P.A. Monotonic or unimodal diversity-productivity gradients: what does competition theory predicts [J]. Ecology, 1995, 76(1): 2019-2027.
    [2] Arrhenius O. Species and area [J]. Journal of Ecology, 1921, 9(1): 95-99.
    [3] Auclairan, Goff G. Diversity relations of upland forest in the western Great lakesa area [J] .AmNat, 1971, 105(1): 449-528.
    [4] Bazzaz F.A. Plant species diversity in old-field successional ecosystems in southern Illinois [J], Ecology, 1975, 56(1): 485-488.
    [5] Bormann F.H. and G.E, Likens. Pattern and Process in a Forested Ecosystem [M]. New York: Springer-Verlag, 1979: 10-20.
    [6] Busing R.T., White. P.S. Species diversity and small-scale disturbance in an old-growth temperate forest: a consideration of gap partitioning concepts [J]. OIKOS, 1997, 78(3): 562-568.
    [7] Caley M.J. Local endemism and the relationship between local and regional diversity [J]. OIKOS, 1997, 3(1): 612-615.
    [8] Chapin F.S. III, Zavaleta E. S., Eviner V.T. Consequences of changing biodiversity [J]. Nature, 2000, 405(1): 234-242.
    [9] Chase M.R., Boshier D.H., Bawa K.S. Mircosatellite markers for population and conservation genetics of tropical tress [J]. Amer J Bot, 1995, 82(1): 468-475.
    [10] Clements F.E. Plant Succession: an Analysis of the Development of Vegetation [M]. Washengton D C: Carnegie Institution Publication, 1916: 20-35.
    [11] Clements F.E. Nature and structure of the climax [J]. Ecology, 1936, 24(1): 252 - 284.
    [12] Jordan W.R., Gilpin M.E., Aber J.D. Restoration Ecology [M]. Cambridge: Cambridge University Press, 1993: 40-51.
    [13] Gleason H.A. Species and area [J]. Ecology, 1925, 6(1): 66-74.
    [14] Grime J.P. Competitive exclusion in herbaceous vegetation [J]. Nature, 1973, 242(1): 344-347.
    [15] Grime J.P. Plant strategies and vegetation process [M]. New York: John Wiley, 1979: 21-35.
    [16] Kareiva P. Space: The final frontier for ecological theory [J]. Ecology, 1994, 75(1): 1.
    [17] Keever C. Causes of succession on old fields of Piedmont [M]. North Carolina: Ecological Monographs, 1950: 229-250.
    [18] Kvalseth T.O. Note on biological diversity, evenness and homogeneity measures [J]. Oikos, 1991, 62(1): 123 127.
    [19] Hooper D.U., Vitousek P.M. The effects of plant composition and diversity on ecosystem processes [J]. Science, 1997, 277(1): 1302-1305.
    [20] Huston M.A. Biological diversity-The coexistence of species in changing landscapes [M]. New York: Cambridge University Press, 1994: 32-38.
    [21] Leibold M.A. A graphical model of keystone predators in food websj arophic regulation of abundance, incidence, and diversity patterns in communities [J]. Am Nat, 1996, 147(1):784-812.
    [22] Lertzman et a1. Canopy gaps and the landscape mosaic in a coastal temperate rain forest [J]. Ecology, 1996, 77(4):1254-1270.
    [23] Levins R. Evolution in Changing Environments [M]. Princeton & New Jersey: Princeton University Press, 1968: 120-121.
    [24] MacArthur R Fluctuations of animal populations and a measure of community stability [J]. Ecology, 1955, 36(1):533-537.
    [25] Magurran A.E. Ecological Diversity and Its Measurement [M]. Princeton & New Jersey: Princeton University Press, 1988:15-27.
    [26] Margalef R. Information theory in ecology [J]. General System, 1957, 3(1): 37-71.
    [27] Margalef R. On certain unifying principles in ecology [J]. The American Naturist, 1963, 97(1): 357-364.
    [28] Margalef R. Perspectives in Ecological Theory [M]. Chicago: Chicago University Press, 1968: 111.
    [29] Motomura E. On the statistical treatment of communities [J]. Zoological Management, 1932, 44(1): 379-383.
    [30] Noss, Reed F. Indicators for monitoring biodiversity: a hierarchical approach [J]. Conserv. Biol., 1990, 4 (1): 355-364.
    [31] Odum E.P. The strategy of ecosystem development [J] .Science, 1969, 164(1): 262-270.
    [32] Oosting H.J, Billings W.D. Factors effecting vegetational zonation on coastal dunes [J]. Ecology, 1942, 23(1): 131-142.
    [33] Peter E.K. Diversity and evolutionary biology of tropical Flowers [M]. New York: Cambridge University Press, 1994: 120.
    [34] Prach K.S., Bartha C.B., Joyce P., Pysek V.D., Rudy, G. Wiegleb. The role of spontaneous vegetation succession in ecosystem restoration: A perspective [J]. Applied Vegetation Science, 2001, 4(1): 111-114.
    [35] Purvis A., Hector A. Getting the measure of bio-diversity [J]. Nature, 2000,405(1):212-219.
    [36] Rexford Daubenmire. 植物群落植物群落生态学教程(陈庆诚译) [M].北京:人民教育出版社, 1981:30-55.
    [37] Rohde K. The larger area of the tropics does not explain latitudinal gradients in species diversity [J]. OIKOS, 1997, 79(1):169-172.
    [38] Rosenzweig M.L. Species gradients: we know more and less than we thought [J]. Journal of Mammalogy, 1992, 73(1): 715-730.
    [39] Rosenzweig M.L. Species Diversity in Space and Time [M]. Cambridge: Cambridge University Press, 1995:38.
    [40] Rosenzweig M.L, Sandlin. Species diversity and latitudes: listening to area's signal [J]. Oikos, 1997, 80(1): 172-176.
    [41] Sheil D. Further notes on species richness, tropical forest dynamics and sampling [J]. OIKOS, 1997, 79(I): 188-190.
    [42] Spurr S.H. Origin of the concept of forest succession [J]. Ecology, 1952, 33(1):426-427.
    [43] Stvens G.C. The elevational gradient in attitudinal range: an extension of Rapoport's latitudinal rule to altitude [J] .American Naturalist, 1992, 140(1): 893-911.
    [44] Tansley A.G. The classification of vegetation and the concepts of development [J]. Ecology, 1920, 8(1): 118-149.
    [45] Ter Brook C.J.F. Canonical correspondence analysis:a new eigenvector technique for multivariate direct gradient analysis [J]. Ecology, 1986, 67(1): 1167-1179.
    [46] Ter Brook C.J.F. The analysis of vegetation-environment relationships by canonical correspondence analysis [J]. Vegetatio, 1987, 69(1): 69-77.
    [47] Tilman D. Resource Competition and Community Structure Monographs in Population Biology [M]. Princeton & New Jersey: Princeton Univercity Press, 1982:59.
    [48] Tilman D, Wcdin, Konops. Productivity and sustainability influenced by biodiversity in eland ecosystems [J]. Nature, 1996, 379(1): 718-720.
    [49] Tilman D, Knops, Wedin, Reich, Ritchie, Siemann. The influence of functional diversity and composition on ecosystem processes [J]. Science, 1997, 277(1): 1300-1302.
    [50] Weiher E.O., van der Werf A, Thompson K, et al. Challenging Theophrastus: A common core list of plant traits for functional ecology [J]. Veg. Sci., 1999, 10(1):609-620.
    [51] Wilson, E.O. et al. The Current state of biological diversity [M]. Wilson: Biodiversity, 1988:57.
    [52] Whittaker, R.H. A criticism of plant association and climatic climax concepts [J]. Northwest Science, 1951, 25(1): 17-31.
    [53] Whittaker, R.H. Communities and Ecosystems [M]. New York: MacMillan Publisher, 1975:39.
    [54] Wright, R.H. Species-energy theory: an extension of species area-theory [J]. Oikos, 1983, 41(1): 496-506.
    [55] He, J.S.(贺金生), K.P. Ma(马克平). Species diversity. Conservation biology. Hangzhou [M]: Chinese: Zhejiang Science and Technology Press, 1997: 20-33.
    [56] Xie, J.Y. (谢晋阳), L.Z. Chen (陈灵芝). Species diversity characteristics of deciduous forest in the warm temperate none of North China [J]. Acta Ecologica Sinica(生态学报), 1994, 14(2): 337-343.
    [57] Zobel M. Plant species coexistence: the role of historical, evolutionary and ecological factors [J]. OIKOS, 1992, 65(1): 314-320.
    [58] 陈昌笃. 注目世界动向,迎接 21 世纪中国生态学新发展[J]. 科技导报, 1996,1(2): 7-9.
    [59] 陈灵芝. 生物多样性保护现状及其研究[J]. 植物杂志, 1993,1(5): 7-9.
    [60] 陈灵芝,钱迎倩. 生物多样性科学前沿[J]. 生态学报, 1997,17(6): 565-572.
    [61] 陈仲新,张新时. 中国生态系统效益的价值[J]. 科学通报, 2000, 45(1): 17-22,38.
    [62] 方精云,沈泽昊,崔海亭, 试论山地的生态特征及山地生态学的研究内容[J]. 生物多样性, 2004a, 12(1): 10-19.
    [63] 方精云. 探索中国山地植物多样性的分布规律[J]. 生物多样性, 2004b, 12(1): 1-4.
    [64] 付健全. 森林与生物多样性及其保护策略[J]. 林业资源管理, 1994, 1(4): 37-39.
    [65] 高贤明,陈灵芝. 北京山区辽东栎(Quercus liaotungensis)群落物种多样性的研究[J]. 植物生态学报, 1998,22(1): 23-32.
    [66] 高贤明等. 暖温带若干落叶阔叶林群落物种多样性及其与群落动态的关系[J]. 植物生态学报, 2001, 25(3): 283-290.
    [67] 韩玉萍等. 缙云山常绿阔叶林次生演替序列群落物种多样性动态研究[J]. 西南师范大学学报, 2000, 25(1): 62-68.
    [68] 郝占庆,杨晓明等. 长白山北坡植物群落α多样性及其随海拔梯度的变化[J]. 应用生态学报, 2002, 13(7): 786-789.
    [69] 贺金生,陈伟烈. 陆地植物群落物种多样性的梯度变化特征[J]. 生态学报, 1997, 17(1):91-99.
    [70] 贺金生等. 长江三峡地区退化生态系统植物群落物种多样性特征[J]. 生态学报, 1998, 18(4): 399-407.
    [71] 胡玉佳. 海南岛青梅种群生物学研究简报[J]. 植物学通报, 1986, 1(21): 21-24.
    [72] 黄建辉. 物种多样性的空间格局及其形成机制初探[J]. 生物多样性, 1994, 2(2): 103-107.
    [73] 黄建辉等. 地带性森林群落物种多样性的比较研究[J]. 生态学报, 1997, 17(6): 611-617.
    [74] 黄建辉,白永飞等. 物种多样性与生态系统功能:影响机制与有关假说[J]. 生物多样性, 2000, 1(9): 1-7.
    [75] 蒋有绪,刘世荣. 关于区域生物多样性保护研究的若干问题[J]. 自然资源学报, 1993, 8(4): 289-298.
    [76] 蒋有绪, 国家自然科学基金研究专著——《海南岛热带林生物多样性及其形成机制》[J]. 自然科学进展, 2003, 13(6): 574-574.
    [77] 金则新. 浙江天台山常绿阔叶林次生演替序列群落物种多样性[J]. 浙江林学院学报, 2002, 19(2): 133~133.
    [78] 李裕元,邵明安. 子午岭植被自然恢复过程中植物多样性的变化[J]. 生态学报, 2004, 24(2): 252-260.
    [79] 林开敏,郭玉硕. 生态位理论及其应用研究进展[J]. 福建林学院学报, 2001, 21(3): 283-287.
    [80] 林思祖,黄宝龙等. 杉阔混交林主要种群多维生态位特征[J]. 生态学报, 2002, 22(6): 962-968.
    [81] 刘灿然,马克平. 生物群落多样性的测度方法 V:生物群落物种数目的估计方法[J]. 生态学报,1997, 17(6): 601-610.
    [82] 刘世荣等. 中国暖温带森林生物多样性研究[M]. 中国: 中国科学技术出版社, 1998:20-45.
    [83] 陆阳. 南亚热带森林种群分布格局取样技术研究[J]. 植物生态学与地植物学学报, 1986, 10(4): 273-282.
    [84] 马克平. 生物群落多样性的测度方法Ⅰα多样性的测度方法(上)[J]. 生物多样性, 1994a, 2(3): 162-168.
    [85] 马克平. 生物群落多样性的测度方法Ⅰα多样性的测度方法(下) [J]. 生物多样性, 1994b, 2(4): 231-239.
    [86] 马克平等. 北京东灵山地区植物群落多样性的研究Ⅱ丰富度、均匀度和物种多样性指数[J]. 生态学报, 1995, 15(3): 268-277.
    [87] 区智等. 桂西南岩溶植被演替过程中的植物多样性[J]. 广西科学, 2003, 10(1): 63-67.
    [88] 山寺喜成. 自然环境を再生すゐ绿の设计[M]. 东京: 森北出版, 1993:30-55.
    [89] 沈渭寿,吴焕忠. 黄河源区生态破坏现状及保护对策[J]. 农村生态环境, 2000, 16(1): 1-4,6.
    [90] 唐志尧,方精云. 植物物种多样性的垂直分布格局[J]. 生物多样性, 2004, 12(1): 20-28.
    [91] 王伯荪,马曼杰. 鼎湖山自然保护区森林群落的演变[J]. 热带亚热带森林生态系统研究, 1982, 1(1): 142-156.
    [92] 王国宏. 祁连山北坡中段植物群落多样性的垂直分布格局[J]. 生物多样性, 2002, 10(1): 7-14.
    [93] 王树森. 华北土石山区基于森林植被演替规律的森林健康的研究[M]. 北京: 北京林业大学博士论文集, 2005:1-55.
    [94] 王志恒等. 高黎贡山种子植物物种丰富度沿海拔梯度的变[J]. 生物多样性, 2004, 12(1): 82-88.
    [95] 吴晓莆,王志恒,崔海亭,方精云. 北京山区栋林的群落结构与物种组成[J]. 生物多样性, 2004, 12(1): 155-163.
    [96] 吴彦等. 亚高山针叶林人工恢复过程中物种多样性变化[J]. 应用生态学报, 2004, 15(8): 1301-1306.
    [97] 吴征镒. 中国植被[M]. 中国: 科学出版社, 1980: 100-150.
    [98] 奚为民. 雾灵山国家自然保护区森林群落物种多样性研究[J]. 生物多样性, 1997, 5(2): 121-125.
    [99] 徐化成, 郑均宝. 封山育林研究[M]. 北京:中国林业出版社, 1994:30-45.
    [100] 徐振帮. 阔叶红松林高产结构的探讨[M]. 北京:中国林业出版社, 1983: 3.
    [101] 叶万辉. 物种多样性与植物群落的维持机制[J]. 生物多样性, 2000, 8(1): 17-24.
    [102] 余作岳,彭少麟. 热带亚热带退化生态系统植被恢复生态学研究[M]. 广州:广东科技出版社, 1996:22-49.
    [103] 袁长春. 植物群落演替过程分析[J]. 湘潭师范学院学报, 1998, 19(3): 89-95.
    [104] 张宏达. 全球植物区系的间断分布问题[J]. 中山大学学报:自然科学版, 1998, 37(6): 73-78.
    [105] 张桂莲,张金屯. 关帝山神尾沟优势种生态位分析[J]. 武汉植物学研究, 2002, 20(3): 203-208.
    [106] 张金屯. 模糊数学排序及其应用[J]. 生态学报, 1992, 12(4): 325-331.
    [107] 张金屯. 排序轴分类法及其应用[J]. 生态学杂志, 1994, 13(3): 73-75.
    [108] 张金屯, 柴宝峰. 晋西吕梁山严村流域撂荒地植物群落替中的物种多样性变化[J]. 生物多样性, 2000, 8(4): 378-384.
    [109] 张金屯. 庞泉沟自然保护区植物群落的模糊数学分类与排序[J]. 北京师范大学学报:自然科学版, 2004, 40(2): 249-254.
    [110] 张金屯. 数量生态学[M]. 中国:科学出版社, 2004:33-58.
    [111] 赵淑清,方精云等. 大兴安岭呼中地区白卡鲁山植物群落结构及其多样性研究[J]. 生物多样性, 2004a, 12(1): 182-189.
    [112] 赵淑清,方精云等. 长白山北坡植物群落组成、结构及物种多样性的垂直分布[J]. 生物多样性, 2004b, 12(1): 164-173.
    [113] 郑元润. 大青沟森林植物群落物种多样性研究[J]. 生物多样性, 1998, 6(3): 191-196.
    [114] 朱守谦,杨业勤.贵州亮叶水青冈林的结构与动态[J]. 植物生态学与地植物学丛刊, 1985, 9(3):183-191.
    [115] 庄树宏,等. 昆箭山老杨坟阳坡与阴坡半天然植被植物群落生态学特征的初步研究[J]. 植物生态学报, 1999, 23(3 ): 233-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700