用户名: 密码: 验证码:
九龙江口秋茄红树植被与主要大型底栖动物某些生态关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用室内模拟实验和野外控制实验相结合的研究方法,研究秋茄红树林生态恢复过程对大型底栖动物分布和群落结构的影响、大型底栖动物对红树植物叶片的摄食偏好和摄食量,大型底栖动物对秋茄凋落物的去除作用,以及大型底栖动物在摄食红树凋落叶的过程中对红树林土壤的作用。主要研究内容及结果如下:
     1.秋茄红树林人工恢复对大型底栖动物群落的影响
     于2005年7月(夏季)、2005年10月(秋季)、2006年1月(冬季)和2006年4月(春季),选择福建九龙江口恢复背景相似,林龄分别为4(K4)、7(K7)、19(K19)和43年(K43)的人工秋茄(Kandelia candel)林,以及两片光滩(NF1和NF2)作为对照,比较不同恢复时间的秋茄红树林内大型底栖动物的分布特征,以研究红树林恢复过程对大型底栖动物群落的影响。秋茄林内大型底栖动物的物种数量大于毗邻光滩内的物种数量,K4、K7的物种数量大于K19和K43两片秋茄林内的物种数量。在获得的22种大型底栖动物中,弧边招潮(Uca arcuata)、秀丽长方蟹(Metaplax elegans)、可口革囊星虫(Phascolosoma esculenta)和黑口滨螺(Littoraria melanostoma)为优势种。不同红树林样地大型底栖动物群落结构也不同:秋茄幼林内的优势种为秀丽长方蟹,而弧边招潮则为光滩和K19、K43样地的优势种;腹足动物主要分布在K4、K7样地。大型底栖动物中的优势种在秋茄林样地中的分布特征也因恢复时间而不同。弧边招潮在光滩的密度最高,在秋茄林幼林内较少分布。秀丽长方蟹在秋茄幼林内密度较高。可口革囊星虫在恢复时间较长的秋茄林内密度较大,而黑口滨螺则更多分布在秋茄幼林内。考虑到K19和K43两片秋茄林样地的植被特征和底栖动物群落结构相似,但与K4和K7不同,认为恢复时间达到19年后,秋茄红树林的植被和底栖动物群落的发育趋于稳定。也就是说,从植被特征和底栖动物群落两个方面看,人工秋茄红树林生态系统在种植时间达到20年左右其发育可以趋于稳定。
     2.九龙江口红树林内褶痕相手蟹对植物叶片摄食生态研究
     通过室内模拟和野外现场实验,比较大型底栖动物中草食性物种褶痕相手蟹(Sesarma plicata)对3种红树植物秋茄(Kandelia candel)、木榄(Bruguiera gymnorrhiza)和桐花树(Aegiceras corniculatum)的新鲜、凋落和腐烂叶片的摄食量,得出褶痕相手蟹对红树叶片的摄食偏好。研究结果表明,在实验室模拟条件下,当同时供给相同状态的3种红树叶片,褶痕相手蟹对秋茄叶片具有较强的摄食偏好;对于同一物种但不同状态的红树叶片,褶痕相手蟹对腐烂叶片的摄食偏好强于凋落和新鲜的红树叶片。褶痕相手蟹对秋茄叶片和腐烂叶片的摄食偏好不受螃蟹个体大小的影响。在野外条件下,褶痕相手蟹对腐烂叶片也存在摄食偏好,但对红树种类并未表现出明显的摄食偏好。红树叶片的营养特性影响褶痕相手蟹对不同种类和不同状态叶片的摄食偏好。叶片中较低的单宁含量和较高的含水量是引起相手蟹对腐烂叶片偏好的原因。叶片中的粗纤维含量是影响相手蟹对不同种类间的新鲜或者凋落叶片摄食偏好的最主要因素,而对不同种类的腐烂叶片的摄食偏好则与叶片中的含水率有关。
     在实验室非选择性摄食实验中,褶痕相手蟹对9种不同叶片的摄食率也不同。对9种叶片的平均摄食率分别为0.101 gDW ind~(-1) d~(-1)(大个体)、0.055 gDW ind~(-1)d~(-1)(中等个体)和0.017 gDW ind~(-1)d~(-1)(小个体),分别对应研究的3种个体大小的螃蟹。在野外红树林中,褶痕相手蟹对9种红树叶片的摄食率与实验室条件下接近。
     3.九龙江口秋茄红树林蟹类对凋落叶片去除的季节动态
     于2006年5月—2007年4月研究了红树林内的螃蟹对秋茄红树林凋落叶的去除率。九龙江口秋茄红树林每月的凋落叶生产力为0.85~3.86 gDW m~(-2)d~(-1),生产力在5、8、10和11四个月份较高。全年的凋落叶生产力为6.48 t ha~(-1)a~(-1)(1.81 gDW m~(-2)d~(-1))。秋茄林内地面现存凋落叶的全年平均生物量为7.78 gDW m~(-2),最低出现在11月,为1.23gDWm~(-2),最高出现在4月,为16.18 gDWm~(-2)。
     秋茄林内螃蟹对凋落叶的全年平均去除率为0.59 gDW m~(-2)d~(-1)。螃蟹对凋落叶去除率的季节性变化较大。冬季凋落叶的去除率(12月—2月)介于0.07~0.09 gDW m~(-2)d~(-1),明显低于其他月份(0.59~1.18 gDW m~(-2)d~(-1))。被螃蟹去除的凋落叶占全年凋落叶生产力的33%,凋落叶去除率占凋落叶生产力的比例最高出现在9月(76%),最低出现在冬季(12—2月)。因此推断随潮水输出的凋落叶占全年凋落叶的67%,为444.07 gDWm~(-2)。
     被螃蟹去除的凋落叶大部分被螃蟹拖至洞穴内并贮存,在地面摄食的叶片只占被去除凋落叶的12%。凋落叶的去除率、螃蟹对凋落叶的地面摄食率,以及被去除的凋落叶的比例与大气温度呈显著性正相关。
     4.褶痕相手蟹摄食凋落叶对红树林底质特性的影响
     通过实验室模拟实验,研究九龙江口秋茄红树林内关键种褶痕相手蟹的活动和摄食行为对红树林土壤中营养元素和土壤酶活性的作用,以及螃蟹排泄物在叶片中营养元素的归还过程中的作用。
     研究结果表明,螃蟹的活动显著提高土壤中硝态氮的含量,并且抑制土壤的脲酶活性,但是螃蟹活动对土壤中的有机碳、全氮、磷酸盐和氨态氮含量没有显著的作用,对土壤中的水解酶、蛋白酶、磷酸酶和多酚氧化酶活性也没有显著作用。通过摄食秋茄凋落叶,褶痕相手蟹显著提高土壤中有机碳和全氮含量,土壤中的蛋白酶、磷酸酶和多酚氧化酶的活性也相应地增强。褶痕相手蟹摄食1 g秋茄凋落叶后,分别有154.94 mg和10.26 mg有机碳和总氮转化并累积在土壤中。
     在去除螃蟹排泄物后,土壤中有机碳和总氮含量降低,磷酸盐含量增加,表现出与螃蟹摄食作用相反的影响,证明螃蟹排泄物是红树林生态系统中营养物质循环的重要媒质。
1.Changes of macro-benthic faunal community with stand age of rehabilitated Kandeliacandel mangrove in Jiulongjiang Estuary
     Distribution properties of macro-benthic faunal communities were compared amongrehabilitated Kandelia candel forests of different ages in Jiulongjiang Estuary,China.FromJuly 2005 to July 2006,seasonal surveys were conducted within four representative forests:K4,K7,K19 and K43,with ages of 4,7,19 and 43 years,respectively.Two non-vegetatedflats (NF1 and NF2) were set as the references.Numbers of faunal species in rehabilitatedforests were higher than NF1 and NF2,while younger forests (K4 and K7) generally hadmore macro-benthic fauna species than older ones (K19 and K43).Among the total 22species recorded,Uca arcuata,Metaplax elegans,Phascolosoma esculenta and Littorariamelanostoma were dominant.Macro-benthic faunal community structures were differentamong the four rehabilitated K.candel forests.The dominant species in younger forests wasM.elegans,while U.arcuata had a higher abundance than M.elegans in non-vegetation flatsand older forests.Gastropods were abundant in younger forests.Distribution properties ofdominant species differed among rehabilitated K.candel forests.U.arcuata had the largestdensity in non-vegetated flats,and was infrequent in younger forests.M.elegans had highabundances in younger forests.High abundance of P.esculenta was found in older forests,while L.melanostoma was more abundant in younger forests.Since both macro-benthicfaunal community and vegetation were similar in K19 and K43,rehabilitated K.candelmangrove was considered steady 19 years after being planted.That is,in the case ofmacro-benthic fauna and vegetation,a K.candel mangrove may evolve to a mature state at astand age of about 20 years.
     2.Leaf consumption by Sesarmaplicata in a mangrove forest at Jiulongjiang Estuary
     Feeding ecology of Sesarma plicata,the most abundant crab species in a mangrove forestdominated by Kandelia candel at Jiulongjiang Estuary,China,was investigated through field and laboratory experiments.Feeding preference and consumption rates were determined onmature,senescent and decomposed leaves of Kandelia candel,Bruguiera gymnorrhiza andAegiceras corniculatum.In the laboratory,S.plicata preferred leaves of K.candel over thoseof B.gymnorrhiza and A.corniculatum,and consumed significantly more decomposed leavesthan mature and senescent ones,irrespective of crab size.Field experiments with limitedpower failed to reveal detectable species preferences despite more consumption of K.candel,but decomposed leaves of each species were again preferred.Leaf characteristics associatedwith preference changed with plant species and leaf state.Low tannins and high watercontent characterized the preferred state of leaves.Species preference was significantly andnegatively related to crude fibers and C:N ratios for mature leaves,and crude fiber forsenescent leaves,but significantly and positively related to water content for decomposedleaves.Leaf consumption rates averaged for all leaf categories from laboratory no-choicefeeding experiments were 0.101,0.055 and 0.017 gDW ind~(-1) d~(-1) for large,medium and smallcrabs,respectively.In this forest,mean density ofS.plicata was 20.5 ind m~(-2) as assessed by amanual catching method.Leaf litter removal rate during neap tide days by sesarmid crabswas about 1.33 gDW m~(-2) d~(-1) in April 2006.The leaves removed by crabs were grazed on thesediment surface or taken into crab burrows,shredded and stored before being eaten.
     3.Seasonal dynamics of leaf litter removal by crabs in a Kandelia candel mangrove forest inJiulongjiang Estuary
     Seasonal variability of leaf litter removal by crabs was observed from May 2006 to April2007 in a Kandelia candel mangrove forest in Jiulongjiang Estuary,China.Monthly averagequantities of leaf fall ranged 0.85~3.86 gDW m~(-2) d~(-1),with high values in May,August,October and November.The whole-year leaf fall was 6.48 t ha~(-1) a~(-1) (1.81 gDW m~(-2) d~(-1)).Standing stock of leaf litter on the forest floor was 7.78 gDW m~(-2) averaged from the wholeyear's data,with the lowest value in December (1.23 gDW m~(-2)) and the highest in April(16.18 gDW m~(-2)).Annually averaged removal rate of leaf litter by crabs was 0.59 gDW m~(-2)d~(-1).High seasonal variability was observed on removal rates of leaf litter by crabs.The valuesin the winter months (December,January and February) were 0.07~0.09 gDW m~(-2)d~(-1),much lower than those in other months with values of 0.59~1.18 gDW m~(-2)d~(-1).Annually averagedpercentage of leaf fall removed by crabs was 33%,with the highest values in September(reached 76%) and the lowest values in winter months (December,January and February).During the whole year,the estimated tidal export of leaf litter was 444.07 gDW m~(-2),accounting for about 67% of the leaf fall production.In leaf litter removed by crabs,a largeproportion was buried by crabs,and only 12% was consumed by crabs on the forest flood.Leaf litter removal rate,consumption rate on the forest floor,percentages of leaf fall andstanding stock removed on the forest floor were significantly positively correlated with airtemperature.
     4.Change of soil property induced by foraging of mangrove crab Sesarmea plicata onmangrove leaf
     The effects of mangrove crab Sesarmea plicata on soil chemical properties and enzymeactivities were quantified in laboratory,with emphasis on crab activity and foraging Kandeliacandel leaf.Crab activity has no significant effect on soil OC,TN and available phosphoruscontents,but significantly increased soil NO_3~--N content from 131.44μg·g~(-1) in the control to194.79μg·g~(-1).Soil urease activities were hampered while sucrase activity was enhanced bycrab activity.Foraging K.candel leaf by S.plicata presented different effects on soilproperties to crab activity.Forging K.candel leaf significantly increased the soil OC,TKNcontents,and soil enzyme activities except invertase and urease activities were significantlyaugmented during the foraging.Significant correlations were found among soil chemicalproperties and enzyme activities.By forging 1 g K.candle leaf,154.94 mg OC and 10.26 mgTN contents were accumulated in soil by crab.Removing crab feces material from soilweakened foraging effect on soil properties,indicating a medium role of nutrient retention inmangrove soil.
引文
Alfaro A C. Benthic macro-invertebrate community composition within a mangrove/ seagrass estuary in northern New Zealand[J]. Estuarine Coastal and Shelf Science, 2006, 66: 97-110.
    Alfaro A C. Diet of Littoraria scabra, while vertically migrating on mangrove trees: Gut content,fatty acid, and stable isotope analyses[J]. Estuarine, Coastal and Shelf Science, 2008,79:718-726.
    Allen J A, Krauss K W, Hauff R D. Factors limiting the intertidal distribution of the mangrove species Xylocarpus granatum[J]. Oecologia, 2003, 135:110-121.
    Aller R C. The effects of macrobenthos on chemical properties of marine sediment and overlying water[A]. In: McCall L L, Tevesz L L L, eds. Animal-Sediment Relations. New York: Plenum Publishing Company, 1982. 53-102.
    Alongi D M, Pfitzner J, Trott L A, et al. Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China[J].Estuarine Coastal and Shelf Science, 2005, 63: 605-618.
    Ashton E C. Mangrove sesarmid crab feeding experiments in Peninsular Malaysia[J]. Journal of Experimental Marine Biology and Ecology, 2002, 273:97-119.
    Ashton E C, Hogarth P J, Ormond R. Breakdown of mangrove leaf litter in a managed mangrove forest in Peninsular Malaysia[J]. Hydrobiologia, 1999, 413:77-88.
    
    Ashton E C, Macintosh D J. Preliminary assessment of the plant diversity and community ecology of the Sematan mangrove forest, Sarawak, Malaysia[J]. Forest Ecology and Management,2002, 166:111-129.
    Askin T, Kizilkaya R. The spatial variability of urease activity of surface agricultural soils within an urban area[J]. Journal of Central European Agriculture, 2005, 6:161-166.
    Baltzer F, Allison M A, Fromard F. Material exchange between the continental shelf and mangrove-fringed coasts with special reference to the Amazon-Guianas coast[J]. Marine Geology, 2004, 208:115-126.
    Barlocher F, Newell S Y. Growth of the salt marsh periwinkle Littoraria irrorata on fungal and cordgrass diets[J]. Marine Biology, 1994, 118:109-114.
    Beever III J W, Simberloff D, King L L. Herbivory and predation by the mangrove tree crab Aratus pisonii[J]. Oecologia, 1979,43:317-328.
    Behrens Yamada S. Are direct developers more locally adapted than planktonic developer?[J].Marine Biology, 1989, 103:403-411.
    Benner R, Hatcher P G, Hedges J I. Early diagenesis of mangrove leaves in a tropical estuary:Bulk chemical characterization using solid-state 13C NMR and elemental analysis[J].Geochimica et Cosmochimica Acta, 1990, 54:2003-2013.
    Berner R A, Westrich J T. Bioturbation and the early diagenesis of carbon and sulfur[J]. American Journal of Science, 1985,285:193-206.
    Bosire J O, Dahdouh-Guebas F, Kairo J G, et al. Macrofaunal Recruitment into a Reforested Mangrove System in Kenya[A]. Abstract, Meeting on Mangrove Macrobenthos, Mombasa,2000. 15.
    Bosire J O, Dahdouh-Guebas F, Kairo J G, et al. Litter degradation and C N dynamics in reforested mangrove plantations at Gazi Bay, Kenya[J]. Biological Conservation, 2005,126:287-295.
    Bosire J O, Kairo J G, Kazungu J, et al. Predation on propagules regulates regeneration in a high-density reforested mangrove plantation[J]. Marine Ecology Progress Series, 2005,299:149-155.
    Botto F, Iribarne O. Contrasting effects of two burrowing crabs (Chasmagnathus granulata and Uca uruguayensis) on sediment composition and transport in estuarine environments[J].Estuarine, Coastal and Shelf Science, 2000, 5:141-151.
    Bouillon S, Koedam N, Raman A V, et al. Primary producers sustaining macroinvertebrate consumers in intertidal mangrove forests[J]. Oecologia, 2002, 130:441-448.
    Camilleri J C. Leaf choice by crustaceans in a mangrove forest in Queensland[J]. Marine Biology,1989, 102:453-459.
    Camilleri J C. Leaf-litter processing by invertebrates in a mangrove forest in Queensland[J].Marine Biology, 1992, 114:139-145.
    Camilleri J C, Ribi G. Leaching of dissolved organic carbon (DOC) from dead leaves, formation of flakes from DOC, and feeding on flakes by crustaceans in mangroves[J]. Marine Biology,1986,91:337-344.
    
    Cannicci S, Fratini S, Vannini M. Use of time, space and food resources in the mangrove climbing crab Selatium elongatum (Grapsidae: Sesarminae)[J]. Marine Biology, 1999, 135:335-339.
    Chapman M G, Tolhurst T J. Relationships between benthic macrofauna and biogeochemical properties of sediments at different spatial scales and among different habitats in mangrove forests[J]. Journal of Experimental Marine Biology and Ecology, 2007,343:96-109.
    Christensen J T. Diet in Littoraria[J]. Hydrobiologia, 1998, 378:235-236.
    Cintron C, Y Schaefer-Novelli. Methods for studying mangrove structure[A]. In: Snedaker L L and Snedaker L L, eds. The Mangrove Ecosystem: Research Methods. Paris: UNESCO, 1994.91-113.
    Clarke P J, Myerscough P J. The intertidal distribution of the gray mangrove (Avicennia marina) in Southeastern Australia: the effects of physical conditions, interspecific competition, and predation on propagule establishment and survival[J]. Australian Journal of Ecology, 1993,18:307-315
    Conde J, Alarco'n C, Flores S, et al. Nitrogen and tannins in mangrove leaves might explain interpopulation variations in the crab Aratus pisonii[J]. Acta Cientifica Venezolana, 1995,46:303-304.
    Crane J. Fiddler crabs of the world: Ocypodidae: Genus Uca[M]. New Jersey: Princeton University Press, 1975.
    Dahdouh-Guebas F, Giuggioli M, Oluoch A, et al. Feeding habits of non-ocypodid crabs from two mangrove forests in Kenya[J]. Bulletin of Marine Science, 1999, 64:291-297.
    Dahdouh-Guebas F, Verneirt M, Tack J F, et al. Food preferences of Neosarmatium meinerti de Man (Decapoda: Sesarminae) and its possible effect on the regeneration of mangroves[J].Hydrobiologia, 1997, 347:83-89.
    Das P, Basak U C, Das, A B. Restoration of the mangrove vegetation in the Mahanadi delta, Orissa,Indi[J]. Mangrove and Salt Marshes, 1997, 1:155-161.
    David P Y N. Feeding ecology of the mangrove crabs, Metopograpsus frontalis (Grapsidae) and Perisesarma bidens (Sesarmidae), in Hong Kong[D]. Master thesis, The University of Hong Kong, 2004.
    Davie P J F. A preliminary checklist of the Brachyura (Crustacea: Decapoda) associated with Australian mangrove forests[J]. Operculum, 1982, 5:204-207.
    
    Davie P J F. The biogeography of littoral crabs (Crustacea: Decapoda: Brachyura) associated with tidal wetlands in trophical and sub-tropical Australia[A]. In: Bardsley K N, Davie J D S,Woodroffe C D, eds. Costal and Tidal Wetlands of the Australian Monsoon Region, Monograph 1. Darwin: Australian National University, 1985. 79-94.
    Dawes C, Siar, K, Marlett, D. Mangrove structure, litter and macroalgal productivity in a northern-most forest of Florida[J]. Mangroves and Salt Marshes, 1999,3:259-267.
    Deal M S, Hay M E, Wilson D, et al. Galactolipids rather than phlorotannins as herbivore deterrents in the brown seaweed Fucus vesiculosus[J]. Oecologia, 2003, 136:107-114.
    Deviliegher W, Verstraete W. The effect of Lumbricus terrestris on soil in relation to plant growth:effects of nutrient enrichment process (NEP) and gut-associated processes (GAP)[J]. Soil Biology Biochemistry, 1997,29: 341-346.
    Duffy J E, Hay M E. Ecology and evolution of marine consumer-prey interactions[A]. In: Bertness M, Hay M E, Gaines S D, eds. Marine Community Ecology. Sunderland: Sinauer, 2001.131-157.
    Dye A H. Composition and seasonal fluctuations of meiofauna in a Southern African mangrove estuary[J]. Marine Biology, 1983,73:165-170.
    Edgar G J. The influence of plant structure on the species richness, biomass and secondary production of macrofaunal assemblages associated with Western Australian seagrass beds[J].Journal of Experimental Marine Biology and Ecology, 1990, 137:215-240.
    Ellis J, Nicholls P, Craggs R, et al. Effects of terrigenous sedimentation on mangrove physiology and associated macrobenthic communities[J]. Marine Ecology Progress Series, 2004,207:71-82.
    Emmerson, W D, McGwynne L E. Feeding and assimilation of mangrove leaves by the crab Sesarma meineri de Man in relation to leaf-litter production in Mgazana, a warm-temperate southern African mangrove swamp[J]. Journal of Experimental Marine Biology and Ecology,1992, 157:41-53.
    Erickson A A, Saltis M, Bell S S, et al. Herbivore feeding preferences as measured by leaf damage and stomatal ingestion: a mangrove crab example[J]. Journal of Experimental Marine Biology and Ecology, 2003, 289:123-138.
    Erickson A A, Saltis M, Bell S S, et al. Does mangrove leaf chemistry help explain crab herbivory patterns? [J]. Biotropica, 2004, 36: 333-343.
    Farnsworth E J, Ellison A M. Scale-dependent spatial and temporal variability in biogeography of mangrove root epibiont communities[J]. Ecological Monographs, 1996, 66:45-66.
    Feller I C. Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle)[J]. Ecological Monographs, 1995, 65:477- 505.
    Ferreira T O, Otero X L, Vidal-Torrado P, et al. Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate[J]. Geoderma, 2007, 142:36-46.
    Field C D. Restoration of Mangrove Ecosystems[M]. Okinawa: International Society for Mangrove Ecosystems, 1996.
    Field C D. Rehabilitation of Mangrove Ecosystems: An Overview[J]. Marine Pollution Bulletin,1998, 37:383-392.
    Flores-Verdugo F J, Day Jr. J W, Briseno-Duenas R. Structure, litter fall, decomposition, and detritus dynamics of mangroves in a Mexican coastal lagoon with an ephemeral inlet[J]. Marine Ecology Progress Series, 1987, 35:83-90.
    Fondo E N, Martens E E. Effects of mangrove deforestation on macrofaunal densities, Gazi Bay,Kenya[J]. Mangroves and Salt Marshes, 1998, 2:75-83.
    Fondo E N. A comparative study of macrofauna in a highly exploited and a less exploited mangrove swamp in Gazi area, Kenya[D]. MSc. Thesis, University of Nairobi, 1996.
    Fratini S, Cannicci S, Vannini M. Competition and interaction between Neosarmatium smithi (Grustacea: Grapsidae) and Terebralia palustris (Mollusca: Gastripodal) in Kenyan mangrove[J]. Marine Biology, 2000, 137:309-316.
    Fratini S, Cannicci S, Vannini M. Feeding clusters and olfaction in the mangrove snail Terebralia palustris (Linnaeus) (Potamididae: Gastropoda)[J]. Journal of Experimental Marine Biology and Ecology, 2001, 261:173-183.
    Fry B, Bern A L, Ross M S, et al. Delta N-15 studies of nitrogen use by the red mangrove,Rhizophora mangle L in South Florida[J]. Estuarine, Coastal and Shelf Science, 2000,50:291-296.
    Gray J S. Animal-sediment Relationships[J]. Oceanography and Marine Biology: An Annual Review, 1974, 12:223-261.
    Giddins R L, Lucas J S, Neilson M J, et al. Feeding ecology of the mangrove crab Neosarmatium smithi (Crustacea: Decapoda: Sesarmidae)[J]. Marine Ecology Progress Series, 1986, 33:147-155.
    Gleason S M, Ewel K C, Hue N. Soil redox conditions and plant-soil relationships in a micronesian mangrove forest[J]. Estuarine, Coastal and Shelf Science, 2003, 56:1065-1074.
    Halstead R L, Mckercher R B. Biochemistry and cycling phosphorus[A]. In: Douglas Mclaren L and Paul L L, eds. Soil Biochemistry Volume 4. New York: Marcel Dekker, 1975. 31-63.
    Henriksen K, Rasmussen M B, Jensen A. Effect of bioturbation on microbial nitrogen transformations in the sediment and fluxes of ammonium and nitrate to the overlying water[J].Ecological Bulletin, 1983, 35:193-205.
    Hossain M, Othman S, Sidik J, et al. Net primary productivity of Bruguiera parviflora (Wight & Arn.) dominated mangrove forest at Kuala Selangor, Malaysia[J]. Forest Ecology and Management, 2008, 255:179-182.
    Houbrick R S. Systematic review and functional morphology of the mangrove snails Terebralia and Telescopium Potamididae; Prosobranchia[J]. Malacologia, 1991,33:289-338.
    Hutchings P A, Saenger P. Ecology of Mangroves[M]. Saint Lucia: University of Queensland Press, 1987.
    Hyatt G W. Physiological and behavioral evidence for color discrimination by fiddler crabs (Brachyura, Ocypodidae, genus Uca)[A]. In: Vernberg L L, eds. Physiological Ecology of Estuarine Organisms. Columbia: University of South Carolina Press, 1975. 333-365.
    Imgraben S, Dittmann S. Leaf dynamics and litter consumption in two temperate South Australian mangrove forest[J]. Journal of Sea Research, 2007, 59:83-93.
    Jensen P D. Growth, Diet and Activity in Three Species of Mangrove Snails (Littoraria)[D]. MSc.Thesis, University of Aarhus, 2000.
    Johnstone I M. Consumption of leaves by herbivores in mixed mangrove stands[J]. Biotropica,1981, 13:252-259.
    Kelaher B P, Chapman M G, Underwood A J. Changes in benthic assemblages near boardwalks in temperate urban mangrove forests[J]. Journal of Experimental Marine Biology and Ecology,1998,228:291-307.
    Kirschbaum M U F, Harms B, Mathers N J, et al. Soil carbon and nitrogen changes after clearing mulga (Acacia aneurd) vegetation in Queensland, Australia: Observations, simulations and scenario analysis[J]. Soil Biology and Biochemistry, 2008, 40:392-405.
    Kolehmainen, S E, Hildner W K. Zonation of organisms in Puerto Rican red mangrove (Rhizophora mangle L ) swamps[A]. In: Walsh L L, Snedaker L L and Teas L L, eds.Proceedings of the International Symposium on Biology and Management of Mangroves.Florida: Gainesville, 1975. 357-369.
    Krauss K W, Allen J A. Factors influencing the regeneration of the tropical Bruguiera gymnorrhiza (L) Lamk on a tropical Pacific Island[J]. Forest Ecology and Management, 2003,176:49-60.
    Kristensen E. Benthic fauna and biogeochemical processes in marine sediments: microbial activities and fluxes[A]. In: Blackburn L L and S0rensen, L, eds. Nitrogen Cycling in Coastal Marine Environments. Chichester: John Wiley and Sons, 1988. 275-299.
    Kristensen E. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes[J].Journal of Sea Research, 2008, 59:30-43.
    Kristensen E, Alongi D M. Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron and sulfur biogeochemistry in mangrove sediment[J]. Limnology and Oceanography, 2006, 51:1557-1571.
    Kristensen E, Holmer M. Decomposition of plant materials in marine sediment exposed to different electron acceptors (O_2, NO_3~- and SO_4~(2-)), with emphasis on substrate origin,degradation kinetics and the role of bioturbation[J]. Geochimica et Cosmochimica Acta, 2001,65:419-434.
    Kristensen E, Holme, M, Banta G T, et al. Carbon, nitrogen and sulfur cycling in sediments of the Ao Nam Bor mangrove forest, Phuket, Thailand: A review[J]. Phuket Marine Biological Center Research Bulletin, 1995,60:37-64.
    Kristensen E, Kostka J E. Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions[A]. In: Kristensen E, Haese R R and Kostka J E, eds.Interactions between Macro- and Microorganisms in Marine Sediments. Washington: American Geophysical Union, 2005. 125-158.
    Kryger L, Lee S K. Effect of soil ageing on the accumulation of hydrogen sulphide and metallic sulphides in mangrove area in Singapore[J]. Environment International, 1995, 21: 85-92.
    Kuprevich V F, Sherbrakova T A. Comparative enzymatic activity in diverse types of soil[A]. In:Mclaren A D and Skujins J, eds. Soil Biochemistry Volume 2. New York: Marceel Dekker, 1971. 167-201.
    Kwok K W, Lee S Y. Growth performances of two mangrove sesarmid crabs, Chiromanthes bidens and Parasesarma affinis under different diets[J]. Hydrobiologia, 1995,295:141-148.
    Lacerda L D, Jose D V, Rezende C E, et al. Leaf chemical characteristics affecting herbivory in a New World mangrove forest[J]. Biotropica, 1986, 18:350-355.
    Lacerda L D, Ittekkot V, Patchineelam S R. Biogeochemistry of mangrove soil organic matter: a Comparison between Rhizophora and Avicennia soils in South-eastern Brazil[J]. Estuarine,Coastal and Shelf Science, 1995, 40:713-720.
    Lasiak T, Dye A H. Behavioural adaptations of the mangrove whelk, Telescopium telescopium (L.),to life in a semi-terrestrial environment[J]. Molluscan Studies, 1986, 52:174-179.
    Lee C Y, Kwok P W. The importance of mangrove species association to the population biology of sesarmine crabs Parasesarma affinis and Perisesarma bidens[J]. Wetlands Ecology and Management, 2002, 10:215-226.
    Lee S Y. Ecological role of grapsid crabs in mangrove ecosystems: a review[J]. Marine and Freshwater Research, 1998, 49:335-343.
    Lee H Y, Shih S S. Impacts of vegetation changes on the hydraulic and sediment transport characteristics in Guandu mangrove wetland[J]. Ecological Engineering, 2004, 23:85-94.
    Lee K H, Moran M A, Benner R, et al. Influence of soluble components of red mangrove (Rhizophora mangle) leaves on microbial decomposition of structural (lignocellulosic) leaf components in seawater[J]. Bulletin of Marine Science, 1990, 46:374-386.
    Lee O H K, Williams G A. Spatial distribution patterns of Littoraria species in Hong Kong mangroves[J]. Hydrobiologia, 2002, 481:137-145.
    Lee S Y. Potential trophic importance of the faecal material of the mangrove Sesarmine crab Sesarma messa[J]. Marine Ecology Progress Series, 1997, 159:275-284.
    Lee S Y. The ecological role of grapsid crabs in mangrove ecosystems: implications for conservation[J]. Marine and Freshwater Research, 1998,49:335-343.
    Lee S Y. Tropical mangrove ecology: Physical and biotic factors influencing ecosystem structure and function[J] .Australian Journal of Ecology, 1999,24:355-366.
    
    Legendre P, Legendre L. Numerical Ecology, Second English Edition[M]. Amsterdam: Elsevier,1998.
    Lindegarth M, Hoskin M. Patterns of distribution of macro-fauna in different types of estuarine,soft sediment habitats adjacent to urban and non-urban areas[J]. Estuarine, Coastal and Shelf Science, 2001, 52:237-247.
    Lindquist E S, Carroll C R. Differential seed and seedling predation by crabs: impacts on tropical coastal forest composition[J]. Oecologia, 2004, 141:661-671.
    Linton S M, Greenaway P. A review of feeding and nutrition of herbivorous land crabs:adaptations to low quality plant diets[J]. Journal of Comparative Physiology, B, 2007,177:269-286.
    Lui T H, Lee S Y, Sadovy Y. Macrobenthos of a tidal impoundment at the Mai Po Marshes Nature Reserve, Hong Kong[J]. Hydrobiologia, 2002, 468:193-212.
    Macintosh D J. Ecology and productivity of Malasian mangrove crab populations (Decapoda:Brachyura)[A]. In: Soepadmo E, Rao A N, Macintosh D J, eds. Proceedings of the Asian Symposium on Mangrove Environment, Research and Management. University of Malaya and UNESCO, 1984. 354-377.
    Macintosh D J, Ashton E C. A Review of Mangrove Biodiversity Conservation and Management[R]. Centre for Tropical Ecosystems Research, University of Aarhus, Denmark,2002.
    Macintosh D J, Aksornkoae S, Vanucci M, et al. Final Report of the Integrated Multidisciplinary Survey and Research Programme of the Ranong Mangrove Ecosystem[A]. In: UNDP/UNESCO regional project: Research and Its Application in The Management of The Mangroves of Asia and The Pacific (RAS/86/120). Bangkok: Funny Publishing Limited Partnership, 1991.198.
    Macintosh D J, Ashton E C, Havanon S. Mangrove Rehabilitation and Intertidal Biodiversity: a Study in the Ranong Mangrove Ecosystem, Thailand[J]. Estuarine, Coastal and Shelf Science,2002,55:331-345.
    Macnae W. Zonation within mangrove associated with estuaries in north Queensland[A]. In: Lauff G H, eds. Estuaries. Washington: AAAS, 1967. 432-441.
    Macnae W. A general account of the flora and fauna of the mangrove swamps in the Indo-West-Pacific region[J]. Advance in Marine Biology, 1968, 6:73-270.
    
    McCraith B J, Gardner L R, Wethey D S, et al. The effect of fiddler crab burrowing on sediment mixing and radionuclide profiles along a topographic gradient in a southeastern salt marsh[J].Journal of Marine Research, 2003,61:359-390.
    Malley D F. Degradation of mangrove leaf litter by the tropical sesarmid crab Chiromanthes onychophorum[J]. Marine Biology, 1978, 49:377-386.
    Marchand C, Baltzer F, Lallier-Verges E, et al. Pore-water chemistry in mangrove sediments:relationship with species composition and developmental stages (French Guiana)[J]. Marine Geology, 2004, 208:361-381.
    Marchand C, Disnar J R, Lallier-Verges E, et al. Early diagenesis of carbohydrates and lignin in mangrove sediments subject to variable redox conditions (French Guiana)[J]. Geochimica et Cosmochimica Acta, 2005, 69:131-142.
    McCormick W A. The ecology of benthic macrofauna in New South Wales mangrove swamps[D].M. Sc. Thesis, Univ New South Wales, 1978.
    McGuinness K A. Seed predation in a tropical mangrove forest: a test of the dominance-predation model in northern Australia[J]. Journal of Tropical Ecology, 1997, 13:293-302.
    McGuinness K A. The climbing behaviour of Cerithidea anticipata (Mollusca: Gastropoda): the role of physical versus biological factors[J]. Australian Journal of Ecology, 1994, 19:283-289.
    Mchenga I S H, Mfilinge P L, Tsuchiya M. Bioturbation activity by the grapsid crab Helice formosensis and its effects on mangrove sedimentary organic matter[J]. Estuarine, Coastal and Shelf Science, 2007, 73:316-324.
    McIvor Carole C, Smith III T J. Differences in the crab fauna of mangrove area at a southwest Florida and a Northeast Australia Location: implications for leaf litter processing[J]. Estuaries,1995, 18:591-597.
    McKee K L. Seedling recruitment patterns in tropical mangrove forests: effects of establishment ability and physico-chemical factors[J]. Oecologia, 1995, 101:448-460.
    McMahon R F, Britton J C. The relationship between vertical distribution, thermal tolerance, evaporative water loss rate, and behaviour on emergence in six species of mangrove gastropods from Hong Kong[A]. In: Morton B and Dudgeon D, eds. The Macrofauna of Hong Kong and Southern China, Vol. 2. Hong Kong: Hong Kong University Press, 1985. 563- 582.
    Mendelssohn I A, Mckee K L, Patrick W H. Oxygen deficiency in Spartina alterniflora roots:metabolic adaptation to anoxia[J]. Science, 1981,214: 439-441.
    Mesnage V, Ogier S, Bally G, et al. Nutrient dynamics at the sediment-water interface in a Mediterranean lagoon (Thau, France): Influence of biodeposition by shellfish farming activities[J]. Marine Environmental Research, 2007, 63:257-277.
    Mfilinge P L, Meziane T, Bachok Z, et al. Litter dynamics and particulate organic matter outwelling from a subtropical mangrove in Okinawa Island, South Japan[J]. Estuarine, Coastal and Shelf Science, 2005, 63:301-313.
    Mfilinge P L, Tsuchiya M. Effect of temperature on leaf litter consumption by grapsid crabs in a subtropical mangrove (Okinawa, Japan)[J]. Journal of Sea Research, 2008, 59:94-102.
    Mia Y, Shokita S, Watanabe S. Stomach content of two grapsid crabs, Helice formosensis and Helice leachi[J]. Fisheries Science, 2001, 67:173-175.
    Micheli F. Feeding ecology of mangrove crabs in North Eastern Australia: mangrove litter consumption by Sesarma messa and Sesarma smithii[J]. Journal of Experimental Marine Biology and Ecology, 1993, 171:165-186.
    Micheli F, Gherardi F, Vannini M. Feeding and burrow ecology of two East African mangrove crabs[J]. Marine Biology, 1991, 111:247-254.
    Morrisey D J, Skilleter G A, Ellisa J I, et al. Differences in benthic fauna and sediment among mangrove (Avicennia marina var. australasica) stands of different ages in New Zealand[J].Estuarine, Coastal and Shelf Science, 2003, 56:581-592.
    Neilson M J, Giddens R L, Richards G N. Effect of tannins on the palatability of mangrove leaves to the tropical sesarmid crab Neosarmatium smithi[J]. Marine Ecology Progress Series,1986,34:185-186.
    Nielsen O I, Kristensen E, Macintosh D J. Impact of fiddler crabs (Uca spp.) on rates and pathways of benthic mineralization in deposited mangrove shrimp pond waste[J]. Journal of Experimental Marine Biology and Ecology, 2003, 289:59-81.
    Nobbs M. Effects of vegetation differ among three species of fiddler crabs (Uca spp.)[J]. Journal of Experimental Marine Biology and Ecology, 2003, 284:41-50.
    Nordhaus I, Wolff M. Feeding ecology of the mangrove crab Ucides cordatus (Ocypodidae): food choice, food quality and assimilation efficiency[J]. Marine Biology, 2007, 151:1665-1681.
    Nordhaus I, Wolff M, Diele K. Litter processing and population food intake of the mangrove crab Ucides cordatus in a high intertidal forest in northern Brazil[J]. Estuarine, Coastal and Shelf Science, 2006, 67:239-250.
    Odum W E, Heald E J. The detritus based food-web of an estuarine mangrove community[A]. In:Cronin LE, ed. Esturine Research, vol. 1. New York: Academic Press, 1975. 265-286.
    Odum W E, Heald E J. Trophic analyses of an estuarine mangrove community[J]. Bulletin of Marine Science, 1972,22:671-738.
    
    Ohgaki S I. Food items of the mangrove Littoraria[J]. Chiribotan, 1990, 21:51-53.
    Olafsson E, Ndaro S G M. Impact of the mangrove crab Uca annulipes and Dotilla fenestrata on meiobenthos[J]. Marine Ecology Progress Series, 1997, 158:225-231.
    Pelegri A P, Nielsen L P, Blackburn T H. Denitrification in estuarine sediment stimulated by irrigation activity of the amphipod Corophium volutator[J]. Marine Ecology Progress Series,1994, 105:285-290.
    Pennings S C, Carefoot T H, Siska E L, et al. Feeding preferences of a generalist salt-marsh crab:relative importance of multiple plant traits[J]. Ecology 1998, 79:1968-1979.
    Peterson C H, Renaud P E. Analysis of feeding preference experiments[J]. Oecologia, 1989,80:82-86.
    Posey M H. Influence of relative mobilities on the composition of benthic communities[J]. Marine Ecology Progress Series, 1987, 39:89-93.
    Putz F E, Chan H T. Tree growth, dynamic, and productivity in a mature forest in Malaysia[J].Forest Ecology and Management, 1986, 17:211-230.
    Qasim S Z, Wafar M V M. Marine resources in the tropics[J]. Resource Management and Optimization, 1990,7:141-169.
    Rhoads D C, Young D L. The influence of deposit-feeding organism on sediment stability and community trophic structure[J]. Journal of Marine Research, 1970, 28:150-178.
    Roa R. Design and analysis of multiple-choice feeding-preference experiments[J]. Oecologia,1992,89:509-515.
    Robertson A I, Alongi D M, Boto K G. Food chains and carbon flues[A]. In: Robertson A I and Alongi D M, eds. Tropical Mangrove Ecosystem. Washington: American Geophysical Union,1992. 293-326.
    Robertson A I, Daniel P A. The influence of crabs on litter processing in high intertidal mangrove forest in tropical Australia[J]. Oecologia, 1989, 78:99-124.
    Robertson A I. Leaf-burying crabs: their influence on energy flow and export from mixed mangrove forests (Rhizophora spp.) in northeastern Australia[J]. Journal of Experimental Marine Biology and Ecology, 1986, 102:237-248.
    Russel-Hunter W D. Aquatic Productivity: An Introduction to Some Basic Aspects of Biological Oceanography and Limnology[M]. London: Collier-MacMillan, 1970.
    Saenger P, Hegerl E JL, Davie J D S. Global status of mangrove ecosystems[J]. Environmentalist,1983, 3 (Suppl. 3):1-88.
    Schories D, Barletta-Bergan A, Barletta M, et al. The keystone role of leaf-removing crabs in mangrove forests of North Brazil[J]. Wetlands Ecology and Management, 2003, 11:243-255.
    Sheridan P. Benthos of adjacent mangrove, seagrass and non-vegetated habitats in Rookery Bay,Florida, USL[J]. Estuarine, Coastal and Shelf Science, 1997, 44:455-469.
    Skilleter G A, Warren S. Effects of habitat modification in mangroves on the structure of mollusc and crab assemblages[J]. Journal of Experimental Marine Biology and Ecology, 2000,244:107-129.
    Skov M W, Hartnoll R G Paradoxical selective feeding on a low-nutrient diet: why do mangrove crabs eat leaves?[J]. Oecologia, 2002, 131:1-7.
    Slim F J, Hemminga M A, Ochieng C, et al. Leaf litter removal by the snail Terebralia palustris (Linnaeus) and sesarmid crabs in an East African mangrove forest (Gazi Bay, Kenya) [J].Journal of Experimental Marine Biology and Ecology, 1997, 215:35-48.
    Smith III T J, Boto K G, Frsher S D, et al. Keystone species and mangrove forest dynamics: the influence of burrowing by crabs on soil nutrient status and forest productivity[J]. Estuarine,Coastal and Shelf Science, 1991, 33: 419-432.
    Smith III T J. Forest structure[A]. In: Robertson A I and Alongi D M, eds. Tropical mangrove ecosystems. Washington: American Geophysical Union, 1992. 101-136.
    Smith III T J. Seed predation in relation to tree dominance and distribution in mangrove forests[J].Ecology, 1987, 68:266-273.
    Snelgrove P V R, Butman C A. Animal-sediment relationships revisited: cause versus effect[J].Oceanography and Marine Biology: An Annual Review, 1994, 32:111-177.
    Sousa W P, Mitchell B J. The effect of seed predators on plant distributions: is there a general pattern in mangroves?[J]. Oikos, 1999, 86:55-66.
    Steinke T D, Rajh A, Holland A J. The feeding behavior of the red mangrove crab Sesarma meinerti De Man, 1887. (Crustacea: Decapoda: Grapsidae) and its effect on the degradation of mangrove leaf litter[J]. South African Journal of Marine Science, 1993, 13:151-160.
    Struhsaker J M. Selection mechanisms associated with intraspecific shell variation in Littorina picta (Prosobranchia: Mesogastropoda)[J]. Evolution, 1968,22:459-480.
    Suzuki T, Nishihira M, Paphavasi N. Size structure and distribution of Ovassiminea brevicula (Gastropoda) in a Thai mangrove swamp[J]. Wetlands Ecology and Management, 2002,10:265-271
    Tam N F Y, Wong Y S. Hong Kong Mangroves[M]. Hong Kong: City University of Hong Kong Press, 2000.
    Tan G C S, Ng P K L. An annotated checklist of mangrove brachyuaran crabs from Malaysia and Singapore[J]. Hydrobiologia, 1994, 285:75-84.
    Taylor R B, Sotka E, Hay M E. Tissue-specific induction of herbivore resistance: seaweed response to amphipod grazing[J]. Oecologia, 2002, 132:68-76.
    
    Tea J M. Distribution of fiddler crabs in Georgia salt marshes[J]. Ecology, 1958, 39:185-193.
    Terrill T H, Rowan A M, Douglas G B, et al. Determination of extractable and bound condensed tannin concentration in forage plants, protein concentration meals and cereal grains[J]. Journal of the Science of Food and Agriculture, 1992, 58:321-329.
    Thongtham N, Kristensen E. Carbon and nitrogen balance of leaf-eating sesarmid crabs (Neoepisesarma versicolor) offered different food sources[J]. Estuarine, Coastal and Shelf Science, 2005, 65:213-222.
    Tiwari S C, Tiwari B K, Mishra R L. Microbial populations, enzyme activities and nitrogen-phosphorus-potassium enrichment in earthworm casts and in the surrounding soil of pine apple plantation[J]. Biology and Fertility of Soils, 1989, 8:178-182.
    Twilley R R, Lugo A E, Patterson-Zucca C. Litter production and turnover in basin mangrove forests in southwest Florida[J]. Ecology, 1986, 67:543-557.
    Twilley R R, Pozo M, Garcia V H, et al. A Litter dynamics in riverine mangrove forests in the Guayas River estuary, Ecuador[J]. Oecologia, 1997, 111:109-122.
    Valiela I, Bowen J L, York J K. Mangrove forests: one of the world's threatened major tropical environments[J]. BioScience, 2001, 51:807-815.
    Vannini M, Cannicci S, Ruwa R K. Effect of light intensity on vertical migrations of the tree crab Sesarma leptosome (Decapoda, Grapsidae)[J]. Journal of Experimental Marine Biology and Ecology, 1995, 185:181-189.
    Vannini M, Olouch A, Ruwa R K. The tree-climbing crabs of Kenyan mangroves[A]. In: Kjerfve B, Lacerda L D and Diop E S, eds. Mangrove ecosystem studies in Latin America and Afica.Paris: UNESCO, 1997. 325-328.
    Vannini M, Ruwa R K. Vertical migration of the tree crab Sesarma leptosoma (Decapoda,Grapsidea)[J]. Marine Biology, 1994, 118:271-278.
    Volkenborn N, Hedtkamp S I C, van Beusekom J E E, et al. Effects of bioturbation and bioirrigation by lugworms (Arenicola marina) on physical and chemical sediment properties and implications for intertidal habitat succession[J]. Estuarine, Coastal and Shelf Science, 2007,74:331-343.
    Wafar S, Untawale A G, Wafar M. Litter fall and Energy Flux in a Mangrove Ecosystem[J].Estuarine, Coastal and Shelf Science, 1997, 44:111-124.
    Wells F E. An analysis of marine invertebrate distributions in a mangrove swamp in northwestern Australia[J]. Bulletin of Marine Science, 33,736-744.
    
    Wells F E. Comparative distributions of macromolluscs and macrocrustaceans in a northwestern Australian mangrove system[J]. Australian Journal of Marine and Freshwater Research, 1984,35:591-596.
    Wells F E. Distribution of molluscs across a pneumatophore boundary in a small bay in northwestern Australia[J]. Journal of Molluscan Studies, 1986, 52:83-90.
    Werry J, Lee S Y. Grapsid crabs mediate link between mangrove litter production and estuarine planktonic food chains[J]. Marine Ecology Progress Series, 2005, 293:165-176.
    Whitlach R B. Animal-sediment relationships in intertidal marine benthic habitats: some determinants of deposit-feeding species diversity[J]. Journal of Experimental Marine Biology and Ecology, 1981,53:31-46.
    Wilson K A. Tidal associated feeding in the mangrove tree crab, Aratus pisonii[J]. American Zoologist, 1981,21:1005 (abstract).
    Wolcott D L, O'Connor N J. Herbivory in crabs: adaptations and ecological considerations[J].American Zoologist, 1992, 32:370-381. Woitchik A F,Ohowa B,Kazungu J M,et al.Nitrogen enrichment during decomposition of mangrove leaf litter in an east African coastal lagoon(Kenya):Relative importance of biological nitrogen fixation[J].Biogeochemistry,1997,39:15-35.
    Yamada H.Liberation of nitrogenous compounds from bottom sediments and effects of bioturbation by small bivalve,Theora lata(Hinds)[J].Estuarine,Coastal and Shelf Science,1987,24:539-555.
    Zhang Y M,Wu N,Zhou G Y,Bao W K.Changes in enzyme activities of spruce(Picea balfouriana)forest soil as related to burning in the Eastern Qinghai-Tibetan Plateau[J].Applied Soil Ecology,2005,30:215-225.
    Zhang B G,Li G T,Shen T S,et al.Changes in microbial biomass C,N and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida[J].Soil Biology and Biochemistry,2000,32:2055-2062.
    蔡立哲,谭凤仪,黄玉山.香港东部红树林区大型底栖动物种类组成与数量分布特点[J].厦门大学学报(自然科学版),1998,37:115-121.
    陈光程,叶勇,卢昌义,等.人工红树林中黑口滨螺和黑线蜒螺分布的差异性[J].应用生态学报,2006,17(2):1721-1725.
    范航清,何斌源,韦受庆.2000.海岸红树林地沙丘移动对林内大型底栖动物的影响[J].生态学报,2000,20(9):22-727.
    范航清,林鹏.秋茄落叶分解失重过程的季节变化和滩面差异[J].台湾海峡,1992,11(4):310-315.
    范航清,林鹏.秋茄红树植物落叶分解的碎屑能量研究[J].植物学报,1994,36(4):305-311.
    高爱根,陈全震,曾江宁,等.西门岛红树林区大型底栖动物的群落结构[J].海洋学研究,2005,23(2):33-40.
    高世和,李复雪.九龙江口红树林区底相大型底栖动物的群落生态[J].台湾海峡,1985,2(2):179-191.
    关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    何斌,温远光,刘世荣.广西英罗港红树植物群落演替阶段的土壤化学性质[J].广西科学,2001,8(2):148-151,160.
    何明海,蔡尔西,徐惠州,等.九龙江口红树林区底栖动物的生态[J].台湾海峡,1993,12(1):61-68.
    何明海,蔡尔西,吴启泉,等.九龙江口底栖生物生态研究[J].生态学报,1988,8(2):133-139.
    黄勃,张本,陆健健,等.东寨港红树林区大型底栖动物生态与滩涂养殖容量的研究:Ⅱ潮间带表层底栖动物数量的初步研究[J].研究报告,2001,6(20):65-68.
    赖廷和,何斌.广西红树林区大型底栖动物种类多样性研究[J].广西科,1998,5(3):166-172.
    李蓉.九龙江口桐花树红树林恢复对大型底栖动物和土壤的效应[D].硕士学位论文,厦门大学,2007.
    李蓉,叶勇,陈光程,等.九龙江口桐花树红树林恢复对大型底栖动物的影响[J].厦门大学学报(自然科学版),2007,46(1):109-114.
    厉红梅,李适宇,蔡立哲.深圳湾潮间带底栖动物群落与环境因子的关系[J].中山大学学报(自然科学版),2003,42(5):93-97.
    梁超愉,张汉华,颉晓勇,等.雷州半岛红树林滩涂底栖生物多样性的初步研究[J].海洋科学,2005,29(2):18-31.
    林鹏.中国红树林生态系[M].北京:科学出版社,1997.
    林鹏,范航清.九龙江口秋茄落叶分解速率的季节模式[J].厦门大学学报(自然科学版),1992,31(4):428-434.
    林鹏,林光辉.海莲、秋茄两种红树群落掉落物能量的研究[J].海洋学报,1990,12:523-528.
    林鹏,卢昌义,王恭礼,等.海南岛河港海莲红树林凋落物动态的研究[J].植物生态学与地植物学学报,1990,14(1)69-74.
    刘俊杰.深圳湾福田红树林区大型底栖动物群落分布格局的研究[D].硕士学位论文,厦门大学,2000.
    刘敏,侯立军,许世远,等.长江口潮滩生态系统氮微循环过程中大型底栖动物效应实验模拟[J].生态学报,2005,25(5):1132-1137.
    卢昌义,林鹏.两种红树植物落叶分解速率的研究[J].厦门大学学报(自然科学版),1998,27(6):679-683.
    卢昌义,林鹏,王恭礼,等.从海南岛向福建九龙江口引种红树植物技术研究[A].李振基主编.环境与生态论丛.厦门:厦门大学出版社,1993.122-129.
    卢昌义,尹毅,林鹏.红海榄红树林下落叶分解的动态[J].厦门大学学报(自然科学版),1994,33(sup.):6-61.
    卢昌义,林鹏,叶勇,等.全球气候变化对红树林生态系统的影响与研究对策[J].地球科学进展,1995,10(4):341-347.
    卢昌义,郑逢中,林鹏.九龙江口秋茄红树林群落的掉落物量研究[J].厦门大学学报(自然科学版),1998,27(4):459-463.
    王丹丹,李辉信,胡锋,等.蚯蚓活动对锌污染土壤微生物群落结构及酶活性的影响[J].生态环境,2006,15(3):538-542.
    吴彪,刘进文,向平,等.秋茄(Kandelia candel)胚轴阴干过程中单宁的动态变化[J].厦门大学学报(自然科学版),2005,44(6)Sup.:182-185.
    吴启泉,蔡尔西,何明海,等.台湾海峡西部海域底栖生物生态研究[J].厦门港底栖动物群落分析[J].海洋学报,1985,7(3):387-387.
    叶勇,翁劲,卢昌义,等.红树林生物多样性恢复[J].生态学报,2006,26:1243-1250.
    于海燕,李新正,李宝泉,等.胶州湾大型底栖甲壳动物数量动态变化[J].海洋与湖沼,2005,36(4):289-295.
    余日清,陈桂珠,黄玉山,等.深圳福田红树林区底栖大型动物群落的空间分带及污灌的可能影响[J].生态学报,1996,16(3):283-288.
    张乔民,隋淑珍,张叶春,等.红树林宜林海洋环境指标研究[J].生态学报,2001,21(9):1427-1437.
    张雅芝,陈灿忠,王渊源,等.福建红树林区底栖生物生态研究[J].生态学报,1999,19(6):896-901.
    郑逢中,林鹏,卢昌义,等.福建九龙江口秋茄红树林凋落物年际动态及其能流量的研究[J].生态学报,1998,18(2):113-118.
    郑逢中,卢昌义,郑文教,等.福建九龙江口秋茄红树林凋落物季节动态及落叶能量季节流[J].厦门大学学报(自然科学版),2000,39(5)693-698.
    周时强,李复雪.福建九龙江口红树林上大型底栖动物的群落生态[J].台湾海峡,1985,5(1):78-85.
    邹发生,宋晓军,陈康,等.海南清澜港红树林滩涂大型底栖动物初步研究[J].生态科学,1999a,18(2):42-45.
    邹发生,宋晓军,陈伟,等.海南东寨港红树林滩涂大型底栖动物多样性的初步研究[J].生物多样性,1999 b,7(3):175-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700