用户名: 密码: 验证码:
竹林河岸带对氮磷截留转化作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮和磷是陆地水体的重要污染物,相邻农田中的氮和磷经非点源途径通过河岸带进入水体。河岸带是高地和水体之间的过渡带,健康的河岸带系统能够通过物理的、生物的和生物化学的过程,实现对氮磷的截留和转化。本文以四川省长宁县淯江河流域竹林河岸带为研究对象,对相邻的农田和竹林河岸带进行了系统观测,从河岸带的植被、土壤特征、水文过程以及河岸带宽度等四个方面,探讨了竹林河岸带对氮磷的截留转化作用。主要结论如下:
     (1)竹林河岸带的植物隶属于30科44属45种,主要竹种为硬头黄竹。其中:蕨类植物4科4属4种,被子植物26科40属41种。植物科属组成以单属科为主(20科),占总科数的66.67%。群落垂直结构分化较明显,群落乔木层、灌木层及草本层共有40个种群,其分布格局有聚集分布、均匀分布、聚集/随机和随机/均匀分布四种类型,且以聚集分布为主要格局类型。
     (2)在竹林河岸带中,每公顷硬头黄竹林总生物量为96.559t;其中秆为75.788t,占78.49%;枝为7.533t,占7.80%;叶为4.989t,占5.17%;根为1.460t,占1.51%;蔸为6.789t,占7.03%。各个器官N、P元素密度分别由大到小排序:叶>根>蔸>枝>秆,叶>根>枝>蔸>秆。5m宽的竹林河岸带林分N储存量为982.4 kg·hm-2,高于40m宽的竹林河岸缓冲带林分N储存量的30.86%。5m宽的竹林河岸带硬头黄竹林分磷元素储存量为190.1 kg·hm-2,高于40m宽的竹林河岸带林分磷元素储存量的30.83%。5m宽的硬头黄竹林每公顷N、P储存最大,10m、20m、30m、40m宽的硬头黄竹林每公顷N、P储存量分别为5m宽的88.65%、83.85%、79.04%、76.42%。
     (3)竹林河岸带土壤的理化性质。在土壤剖面0~100cm土层中,土壤容重的变化范围为0.959~1.669g/cm3,土壤越深,土壤容重越大。土壤的机械组成变化很大,农田处的粘粒超过20.41%,而竹林河岸带沿河边的土壤已表现出砂土特征。土壤pH值均以接近农田的最高为6.12,宽度超过20m后,土壤pH值就明显降低。不同宽度不同层次的土壤有机质含量为14.45~36.13g/kg。土壤全氮浓度变化范围为821.20~1900.20mg/kg,土壤表层的土壤全氮浓度最高,为1900.2mg/kg,土层越深土壤全氮浓度越低。土壤碱解氮浓度为58.00~118.82mg/kg。土壤速效磷浓度为6.83~28.86mg/kg,土壤表层的速效磷浓度最高,为28.86mg/kg。
     (4)不同宽度的竹林河岸带土壤水的TN、TP浓度均以接近农田的最高,20m宽的硬头黄竹林河岸带,土壤水的TN浓度降低40.53%、TP浓度降低85.07%。从竹林河岸带土壤对N、P的吸附储存转化效率来看,20m宽的硬头黄竹林土壤水全N、碱解N和速效P的截留率达到了11.16%、56.93%和41.33%,30m宽的硬头黄竹林对土壤水全N、碱解N和速效P截留率达到了58.30%、69.67%和43.75%,40m宽的硬头黄竹林土壤水全N、碱解N和速效P截留率达到了37.20%、61.82%和69.45%。
     (5)该研究区域雨季不是十分明显。在竹林河岸带的林内,2008年全年林内穿透雨为702.2mm,林冠截留为229.6mm,分别占全年降雨量的72.14%、23.59%。竹林河岸带年树干茎流为41.5mm,占全年降水量的4.26%。农田对竹林河岸带的水量输入较大,且不同季节变化幅度较大,并以地表水和20cm深的土壤径流为主,一年100m长的农田剖面四个层次共流出水量6221L。每年通过穿透雨输入林地的TN和TP分别是53.2kg·hm-2和0.420 kg·hm-2。其中,NH4+-N 28.3 kg·hm-2,占总氮量的53%;NO3--N 23.1 kg·hm-2,占总氮量的43.4%;PO43--P的输入量是0.219 kg·hm-2,占总磷的52%,;每年通过树干茎流输入林地的TN和TP分别是3.32 kg·hm-2和0.101 kg·hm-2,其中NH4+-N为1.76 kg·hm-2,NO3--N为1.41 kg/hm2,PO43--P是0.042 kg·hm-2。竹林河岸带穿透雨输入林地的氮约为树干茎流输入氮的16倍,穿透雨输入林地的磷约为树干茎流输入磷的4倍。由于农田的施肥,100米长的农田土壤剖面一年从土壤四个层次共输入竹林河岸带的TN 108.66g,NO3--N 76.62g,NO2--N 5.42g,NH4+-N 22.58g;TP 0.459g,PO43--P 0.263g,是河流和河岸带氮磷的主要输入源。
     (6)以100m长的土壤剖面计算,农田每年通过径流流入河流和竹林河岸带的水量6221L,其中土壤表层流入3340L,占输入量的53.69%。5m宽的竹林河岸带通过土壤径流流入河流的水量4485L,比农田减少了27.91%,其中土壤表层输入2580L,占输入量的57.53%。10m宽的竹林河岸缓冲带通过土壤径流流入河流的水量3772L,比农田减少了39.37%,其中土壤表层输入2145L,占输入量的56.87%。20m宽的竹林河岸带土壤径流水量减少了40.72%,30m、40m宽的土壤径流水量分别减少了39.75%和46.39%。以上可以看出,10m宽竹林河岸带就可以有效截留土壤水。除此之外,土壤水TN、TP、NO3--N、NO2--N、NH4+-N、PO43--P的浓度也显著受河岸带宽度影响,10m宽的竹林河岸带土壤水TN、TP、NO3--N、NO2--N、NH4+-N、PO43--P的浓度比农田分别降低了17.90%、82.32%、16.29%、33.07%、33.67%和69.49%;20m宽的竹林河岸带土壤水TN、TP、NO3--N、NO2--N、NH4+-N、PO43--P的浓度分别降低了40.53%、84.53%、43.15%、51.39%、47.82%和75.14%;30m宽的竹林河岸缓冲带土壤水TN、TP、NO3--N、NO2--N、NH4+-N、PO43--P的浓度降低了40.85%、88.95%、34.94%、67.20%、73.23%和78.81%;40m宽的竹林河岸带土壤水TN、TP、NO3--N、NO2--N、NH4+-N、PO43--P的浓度变化与30m宽的差别不大
     综上所述,通过植物吸收转化、土壤截留、减少土壤水输出等物理的、生物的和生物化学的过程,20~30m的竹林河岸带可以有效降低相邻农田氮磷等营养元素通过非点源途径向河流的输入,从而达到减轻河流非点源污染的目的。在此基础上,对目前我国河岸带研究中存在的问题进行了讨论,并对我国开展河岸带的研究提出了建议。
Farmland nitrogen and phosphorus can enter adjacent water body via erosion and leaching, being the important pollutants in terrestrial water bodies. Riparian buffer zone is a transitional zone between highland and its adjacent water body, and a healthy riparian buffer zone can retain and transform the incoming N and P through physical, biological, and biochemical processes. In this paper, Yu Jiang River in Changning county, Sichuan province being the study object, a series of observation about the bamboo buffer zone and its adjacent farmland were done, such as vegetation features, soil characters, hydrological processes and the buffer zone width. The factors governing the N and P retaining and transformation were analyzed.
     (1) The vegetation in the bamboo buffer zone belongs to 45 species, 44 genera, 30 families, and the uppermost is Bambusa rigida Keng et Keng f., including 4 species of ferns, 41 species of angiosperms. The vertical structure distribution of plant community is obviously, there are 40 populations of trees, shrub and herb layers in total. And 4 types of distribution pattern, aggregated distribution, self distribution, aggregated/random distribution and random/self distribution. Aggregated distribution was the main types of the most population. From the diameter distribution of trees layers, diameter distribution curve is on the right side, most of the trees diameter is the large and central scale.
     (2) In bamboo buffer zone, the biomass of Bambusa rigida is 96.559t/hm2. The biomass and proportion among stem, branch, leaf, root, stump were 75.788t, accounting for 78.49%; 7.533t, accounting for 7.80%; 4.989t,accounting for 5.17%; 1.460t,accounting for 1.51%; 6.789t,accounting for 7.03%. At the different ages level, stem, root and stump got weight with the increasing age, the weight of branches and leaves reach maximum at the second year .Bambusa rigida plays an important role on absorption, reserving, transforming N and P. Put the organs content of N,P in descending order, the highest content is leaf for N, and then root, stump, branch and stem. While the highest content is also leaf for P, and then , root, branch, stump, and stem. Bambusa rigida forest N reserves exist an certain difference through the different width bamboo riverside buffer strips.5 meters wide could reserve 982.4kg/hm2,higher than 40 meters by 30.86%. With the increasing buffer strips width, the Bambusa rigida forest N reserves are decreasing. P reserves also exist an certain difference,5 meters wide could reserve 190.1kg/hm2,higher than 40 meters by 30.83%. With the increasing buffer strips width, the Bambusa rigida forest P reserves are also decreasing.
     (3) The soil physical and chemical characters of bamboo buffer zone are introduced. Soil bulk density changes from 0.959 g/cm3 to 1.669g/cm3 through surface to 100cm deep of soil. Widely changes on the content of soil, 20.41% of soil is clay and half is sand beside agricultural, while with the transition from agricultural to river, the content of the soil became the characteristic of sand. The value and order is not obviously among different levels and width, it means the soil structure and stability of bamboo riverside buffer strips is on a high level. Soil pH value is highly 6.12 close to agricultural, when the width becomes more than 20m, the soil pH value significantly decreased. Soil organic content changes from 14.45 g/kg to 36.13g/kg among different width and different levels. The soil total N changes from 821.20 mg/kg to 1900.20mg/kg, the soil surface total N content is highest for 1900.2mg/kg, the deeper of the soil, the lower content of the total N. The content of available N changes from 58.00mg/kg to 118.82mg/kg. The content of available P changes from 6.83mg/kg to 28.86mg/kg, the soil surface available P is highest for 22.86mg/kg.Above all, the content distribution of N, P in bamboo forest is impacted on agricultural fertilizer, rainfall, branch and leaf of Bambusa rigida forest.
     (4) The TN content of different levels had a big difference, while the different width at the same level is not obviously. The TN content of soil water is the highest close to the agricultural. With the increasing buffer strips width, soil water TN content is decreasing. when the width is wider than 20 meters, the tendency of soil water TN content is reducing,20 meters wide buffer strips could reduce 40.53%.The soil water TP content had the similar regular, the more wide buffer zone, the more N, P element are retained by bamboo forest, and reduced the soil water TN, TP content. Above all, 20 meters wide bamboo riverside buffer strips could reduce TP content 85.07%. From retaining and transformation efficiency by buffer zone soil, 20 meters wide Bambusa rigida forest intercepted efficiency to total N, alkaline N and available P is 11.16%, 56.93% and 41.33% respectively, 30 meters wide Bambusa rigida forest intercepted efficiency to total N, available N and available P is 58.30%, 69.67% and 43.75% respectively, 40 meters wide Bambusa rigida forest intercepted efficiency to total N, alkaline N and available P is 37.20%, 61.82% and 69.45% respectively. From the different width Bambusa rigida forest riverside buffer strips to see intercepted efficiency of total N, alkaline N and available P,30 meters wide bamboo riverside could intercept most N, P effectively.
     (5) The monsoon of this area is not obviously, penetrate water and tree crown interception of bamboo riverside buffer strips is 702.2 mm and 229.6mm respectively in 2008. The proportion of the whole year precipitation is 72.14% and 23.59%. Total N of penetrate water through one year is 53.2 kg·hm-2, while NH4+-N and NO3--N is 28.3 kg·hm-2 and 23.1 kg·hm-2, the proportion of them is 53% and 43.4% respectively. Total P of penetrate water is 0.420 kg·hm-2, PO43--P took up 52% of TP which is 0.219 kg·hm-2. Total N of stem runoff through one year is 53.2 kg·hm-2, while NH4+-N and NO3--N is 1.76 kg·hm-2 and 1.41 kg·hm-2,the proportion of them is 53% and 42% respectively. Total P of penetrate water is 0.101 kg·hm-2, PO43--P took up 40% of TP which is 0.042 kg·hm-2.Totle N of penetrate water is 16 times the size of the stem runoff, while for Total P is 4 times. For agricultural fertilizer, TN, NO3--N, NO2--N, NH4+-N, TP, PO43--P which were brought to bamboo riverside buffer strips from agricultural were 108.66g, 76.62g, 5.42g, 22.58g, 0.459g, 0.263g respectively for 100m long through one year. It’s the main source of N and P in riverside.
     (6) Being computated by the 100 meters soil profile, waters from the agricultural flows into the rivers and bamboo riverside buffer strips are totally 6221L every year. The soil surface flows into 3340L, accounts for 53.69%. Waters through 5 meters buffer strips flows into the rivers are totally 4485L, reduced 27.91% compared to the farmland, the soil surface flows into 2580L,accounts for 57.53%.Waters through 10 meters buffer strips flows into the rivers are totally 3772L,reduced 39.37%, the soil surface flows into 2145L, accounts for 56.87%.
     To sum up, through the physical, biochemical and biological processes of plant absorption, reservation, soil retaining, reducing the soil water input, 20~30m bamboo buffer zone can reduce N, P element input to Yujiang river, so as to achieve the purpose of reducing non-point source pollution. The problems existing in riparian buffer zone study were discussed, and some suggestions for the further study in China were presented.
引文
[1]包锡南美国非点源污染及其治理对策国外农业环境保护,1992,(3):3~6
    [2]陈伏生等.森林土壤氮素的转化与循环生态学杂志,2004,23(5):126~133
    [3]陈汉春水库水体富营养化及其控制对策今日科技,2004,(3):9~12
    [4]陈吉泉河岸植被特征及其在生态系统和景观中的作用应用生态学报,1996,7(4):439~448
    [5]崔东海等.帽儿山林场不同河岸带植被类型土壤水分-物理性质东北林业大学学报,2007,35(10):42~44
    [6]代力民等.二道白河河岸带植物群落最小面积与物种丰富度应用生态学报,2002,13(6):641~645
    [7]段亮等农田氮、磷向水体迁移原因及对策中国土壤与肥料,2007,4:6~11
    [8]邓红兵等.长白山北坡河岸带群落植物区系分析应用生态学报,2003,14(9):1405~1410
    [9]邓红兵等.长白山二道白河森林流域溪流倒木调查研究生态学报,2002,22(11):1897~1901
    [10]邓红兵等.溪流粗木质残体的生态学研究进展生态学报,2002 22(1):88~93
    [11]邓红兵等.河岸植被缓冲带与河岸带管理应用生态学报,2001,12(6):951~954
    [12]樊宝敏等.中国竹藤资源现状及发展潜力分析林业资源管理,2004,1:18~20
    [13]范小华等.河岸带生态系统管理模型研究进展中国农学通报,2006,22(1):277~282
    [14]高阳等.河溪缓冲带的生态功能及其管理原则水土保持通报,2006,26(5):94~97
    [15]国务院办公厅转发环保总局等部门关于加强重点湖泊水环境保护工作意见的通知国办发(2008)4号
    [16]韩凤朋等.黄河支流非点源污染物(N、P)排放量的估算环境科学学报,2006,26(11):1893~1899
    [17]韩兴国等.生物地球化学概论北京:高等教育出版社、施普林格出版社,1999,197~244
    [18]江明喜等.神农架地区珍稀植物沿河岸带的分布格局及其保护意义应用生态学报,2002,13(11):1373~1376
    [19]江明喜等.香溪河流域河岸带植物群落物种丰富度格局生态学报,2002 22(5):629~635
    [20]江明喜等.长江三峡地区干流河岸植物群落的初步研究水生生物学报,2000,24(5):458~463
    [21]江泽慧世界竹藤[M]沈阳:辽宁科学技术出版社,2002
    [22]李睿华等.河岸带中荆三棱的生长特性及其腐烂规律研究环境科学,2007,28(5):1011~1015
    [23]李睿华等.河岸美人蕉和香根草的生长繁育及其腐烂规律生态学杂志,2007,26(3):338~343
    [24]李冬等.二道白河河岸带珍稀植物的分布格局江西农业大学学报,2005,27(6):885~889
    [25]廉振民,于广志边缘效应与生物多样性生物多样性,2000,8(1):120~125
    [26]梁从诫2005—中国的环境危局与突围北京:社会科学文献出版社,2006
    [27]林葆,李家康中国磷肥施用量与氮磷比例问题农资科技,2002,3:13~16
    [28]刘俊民,余新晓水文与水资源学北京:中国林业出版社,1999
    [29]刘世荣,孙鹏森,温远光中国主要森林生态系统水文功能的比较研究植物生态学报,2003,27(1):16~22
    [30]刘世荣等.森林水文学:全球变化背景下的森林与水的关系植物生态学报,2007,31(5)753~756
    [31]罗菊春等.干扰对天然红松林植物多样性的研究林业科学,1997,33(6):498~503
    [32]马立珊苏南太湖水系农业非点源氮污染及其控制对策应用生态学报,1992,3(4):346~354
    [33]牟长城等.长白山溪流河岸带森林木本植物多样性沿海拔梯度分布规律应用生态学报,2007,18(5):943~950
    [34]潘晓云等.喜旱莲子草沿河岸带不同生境的盖度变化及形态可塑性植物生态学报, 2006,30(5):835~843
    [35]彭镇华林业生态工程与血吸虫病防治科学,2005,57:34~37
    [36]彭镇华,江泽慧中国新林种——抑螺防病林研究北京:中国林业出版社,1995,23~51
    [37]全为民,严力蛟农业面源污染对水体富营养化的影响及其治理措施生态学报,2002,22(3):291~299
    [38]任海等.生态系统管理的概念及其要素应用生态学报,2000,11(3):455~458
    [39]石晓丹等.南京外秦淮河河岸带原生植被初步调查环境科学与管理,2007,32(3):84~88
    [40]舒金华,黄文银,吴延根中国湖泊营养类型的分类研究湖泊科学,1996,8(3):193~200
    [41]司友斌等.氮磷淋溶和水体富营养化土壤,2000,32(4):188~193
    [42]宋静,骆永明,赵其国土壤溶液采样技术进展土壤,2000,2:102~106
    [43]屠清瑛等.巢湖富营养化研究合肥:中国科学技术大学出版社,1990
    [44]万师强,陈灵芝暖温带落叶阔叶林冠层对降水的分配作用植物生态学报,1999,23(6):557~561
    [45]王敬国编著植物营养的土壤化学北京:北京农业大学出版社,1995,68~75
    [46]王庆成等.河岸带对陆地水体氮素输入的截留转化作用应用生态学报,2007,18(11):2611~2617
    [47]王淑芳水体富营养化及其防治环境科学与管理,2005,30(6): 63~65
    [48]王铮地理学引论北京:高等教育出版社,1993
    [49]吴炳方水田植物营养素的流失和控制措施环境科学,1991,12(3):88~91
    [50]吴刚,苏瑞平,张旭东长江中下游滩地植被与钉螺孳生关系的研究生态学报,1999,19(1):118~121
    [51]夏汉平等.北江大堤植草护坡效应研究热带地理,2002,22(4):359~362
    [52]徐德应,张小全森林生态系统管理科学——21世纪森林科学的核心世界林业研究,1998,11(2):1~7
    [53]徐化成主编景观生态学北京:中国林业出版社,1996,96~98
    [54]闫海等.微囊藻毒素研究进展生态学报,2002,22(11):1968~1975
    [55]晏维金等.磷氮在水田湿地中的迁移转化及径流流失过程应用生态学报,1999,10(3):312~316
    [56]姚永康等.林农复合系统灭螺机制及其持续灭螺生物数学学报,1995 10(2):26~33
    [57]尹澄清内陆水-陆地交错带的生态功能及其保护与开发前景生态学报,1995,15(3):331~335
    [58]尹逊霄等.土壤中磷素的有效性及其循环转化机制研究首都师范大学学报(自然科学版),2005,26(3):95~101
    [59]于丹等.山地-水域交错区的生境异质性与水生植物多样性的关系研究生态学报,1998,18(1):69~75
    [60]于贵瑞生态系统管理学的概念框架及其生态学基础应用生态学报,2001,12(5):787~794
    [61]余新晓,陈丽华黄土地区防护林生态系统水量平衡研究生态学报,1996,16(3):238~245
    [62]岳隽,王仰麟国内外河岸带研究的进展与展望地理科学进展,2005,24(5): 34~40
    [63]张建春河岸带功能及其管理水土保持学报,2001,15(6):143~146
    [64]张建春,彭补拙河岸带及其生态重建研究地理研究,2002,21(3):373~383
    [65]张建春等.皖西南大别山麓河岸带滩地生态重建与植物护坡效能分析山地学报,2002,20(1):85~89
    [66]张建春,彭补拙河岸带研究及其退化生态系统的恢复与重建生态学报,2003,23(1):56~63
    [67]张旭东等.钉螺分布于滩地环境因子的关系生态学报,1999,19(2):265~269
    [68]张旭东等.长江干流季节性水淹滩地杨树生长规律研究生物数学学报,1999,3:322~326
    [69]张旭东,彭镇华滩地林业生态工程与钉螺孳生关系的研究应有生态学报,1998,9(5):468~470
    [70]张旭东,彭镇华,周金星抑螺防病林生态系统抑螺机理的研究进展世界林业研究,2006,19(3):38~43
    [71]张真森林生态系统管理与森林有害生物生态管理世界林业研究,2000,13(5):13~18
    [72]赵琼,曾德慧陆地生态系统磷素循环及其影响因素植物生态学报,2005,29(1):153~163
    [73]赵士洞,汪业勋生态系统管理的基本问题生态学杂志,1997,16(4):35~38
    [74]赵文智,程国栋生态水文学:揭示生态格局和生态过程水文学机制的科学冰川冻土,2001,23(4):450~457
    [75]中国湿地植被编辑委员会中国湿地植被北京:科学出版社,1999
    [76]中野秀章森林水文学(李云森译)北京:中国林业出版社,1983
    [77]周才平等.中国森林生态系统的土壤净氮矿化研究植物生态学报,2003,27(2):170~176
    [78]周光益等.热带山地雨林林冠对降雨的影响分析植物生态学报,1995,19:201~207
    [79]周睿等.岷江上游河岸带土地覆盖格局及其生态学解释植物生态学报,2007,31(1):2~10
    [80] Addy K.L., Gold AJ, Groffman P.M., et al. Groundwater nitrate removal in subsoil of forested and mowed riparian buffer zones. Journal of Environmental Quality, 1999,28(3):962~970
    [81] Agee. J. K., Successional dynamics in forest riparian zones. In: Streamside Management: Riparian wildlife and Forestry Interactions (K. J. Raedeke, ed.), Contribution No.59, Institute of Forest Resources, University of Washington, Seattle, Washington, USA, 1988,31~43
    [82] Andersen J, Dybkjaer G, Jensen KH, Use of remotelysensed precipitation and leaf area index in a distributed hydrological model. Journal of Hydrology, 2005,305(4):15~39
    [83] Andrus. C. & H.A. Froehlich, Riparian forest development after logging or fire in the Oregon Coast Range: wildlife habitat and timber value. In: Streamside Management: Riparian Wildlife and Forestry Interactions (K. J. Raedeke, ed.), Contribution No.59, Institute of Forest Resources, University of Washington, Seattle, Washington, USA, 1988,139~152
    [84] Andréassian V., Waters and forests: from historical controversy to scientific debate. Journal ofHydrology, 2004, 291:1~27
    [85] Baker W. L., Macro- and micro-scale influences on riparian vegetation in western Colorado. Annals of the Association American Geographers, 1989, 79:65~78
    [86] Barton D.R. et al., Dimensions of riparian buffer strips required to maintain tourt habitat in south Ontario streams. North American Journal of Fisheries Management, 1985, 5:364~378
    [87] Bl schl G., Scaling in hydrology. Hydrological Processes, 2001, 15:709~711
    [88] Brinson, M.M., Riverine forests. In: Forested Wetlands. Ecosystems of the world No. 15(A.E. Lugo, M.M. Brinson, and S. Brown, eds.), Elsevier, Amsterdam, 1990, 87~140
    [89] Brown AE, Zhang L, McMahon TA. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 2005, 310:28~61
    [90] Budd W.W. et al., Stream corridor management in the Pacific Northwest: determination of stream corridor widths. Environmental Management, 1987, 11:587~597
    [91] Cammeraa LH .Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in southeast Spain. Agriculture, Ecosystems and Environment, 2004, 104:317~332
    [92] Campbell A. G. & J. F. Franklin, Riparian Vegetation in Oregon’s Western Cascade Mountains: Composition, Biomass, and Autumn Phenology. Ecosystem Analysis Studies on Coniferous Forest Biomes, Bulletin No. 14. University of Washington, Seattle, Washington, USA, 1979
    [93] Canter L.W., Environmental impacts of agricultural production activities. Lowis Publishers, Inc. 1986
    [94] Carleson D. & L. Wilson, Report of the Riparian Habitat Technical Task Force. Final Report to Oregon Department of Forestry and Oregon Department of Fish and Wildlife, Salem, OR, USA. 1985
    [95] Chen JM, Chen XY, Ju WM, Distributed hydrological model for mapping evapotranspiration using remote sensing inputs. Journal ofHydrology, 2002, 264:34~50
    [96] Cheng J D ,Lin L L, Lu H S. Influences of forests on water flows from headwater watersheds in Taiwan. Forest Ecology and Management, 2002, 165:11~28
    [97] Chirico GB, Grayson GB,Western AW , A downward approach to identifying the structure and parameters of a processbased model for a small experimental catchment. Hydrology Process, 2003, 17:2239~2258
    [98] Christopher J. Woltemade , Jinnieth Woodward, Nitrate Removal in a Restored Spring-fed Wetland, Pennsylvania, USA. Journal of the American Water Resources Association, 2008, 44(1):1~13
    [99] Chuang YL, Oren R, Bertozzi Al, The porousmedia model for the hydraulic system of a conifer tree: linking sap flux data to transpiration rate. Ecological Modelling, 2006, 191(3224)4:4722~4725
    [100] Clausen J.C., Guillard K., Sigmund C.M. et al., Water quality changes from riparian buffer restoration in Connecticut. Journal of Environmental quality, 2000, 29(6):1751~1761
    [101] Cooper A.B. Nitrate depletion in the riparian zone and stream channel of a small headwater catchment. Hydrobiologia, 1990, 202:13~26
    [102] Coote D.R., Macdonald E.M. and Dickinson W.T. et al. Agriculture and water quality in the Canadian Great Lakes Basin I. Representative agricultural watersheds. J. Environ. Qual. 1982, 11: 473~481
    [103] Correll D.L. Buffer zones and water quality protection: General principles// Haycock NE, Burt TP, Goulding KWT, et al. Buffer Zones: Their Processes and Potential in Water Protection. Harpenden, Hertfordshire, UK: Quest Environmental, 1997,7~20
    [104] Craig N. Goodwin, Charles P. Hawkins et al. Riparian Restoration in the Western United States: Overview and Perspective Restoration Ecology, 1997, 5(4):4~14
    [105] Crockford R H, Richardson D P. Partitioning of rainfall into throughfall, stemflow and interception:effect of forest type,ground cover and climate. Hydrological Processes, 2000, 14:2903~2920
    [106] Cuervo S.L. Water, a culture heritage Landscape and urban planning, 1988, 16(1-2):93~104
    [107] Daniels R.B., Gilliam J.W Sediment and chemical load reduction by grass and riparian filters Soil Science Society of America Journal, 1996, 60(1):246~251
    [108] Decamps H., et al. Historical influence of man on the riparian dynamics of a fluisal landscape, Landscape Ecology, 1988,1:163~173
    [109] Decamps H. & Tabacchi E., Species richness in vegetation along river margins. Aquatic Ecology: scale, pattern and process. Edited by P.S. Giller et al., 1992, 1~20
    [110] Deluca T.H. et al. Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia, 2002, 133:206~214
    [111] Dillaha T.A., Reneau R.B., Mostaghimi S., et al. Vegetative filter strips for agricultural nonpoint source pollution control. Transactions of the American Society of Agricultural Engineers, 1989, 32:513~519
    [112] Donigian, Jr A. S. and Huber W. C., Modeling of nonpoint source water quality in urban and non-urban areas. EPA/600/3-91/039, Washington: USEPA, 1991
    [113] Duncan A., A review: Limnological management and bio-manipulation in the London reservoirs. Hydrobiologia, 1990, 200/201:541~548
    [114] Dupuis L. et al., Riparian management and the tailed frog in northern coastal forests. Forest Ecological Management, 1999, 124(1)35~43
    [115] Eric O. Young, Cropland and riparian buffer influences on nutrient dynamics. 2006
    [116] FEMAT, Rorest ecosystem management: An ecological, economic, and social assessment. Report of FEMAT, 1993-793-071. Washington DC. 1993
    [117] Flink et al., Greenways: A guide to planning, Design and Development. Island Press. 1993
    [118] Follett and J.L. Hatfield (eds.). Nitrogen in the environment: sources, problems, and management. Amsterdam, The Netherlands, Elsevier Science B.V.
    [119] Forman R.T.T., Gordan M. (Landscape Ecology, 1986).景观生态学(肖笃宁,张启德等译)北京:科学出版社,1990
    [120] Franklin, J.F. et al., Importance of ecological diversity in managing long-term site productivity. In: Maintaining long-term productivity of Pacific Northwest forest ecosystems (D.A. Perry et al). Timber Press, Portland, OR, USA, 1991, 82~97
    [121] Franklin, J.F. et al., Scientific basis for new perspectives in forests and streams. In: Watershed management: Balancing sustainability and environmental change (R.J. Naiman, ed.). Springer-Verlag, New York, USA, 1992, 25~72
    [122] Giertz S, Diekkrüger B, Analysis of the hydrological processes in a small headwater catchment in Benin (West Africa). Physics and Chemistry ofthe Earth, 2003, 28:1333~1341
    [123] Gregory S. V. et al., An ecosystem perspective of riparian zones. BioScience, 1991, 41:540~551
    [124] Groffman, P.M., Tiedje, J.M., Denitrification in northern temperate forest soils: Spatial and temporal patterns at the landscape and seasonal scales. Soil Biol. Biochem, 1989, 21:613~620
    [125] Groffman P.M., Gold A.J., Simmons R.C., Nitrate dynamics in riparian forests: Microbial studies. Journal of Environmental Quality, 1992, 21:666~671
    [126] Hanson, G.C., Groffman, P.M., Gold, A.J., Denitrification in riparian wetlands receiving high and low ground water nitrate inputs. J. Environ. Qual, 1994, 23:917~922
    [127] Harris R., Olson C., Two-stage system for prioritizing riparian restoration at the stream reach and community scales. Restoration Ecology, 1997, 5:34~42
    [128] Haworth K, Mcpherson G R. Effects of Quercus emoryi trees on precipitation distribution and microclimate in a semiarid savanna. Journal of Arid Environment, 1995, 31:153~170
    [129] Haycock, N.E., Pinay, G., Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips during the winter. J. Environ. Qual, 1993, 22:273~278
    [130] Hewitt, M.J., Synoptic inventory of riparian ecosystems: the utility of Landsat Thematic Mapped data. Forest Ecology and Management, 1990, 33/34: 605~620
    [131] Hickey M.B.C., Doran B., A review of the efficiency of buffer strips for the maintenance andenhancement of riparian ecosystems. Water Quality Research Journal of Canada, 2004, 39(3):311~317
    [132] Hill A.R., Nitrate removal in stream riparian zones. Journal of Environmental Quality, 1996, 25:743~755
    [133] Hughes, F.M.R., The ecology of African floodplain forests in semi-arid and arid zones: a review. Journal of Biogeography, 1988, 15: 127~140
    [134] Hughes, F.M.R., The influence of flooding regimes on forest distribution and composition in the Tana River foodplain, Kenya, Journal of Applied Ecology, 1990,27:475~491
    [135] Hunt, P.G., Matheny, T.A., Stone, K.C., Denitrification in a Coastal Plain riparian zone contiguous to a heavily loaded swine wastewater spray field. J. Environ. Qual, 2004, 33:2367~2374
    [136] Hutton, F.Z., Jr., Rice, C.E., Soil Survey of Onondaga County, NY. USDA Natural Resources Conservation Service, 1977
    [137] Ik-Jae kim, Stacy L. Hutchinson, J.M. Shawn Hutchinson, and C. Bryan Young, Riparian Ecosystem Management Model: Sensitivity to Soil, Vegetation, and Weather Input Parameters. Journal of the American Water Resources Association, 2007, 43(5):1171~1182
    [138] Iseman TM,Zak DR,Holmes WE,et al. Revegetation and nitrate leaching from Lake states northern hardwood forests following harvest[J].Soil Sci.Soc.Amer.J. 1999., 63:1424~1429
    [139] Jackson RB, Sperry JS, Dawson TE, Root water up take and transport:using physiological processes in global predictions. Trends in Plant Science, 2000, 5:482~488
    [140] Jacobs, T.C., Gilliam, J.W., Riparian losses of nitrate from agricultural drainage waters. J. Environ. Qual, 1985, 14:472~478
    [141] Jiang Mingxi et al., Distribution pattern of rare plants along riparian zone in Shennongjia Area. Journal of Forestry Research, 2002, 13(1):25~27
    [142] Jiang Mingxi et al., Characteristics, classification and ordination of riparian plant communities in the Three-Gorges areas, 2002,13(2): 111~114
    [143] Johnson R.R. & J.F.McCormick, Strategies for protection and management of floodplain wetlands and other riparian ecosystems. USDA Forest Service General Technical Report, 1979
    [144] Johnson R.R. & C.H. Lowe.,. On the development of riparian ecology. In: Riparian ecosystems and their management: reconciling conflicting uses( R.R. Johnson, C.D. Ziebell et al.) USDA Forest Service General Technical Report, 1985, RM-120:112~116
    [145] Jordan, T.E., Correll, D.L., Weller, D.E., Nutrient interception by a riparian forest receiving inputs from adjacent cropland. J. Environ. Qual, 1993, 22:467~473
    [146] Junk, W.J. et al., The flood pulse concept in river floodplain systems. Can. Spec. Publ. Fish. Aquatic Sci., 1989, 106:110~127
    [147] Karr J.R. et al., Water resource and the land-water interface. Science, 1978, 21:229~232
    [148] Ketterings, Q.M., Klausner, S.D., Czymmek, K.J., Nitrogen fertilizer guidelines for New York. CSS Extension Series E03-16. Cornell University, Department of Crop and Soil Sciences, Ithaca NY. 70 pp. 2003
    [149] Kinley T.A. et al., Relationship of riparian reserve zone width to bird density and diversity in southeastern British Columbia. Northwest Sciences, 1997, 71(2):75~86
    [150] Klapproth J.C., Johnson J.E., Understanding the Science Behind Riparian Forest Buffers: Effects on Water Quality. Virginia: Virginia Cooperative Extension Publication, 2000
    [151] Knopf F.L. et al., Conservation of riparian ecosystems in the United States. Wilson Bulletin, 1988, 100:272~284
    [152] Kronvang, B., Jensen, J.P., Hoffman, C.C., Boers, P., Nitrogen transport and fate in European rivers, lakes, and wetlands. 2001.pp. 183-206. In R.F.
    [153] Kuraji K, Yuri T, Nobuaki T, et al. Generation of stemflow volume and chemistry in a mature Japanese cypress forest. Hydrological Processes, 2001, 15:1967~1978
    [154] Kyle R. Mankin, Daniel M.Ngandu, et al., Grass-shrub Riparian Buffer Removal of Sediment, Phosphorus, and Nitrogen from Simulated Runoff. Journal of the American Water Resources Association, 2007, 43(5):1108~1116
    [155] Lattin J.D., Arthropod diversity in Northwest old-growth forests. Wings, 1990.15(2):7~10
    [156] Levia D F J, Herwitz S R. Physical properties of water in relation to stemflow leachate dynamics:implications for nutrient cycling. Canadian Journal of Forest Research, 2000, 30:662~666
    [157] Lewis L. Osborne & David A. Kovacic. Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biology, 1993, 29: 243~258
    [158] Likens G.E. & F.H. Bormann., Linkages between terrestrial and aquatic ecosystems. BioScience, 1974,24: 447~456.
    [159] Likens GE, Bormann FH, Pierce RS, Eaton JS, Johnson NM, Biogeochemistry of a ForestedEcosystem.Springer-Verlag, NewYork, 1977,146
    [160] Line D.E. et al., Nonpoint source pollutant load reductions associated with livestock exclusion. Journal of Environmental Quality, 2000, 29(6):1882~1890
    [161] Lowrance R., Todd R.L., Fail J, et al., Riparian forests as nutrient filters in agricultural watersheds. Bioscience, 1984, 34(8):374~377
    [162] Lowrance, R., Todd, R.L., Asmussen, L.E., Nutrient cycling in an agricultural watershed: II. Streamflow and artificial drainage. J. Environ. Qual, 1984a, 13:27~32
    [163] Lowrance, R., Todd, R.L., Asmussen, L.E., Nutrient cycling in an agricultural watershed: I. Phreatic movement. J. Environ. Qual, 1984b, 13:22~27
    [164] Lowrence R. et al. Managing riparian ecosystems to control nonpoint pollution. Journal of soil and water conservation, 1985, 40:87~89
    [165] Lowrance R, Sharpe J.K., Sheridan J/M., Long-term sediment deposition in the riparian zone of a coastal plain watershed. Journal of Soil and Water Conservation, 1986, 41(4):266~271
    [166] Lowrance R.R., Groundwater nitrate and denitrification in a coastal plain riparian forest. Journal of Environmental Quality, 1992, 21(3):401~405
    [167] Lowrance R., Altier L.S., Willianms RG, et al. REMM: The riparian ecosystem management model. Journal of Soil and Water Conservation, 2000, 55(1):27~34
    [168] Magdoff, F.R., Ross, D., Amadon, J., A soil test for nitrogen availability to corn. Soil Sci. Soc. Am. J. 1984, 48:1301~1304
    [169] Malanson G.P., Riparian landscapes. Cambridge University Press, 1993
    [170] Mander U. et al., Efficiency and dimensioning of riparian buffer zones in agricultural catchments. Ecological Engineering, 1997, 8(4):299~324
    [171] McClain, M.E., Richey, J.E., Pimentel, T.P., Groundwater nitrogen dynamics at the terrestrial-lotic interface of a small catchment in the Central Amazon Basin. Biogeochemistry, 1994, 27:113~127
    [172] Meehan W. R. et al., Influences of riparian vegetation on aquatic ecosystems with particular references to salmonid fishes and their food supplies. In: Importance, Preservation and Management of Floodplain Wetlands and Other Riparian Ecosystems (R. R. Johnson and D. A. Jones, eds.), USDA Forest Service General Technical Report RM-43, 1977, 137~145
    [173] Michael M. Pollock, et al., Plant species richness in riparian wetlands– a test of biodiversity theory.Ecology, 1998, 79~94
    [174] Miller, et al. , An approach for greenway suitability analysis. Landscape and urban planning, 1998, 42: 91~105
    [175] Mitsch W.J. & J.G.. Gosselink., Wetlands. Van Nostrand Reinhold, New York, USA.40. Murphy M.L., 1979. Predator assemblages in old-growth and logged sections of small Cascade streams. Master’s Thesis, Oregon State University, Corvallis, Oregon, USA. 1993
    [176] Mooney H.A. et al., Exchange of materials between terrestrial ecosystems and the atmosphere. Science, 1987, 238:926~932
    [177] Mosier, A.R., Doran, J.W., Freney, J.R., Managing soil denitrification. J. Soil and Water Conserv, 2002, 57:505~512
    [178] Muscutt, A.D., Harris, G.L., Baily, S.W., Davies, D.B., Buffer zones to improve water quality: a review of their potential use in UK agriculture. Ag. Ecosyst. Environ, 1993, 45:59~77
    [179] Naiman R.J. et al., Longitudinal patterns of ecosystem processes and community structure in a subarctic river continuum. Ecology, 1987,68:1139~1156
    [180] Naiman R.J., Forest ecology: influence of forests on streams. McGraw-Hill, Yearbook of Science and Technology, McGraw-Hill, NewYork, USA, 1990, 151~153
    [181] Naiman R.J. et al., Watershed Management: Balancing Sustainability and Environmental Change. Springer-Verlag, New York, USA, 1992
    [182] Naiman R.J. et al., The role of riparian corridors in maintaining regional biodiversity. Ecological Applications, 1993, 3:209~212
    [183] National research Council, Riparian Areas: Functions and Strategies for Management. Washington DC: National Academy Press, 2002
    [184] Nelson S.M., The Western Viceroy butterfly (Nymphalidae Limenitis archippus obsoleta): An indicator for riparian restoration in the arid southwestern United States. Ecological Indicators, 2003, 3:203~211
    [185] Nilsson C., Conservation management of riparian communities. In: Ecological principles of nature conservation (L. Hansen, ed.). Elsevier Applied Science, London, England, 1992, 352~372
    [186] N. J. Snyder, S. Mostaghimi, et al., Impact of Riparian Forest Buffers on Agricultural Nonpoint Source Pollution. Journal of the American Water Resources Association, 1998, 34(2):385~395
    [187] Oenema O. et al. Leaching of nitrate from agriculture to groundwater: the effect of policies and measures in the Netherlands. Environmental Pollution, 102(1):471~478
    [188] Ormerod S.J. et al., The influence of riparian management on the habitat structure and macroinvertebrate communities of upland streams draining plantation forests. J. Appl. Ecol., 1993, 30:13~24
    [189] Osborne L.L., Kovacic D.A., Riparian vegetated buffer strips in water quality restoration and stream management. Freshwater Biology, 1993, 29(2):243~258
    [190] Peterjohn, W. T. & D. L Correll., Nutrient dynamics in an agricultural watershed: Observations on the role of a riparian forest. Ecology, 1984, 65:1466~1475
    [191] Phillips, P.J., Denver, J.M., Shedlock, R.J., Hamilton, P.A., Effect of forested wetlands on nitrate concentrations in ground water and surface water on the Delmarva Peninsula. Wetlands,1993, 13:75~83
    [192] Piegay H.,London N., Promoting ecological management of riparian forests on the Drome River, France. Aquatic Conser-Marine Freshwater Ecosystem, 1997, 7(4):287~304
    [193] Pionke, H.B., Lowrance, R.R., 1991. Fate of nitrate in subsurface drainage waters. pp. 237~257. In Managing nitrogen for ground water quality and farm profitability
    [194] Poe, G., van Es, H. M., vanderBerg, T., Bishop, R., Do participants in well testing programs update their exposure risk perceptions? J. Soil Water Conserv, 1998, 53: 320~325
    [195] Raedeke, K.J., Streamside management: riparian wildlife and forestry interactions. Proceedings of a Symposium on riparian wildlife and forestry interactions. Contribution No.59. University of Washington, Seattle, Washington, USA., 1988
    [196] Randall, G.W., Iragavarapu, T.K., Impact of long-term tillage systems for continuous corn on nitrate leaching to tile drainage. J. Environ. Qual., 1995, 24:360~366
    [197] Randall, G.W., Huggins, D.R., Russelle, M.P., Fuchs, D.J., Nelson, W.W., Anderson, J.L., Nitrate losses through subsurface tile drainage in conservation reserve program, alfalfa, and row crop systems. J. Environ. Qual., 1997, 26:1240~1247
    [198] Rejmanek, M., The concept of structure in phytosociology with references to classification of plant communities. Vegetation, 1977, 35: 55~61
    [199] R.F. Follett, D.R. Keeney, and R.M. Cruse (eds.). Soil Science Society of America, Inc. Madison, WI,USA.
    [200] Robbins, C.W., Carter, D.L., Nitrate-nitrogen leached below the root zone during and following alfalfa. J. Environ. Qual. 1980, 9:447~450
    [201] Salo E.O. et al., Streamside Management: Forestry and Fishery Interactions. Proceedings of a conference sponsored by the College of Forest Resources, University of Washington and others, Seattle, Washington, USA., 1987
    [202] Schepers, J.S., M.G., Moravek, and E.E. Alberts., Maize production impacts on ground water quality. J. Environ. Qual., 1991, 20:12~16
    [203] Schnabel R.R., Cornish L.F., Stout W.L., Denitrification rates at four riparian ecosystems in the valley and ridge physiographic province, Pennsylvania//Clean Water, Clean Environment: 21st Century. Kansas City: Conference Proceedings ASAE, 1995, 231~234
    [204] Shaffer, M.J., J.A. Delgado, Essentials of a national nitrate leaching index assessment tool. J. Soil Water Conserv., 2002,57:327~335
    [205] Sheridan J.M. et al. Management effects on runoff and sediment transport in riparian forest buffers. Trans ASAE., 1999, 42(1):55~64
    [206] Smith et al., Ecology of Greenways. The University of Minnesota Press, 1993
    [207] Smith CK, Coyea MR,Munson AD. Soil carbon,nitrogen,and phosphorus stocks and dynamics under disturbed black spruce Forests[J].Ecol.Appl., 2000,10:775~788
    [208] Speiran G.K. et al., Natural processes for managing nitrate in ground water discharged to Chesapeake bay and other surface waters: more than forest buffers. US geological survey fact sheet FS-178-97. Richmond: US geological survey. 1998
    [209] Swanson F.J. et al., Material transfer in a Western Oregon Forested Watershed. In: Analysis of Coniferors Forest Ecosystems in the Western United States (R. L. Edmonds, ed.), US/IBP Synthesis Series No. 14. Hutchinson Ross Publishing, Stroudsburg, Pennsylvania, USA, 1982a, 233~266
    [210] Swanson F.J. et al., Land-water interactions: the riparian zone. In: Analysis of Coniferors Forest Ecosystems in the Western United States (R. L. Edmonds, ed.), US/IBP Synthesis Series No. 14. Hutchinson Ross Publishing, Stroudsburg, Pennsylvania, USA, 1982b, 267~291
    [211] Tanner E.V,J. et al., Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology, 1992, 73:78~86
    [212] Thomas J.W., Maser C, Rodiek J.E., Riparian zones//Thomas JW, ed. Wildlife Habitats in Managed Forests: The Blue Mountains of Oregon and Washington. Washington, DC: US Department of Agriculture Forest Service, 1979, 41~47
    [213] Trimble, Stanley W., Stream channel erosion and change resulting from riparian forest. Geology, 1997, 25:467~469
    [214] Udoyars S. T. & Robbert J., Evaluating agriculture non-point source pollution using integrated geographic information systems and hydrologic/water quality model. Environmental Quality, 1994, 23:25~35
    [215] USEPA, Chesapeake Bay Program Forestry Work Group, The Role and Function of Forest Buffers in the Chesapeake Bay Basin for Nonpoint Source Management. Annapolis: US EPA Publication. 1993
    [216] Vannote, R.L. et al., The river continuum concept. Canadian Journal of Fisheries and Aquatic Science, 1980, 37:130~137
    [217] Vitousek P.M. & Howarth R.W., Nitrogen limitation on land and in the sea: how can it occur. Biogeochemistry, 1991, 13:87~115
    [218] Vought L.B.M. et al., Nutrient retention in riparian ecotones. Ambio, 1994, 23(6):343~348
    [219] Wallace J.B. et al., Multiple trophic levels of a forest stream linked to terrestrial liter inputs. Science, 1997, 277:102~104
    [220] Wang Qing-chun et al., Minimum sampling area andαbiodiversity of riparian broad-leaved/Korean pine forest in Erdaobaihe forested watershed, Changbai Mountain. Journal of Forestry Research, 2002, 13(1):12~16.
    [221] Ward J.V. Riverine landscapes: Biodiversity patterns, disturbance regimes, and aquatic conservation. Biol. Conservation, 1998, 83(3):269~278
    [222] Weller D.E. et al., Heuristic models for material discharge from landscapes with riparian buffers. Ecol. Appl., 1998, 8(4):1156~1169
    [223] Wenger S., A review of the scientific literature on riparian buffer width, extent and vegetation. Athens, GA: Office of Public Service and Outreach, Institute of Ecology, University of Georgia, 1999
    [224] West S.D., Introduction: riparian systems and wildlife. In: Streamside Management: Riparian Wildlife and Forestry Interaction. Proceedings of A Symposium on Riparian Wildlife and Forestry Interaction. Contribution No.59. University of Washington, Seattle, Washington, USA, 1987, 59~60 130
    [225] Williamson R.B. et al., Watershed riparian management and its benefits to a eutrophic lake. J. Water Resour Plan Man, ASCE., 1996,122(1):24~32
    [226] Xiang W.N., A GIS method for riparian water-quality buffer generation. Int. J. Geograp. Inf. Syst., 1993, 7(1):57~70.
    [227] Xiao Q, Mcpherson E G, Ustin S L,et al. Winter rainfall interception by two mature opengrown trees in Davis, California. Hydrological Processes, 2000, 14:763~784

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700