用户名: 密码: 验证码:
文昌鱼钙结合蛋白基因的鉴定、表达与进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
文昌鱼(Amphioxus)是介于无脊椎动物和脊椎动物之间的过渡类型,是研究动物进化和胚胎发育的典型材料。利用分子生物学手段,研究文昌鱼有关基因的结构、进化和表达,可以揭示文昌鱼发育的分子生物学机制,有助于我们从分子水平上来了解脊椎动物的起源和进化。本文从青岛文昌鱼(Branchiostoma belcheri tsingtauense)肠cDNA文库(本实验室保存)中,克隆了具有完整编码框的钙结合蛋白基因——钙调素1基因(AmphiCaM1a和AmphiCaM1b)、AmphiCalbin基因和钙相关蛋白基因(AmphiCaRP1和AmphiCaRP2),并对其结构、进化和表达分别开展了研究。
     我们从青岛文昌鱼的肠cDNA文库中得到两个编码CaM1蛋白的CaM1基因,命名为AmphiCaM1a和AmphiCaM1b。二者开放阅读框内仅有两个核苷酸突变,其中一个造成一个氨基酸突变,这一点已经通过半巢式PCR扩增在基因组水平上得到验证。系统进化分析表明,三种文昌鱼的CaM1是传统的钙调素基因,CaM2也许是CaM1基因倍增的产物。Southern杂交结果进一步表明CaM1基因在青岛文昌鱼基因组中存在两个拷贝。Northern杂交结果显示,AmphiCaM1a基因在文昌鱼中存在两个转录本。整体原位杂交、切片原位杂交和Northern杂交结果一致表明从晚期神经胚一直到成体阶段,AmphiCaM1a基因在消化系统强烈表达并一直持续到成体。这提示在神经胚期结束后,AmphiCaM1a基因参与了文昌鱼消化系统的发育和行使功能,并且性成熟后在性腺也发挥一定的作用。作为现存的最接近于脊椎动物祖先的无脊椎动物,头索动物文昌鱼中两个CaM1基因的存在及其表达模式的研究尚属首次报道。
     第三个从青岛文昌鱼肠cDNA文库中克隆到的是编码新型EF手形钙结合蛋白(EFCaBPs)的AmphiCalbin基因。系统进化分析得到了两个有趣的推论。首先,AmphiCalbin与一大组至今未命名的EFCaBPs聚类在一支,而与已鉴定的EFCaBPs分离开来。其次,AmphiCalbin落在了脊椎动物未命名的EFCaBPs一支的基部,很可能代表了它们的原型。这一观点从我们分析的基因组结构上也得到了支持,AmphiCalbin与其脊椎动物的同源基因有着一致的外显子-内含子结构组成。切片原位杂交和整体原位杂交结果一致显示了AmphiCalbin基因在消化系统和性腺的组织特异性表达模式。这提示AmphiCalbin基因可能在消化系统和性腺发挥重要的作用,可以为我们进一步了解未命名EFCaBPs基因家族的表达模式奠定基础。
     本文报道的最后两个从青岛文昌鱼肠cDNA文库中克隆到的基因是编码钙相关蛋白的AmphiCaRP1和AmphiCaRP2基因。序列与系统进化分析显示,AmphiCaRP1和AmphiCaRP2是钙结合蛋白家族的新成员,无EF手形结构,二者聚类在一起。RT-PCR分析表明,AmphiCaRP1和AmphiCaRP2基因在文昌鱼成体的各个组织都表达,在肝盲囊表达丰度略高,提示AmphiCaRP1和AmphiCaRP2可能都与文昌鱼的消化功能有关。整体原位杂交结果表明,AmphiCaRP1基因在胚胎发育到两天的时候才开始在消化系统表达,而AmphiCaRP2基因在胚胎发育到一天的时候就开始在消化系统表达,这提示对于文昌鱼幼虫,AmphiCaRP2比AmphiCaRP1更早发挥其在消化系统的生理功能作用。
Amphioxus, a cephalochordate, is the closest living relative to vertebrate, and has been widely known as the most important animal to study the origin and evolution of vertebrates. Studies on gene structure, function and expression in amphioxus will contribute to the understanding of the origin and evolution of the vertebrates. In this paper, the characterization, expression and phylogenetic analysis of AmphiCaM1a, AmphiCaM1b, AmphiCalbin, AmphiCaRP1 and AmphiCaRP2 are carried out.
     Two full-length cDNAs encoding the highly conserved calmodulin1 (CaM1) proteins, named AmphiCaM1a and AmphiCaM1b, were isolated from the cDNA library of amphioxus Branchiostoma belcheri tsingtauense. There are only two nucleotide substitutions within their open reading frames and one amino acid difference between AmphiCaM1a and AmphiCaM1b, which have been verified by genomic hemi-nested PCR. The phylogenetic analysis indicates that the CaM1 sequence in all three amphioxus species appears to be the conventional CaM and CaM2 might be the gene duplication product of CaM1. Southern blotting suggests that there are two copies CaM1 genes in the genome of B. belcheri tsingtauense. Northern blotting analysis shows the presence of two AmphiCaM1a mRNA transcripts. In addition, whole mount in situ hybridization and tissue-section in situ hybridization as well as Northern blotting prove that AmphiCaM1a shows substantial expression in the digestive system starting from late neurulae stage and continuously lasting to its adulthood stage. These observations denote that it is possible that the AmphiCaM mainly involved in the differentiation of the digestive system after the neurulae stage is completed, and plays a role in both gut and gonads when it sexually matures. The presence of two CaM1 proteins and the expression pattern regarding CaM are the first reported in cephalochordate amphioxus,which has long been regarded as the extant invertebrate most closely related to the proximate ancestor of vertebrates.
     AmphiCalbin, encoding a novel EF-hand calcium-binding protein (EFCaBP), was another gene cloned from the gut cDNA library of amphioxus. The phylogenetic analysis offers two interesting inferences. First, AmphiCalbin clusters with a group of unnamed EFCaBPs that are differentiated from other identified EFCaBPs. Secondly, AmphiCalbin falls at the base of vertebrate unnamed EFCaBPs clade, probably representing their prototype. This is also corroborated by the fact that AmphiCalbin has an exon-intron organization identical to that of vertebrate unnamed EFCaBP genes. Both tissue-section in situ hybridization and whole-mount in situ hybridization prove a tissue-specific expression pattern of AmphiCalbin with the high levels in the digestive system and gonad. It is proposed that AmphiCalbin might play a role in the digestive system and gonad, which lays foundation for further understanding the function of the unnamed EFCaBPs.
     The last two genes reported here obtained from the gut cDNA library of amphioxus are AmphiCaRP1 and AmphiCaRP2, which encoding calcium-related proteins. Both sequence and phylogenetic analysis show that AmphiCaRP1 and AmphiCaRP2 are new members of calium-binding proteins without EF-hand calcium-binding domain, and are clubbed together. RT-PCR analysis indicates that both AmphiCaRP1 and AmphiCaRP2 expressed in all tissues examined, with the relative abundance in the hepatic caecum, suggesting AmphiCaRP1 and AmphiCaRP2 might implicate the role of food digestion. Whole mount in situ hybridization reveals that AmphiCaRP1 is firstly detected in the primitive gut of 48 hr larvae, whereas AmphiCaRP2 is firstly detected in the primitive gut of 24 hr larvae, suggesting that AmphiCaRP2 plays its physiological role in advance compared with AmphiCaRP1.
引文
陈松海, 韩启德. 细胞内游离 Ca2 +浓度的调节机制. 生理科学进展. 1993, 24: 10-13.
    桂建芳, 易梅生. 发育生物学. 第一版, 北京: 科学出版社. 2002, 12-15.
    孙大业, 郭艳林, 马力耕等. 细胞信号转导. 第 3 版. 北京: 科学出版社. 2001, 92-116.
    童第周, 吴尚懃, 叶毓芬. 文昌鱼胚胎神经诱导现象的研究.实验生物学报. 1961, 7: 263-270.
    童第周, 叶毓芬, 杜淼. 以交换分裂球研究文昌鱼的神经诱导. 实验生物学报. 1964, 9: 211-216.
    王蔚, 宿兵, 王义权. 文昌鱼特异的基因倍增. 遗传. 2005, 27 (1):143-149.
    王义权, 方少华. 文昌鱼分类学研究及展望. 动物学研究. 2005, 26 (6): 666 – 672.
    张士璀, 吴贤汉. 从文昌鱼个体发生谈脊椎动物起源. 海洋科学. 1995, 4: 15-21.
    张士璀, 袁金铎, 李红岩. 文昌鱼——研究脊椎动物起源和进化的模式动物. 生命科学. 2001, 13 (5): 215-218.
    张天荫. 动物胚胎发育讲座(二): 文昌鱼的胚胎发生.生物学通报. 1994, 29 (8): 25-27.
    Abi-Rached L, Gilles A, Shiina T, Pontarotti P, Inoko H. Evidence of en bloc duplication in vertebrate genomes. Nat Genet. 2002, 31: 100-105.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
    Altschul SF, Madden TL, Schaffer AA, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402.
    Araki I, Terazawa K, Satoh N. Duplication of an amphioxus myogenic bHLH gene is independent of vertebrate myogenic bHLH gene duplication. Gene. 1996, 171: 231-236.
    Atkin NB, Ohno S. DNA values of four primitive chordates. Chromosoma. 1967, 23: 10-13.
    Babu YS, Bugg CE, Cook WJ. Structure of calmodulin refined at 2.2 ? resolution. J Mol Biol. 1988, 204 (1): 191-204.
    Babu YS, Sack JS, Greenhough JJ, Bugg CE, Means AR, Cook WJ. Three-demensional structure of calmodulin. Nature. 1985, 315: 3740.
    Bachs O, Agell N. Calmodulin and calmoudlin-binding proteins in the cell nucleus. In: Bachs O, Agell N, eds. Calcium and calmodulin function in the cell nucleus. New York: Springer-Verlag. 1995, 217-240.
    Bateson W. The ancestry of the chordata. Quart J Micro Sci. 1886, 26: 535-571.
    Berridge MJ, Lipp P, Bootman MD. The calcium entry pas de deux. Science. 2000, 287: 1604-1605.
    Betrill NJ. Internat J Invert Reprod and Dev. 1987, 11: 1-14.
    Billing-Marczak K, Zieminska E, Lesniak W, Lazarewicz JW, Kuznicki J. Calretinin gene promoter activity is differently regulated in neurons and cancer cells. Role of AP2-like cis element and zinc ions. Biochim Biophys Acta. 2004, 1678 (1): 14-21.
    Breathnach R, Benoist C, O’Hare K, Cannon F, Chambon P. Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon–intron boundaries. Proc Natl Acad Sci. 1978, 75: 4853-4857.
    Burland TG. DNASTAR’s Lasergene sequence analysis software. Methods in Mol Biol. 2000, 132: 71-91.
    Castro LFC, Furlong RF, Holland PWH. An antecedent of the MHC-linked genomic region in amphioxus. Immunogenetics. 2004, 55: 782-784.
    Chan SJ, Cao Q, Steiner DF. Evolution of the insulin superfamily: cloning of a hybrid insulin/insulin-like growth factor cDNA from amphioxus. Proc Natl Acad Sci. USA. 1990, 87: 9319-9323.
    Chattopadhyata R, Meador WE, Means AR, Quiocho FA. Calmodulin structure refined at 1.7 ? resolution. J Mol Biol. 1992, 228 (6): 1177-1192.
    Chen S, Guo JH, Saiyin H, Chen L, Zhou GL, Huang CQ, Yu L. Cloning and characterization of human CAGLP gene encoding a novel EF-hand protein. DNA Seq. 2004, 15 (5-6): 365-8.
    Cheung GP, Cotropia JP, Sallach HJ. Comparative studies of enzymes related to serine metabolis in fetal and adult liver. Biochim Biophys Acta. 1968, 170 (2): 334-40.
    Cheung WY. Cyclic 3’, 5’-nucleotide phosphodiesterase: pronounced stimulation by snake venom. Biochem Biophys Res Commun. 1967, 29 (4): 478-82.
     Cheung WY, Lynch TJ, Wallace RW. An endogenous Ca2+-dependent activator protein of brain adenylate cyclase and cyclic neucleotide phosphodiesterase.Adv Cyclic Nucleotide Res. 1978, 9: 233-51.
    Chien YH, Dawid IB. Isolation and characterization of calmodulin genes from Xenopus laevis. Mol Cell Biol. 1984, 4: 507-513.
    Clementi E, Meldolesi J. Pharmacological and functional properties of voltage-independent Ca2+cnannels. Cell Calcium. 1996, 19: 269-279.
    Clewley JP. Macintosh sequence analysis software, DNAStar’s LaserGene. Mol Biotechnol. 1995, 3: 221-4.
    Conklin EG. The embryology of amphioxus. J Morph. 1932, 54: 69-151.
    Cook WJ, Jeffrey LC, Cox JA, Vijay-Kumar S. Structure of a sarcoplasmic calcium-binding protein from amphioxus refined at 2.4 A resolution. J Mol Biol. 1993, 229 (2): 461-71.
    Cook WJ, Walter LJ, Walter MR. Drug binding by calmodulin: crystal structure of a calmodulin-trifluoperzine complex. Biochemistry. 1994, 33 (51): 15259-15265.
    Coronodo R, Mirissete J, Sukharava M, et al. Differential activation of transcription factors induced by Ca2+ response amplititude and duration. Nature. 1997, 386: 855-858.
    Craig AW, Haghighat A, Yu AT, Sonenberg N. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature. 1998, 392 (6675): 520-3.
    Crivici A, Ikura M. Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct. 1996, 24: 85-116.
    Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, et al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science. 2002, 298: 2157-2167.
    Di Gregorio A, Villani MG, Locascio A, Ristoratore F, Aniello F, Branno M. Developmental regulation and tissue-specific localization of calmodulin mRNA in the protochordate Ciona intestinalis. Develop Growth Differ. 1998, 40: 387-394.
    Fasolato C, et al. Int racellular calcium pools in PC12 Cells. J Biol Chem. 1991, 226: 20159-20167.
    Felsenstein J. PHYLIP (Phylogeny Interference Package). version 3.5c. Department of Genetics, Seattle. Washington, USA: University of Washington. 1993.
    Ferrier DE, Minguillon C, Holland PWH, Garcia Fernandez J. The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14. Evol Dev. 2000, 2: 284-293.
    Fischer R, Koller M, Flura M, Mathews S, Strehler PMA, Krebs J, Penniston JT et al. Multiple divergent mRNAs code for a single human calmodulin. J Biol Chem. 1988, 263: 17005-17062.
    Floyd EE, Gong ZY, Brandhorst BP, Klein WH. Calmodulin gene expression during sea urchin development: persistence of a prevalent maternal protein. Dev Biol. 1986, 113: 501-511.
    Fox JL, Burgsthler AD, Nathanson MH. Mechanism of long-range Ca2+ signaling in the nucleus of isolated rat hepatocytes. Biochem J. 1997, 326: 491-495.
    Fresriksson G, Ericaon LE, Olsson R. Iodine binding in the endostyle of larval Branchiostoma Lanceolatum. Gen Comp Endocrinol. 1984, 56: 177-84.
    Friedberg F, Taliaferro L. Calmodulin genes in zebrafish (revisited). Mol Biol Rep. 2005, 32: 55-60.
    Gans C, Kemp N, Poss S. Israel J Zoo. 1996, 42 (Supplement): 1-446.
    Garstang W. The morphology of the Tunicata, and its bearings on the phylogeny of the chordata. Quart J Micro Sci. 1928, 72: 51-187.
    Gehrig LMB, Delbaere LTJ, Hickie RA. Preliminary X-ray data for the calmodulin/trifluoperazine complex. J Mol Biol. 1984, 177 (3): 559-561.
    Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev. 2002, 82: 331-371.
    Gilmour THJ. Feeding method of cephalochordate larvae. Israel J Zool Suppl. 1996, 42: 87-95.
    Grant AL, Jones A, Thomas KL, Wisden W. Characterization of the rat hippocalcin gene: the 5’ flanking region directs expression to the hippocampus. Neuroscience. 1996, 75 (4): 1099-115.
    Gu X, Wang Y, Gu J. Age distribution of human gene families shows significant roles of both large- and small scale duplications in vertebrate evolution. Nat Genet. 2002, 31: 205-209.
    Hammerschmidt M, Broook A, McMahon AP. The world according to hedgehog. Trends Genet. 1997, 13: 14-21.
    Hardy DO, Bender PK, Kretsinger RH. Two calmodulin genes are expressed in Arbacia punctulata. An ancient gene duplication is indicated. J Mol Biol. 1988, 199: 223-227.
    Harland RM. In situ hybridization: An improved whole-mount method for Xenopus embryos. Methods Cell Biol. 1991, 36: 685-695.
    Hauck LL, Phillips WS, Weis VM. Characterization of a novel EF-hand homologue, CnidEF, in the sea anemone Anthopleura elegantissima. Comp Biochem Phys B. 2007, 146: 551-559.
    Hawkins TE, Merrifield CJ, Moss SE. Calcium signaling and annexins. Cell Biochem Biophys. 2000, 33: 275-296.
    Heizmann CW, Hunziker W. Intracellular calcium-binding proteins: more sites than insights. Trends Biochem. 1991, 16: 98-103.
    Holland LZ, Holland ND. Chordate origins of the vertebrate central nervous system. Curr Opin Neurobio. 1999, l9: 596-602.
    Holland LZ, Holland PWH, Holland ND. Revealing homologies between body parts of distantly related animals by in situ hybridization to developmental genes: Amphioxus versus vertebrates. In: Ferraris JD, Editors. Molecular Zoology: Advances, Strategies, and Protocols. New York: Wiley-Liss. 1996, 267-82.
    Holland LZ, Laudet V, Schubert M. The chordate amphioxus: an emerging model organism for developmental biology. Cell Mol Life Sci. 2004, 61: 2290-2308.
    Holland LZ, Pace DA, Blink ML. Sequence and expression of amphioxus alkali myosin light chain (AmphiMLC2alk) throughout development: implications for vertebrate myogenesis. Dev Biol. 1995, 171: 665-676.
    Holland ND, Holland LZ, Kozmik Z. An amphioxus Pax gene, AmphiPax-1, expressed in embryonic endoderm, but not in mesoderm: implications for the evolution of class I paired box genes. J Mar Biol Biotechnol. 1995, 4: 206-214.
    Holland ND, Panganiban G, Henyey EL, Holland LZ. Sequence and developmental expression of AmphiDll, an amphioxus distal-less gene transcribed in the ectoderm, epidermis and nervous system: insights into evolution of craniate forebrain and neural crest. Development. 1996, 122: 2911-2920.
    Holland PWH, Garcia Fernandez J. Hox genes and chordate evolution. Dev Biol. 1996,173: 382-395.
    Holland PWH, Garcia Fernandez J, Williams NA, Sidow A. Gene duplications and the origins of vertebrate development. Dev Suppl. 1994, 125-133.
    Holland PWH, Holland LZ, Williams NA, Holland ND. An amphioxus homeobox gene: sequence conservation, spatial expression during development and insights into vertebrate evolution. Development. 1992, 116: 653-661.
    Holland PWH, Koschorz B, Holland LZ, Herrmann BG. Conservation of Brachyury (T) genes in amphioxus and vertebrates: developmental and evolutionary implications. Development. 1995, 121: 4283-4291.
    Hughes AL. Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of genome duplication early in vertebrate history. J Mol Evol. 1999, 48: 565–5676.
    Hwang M, Morasso MI. The novel murine Ca2+-binding protein, Scarf, is differentially expressed during epidermal differentiation. J Bio Chem. 2003, 278 (48): 47827-47833.
    Ikeshima H, Yuasa S, Matsuo K, Kawamura K, Hata J, Takano T. Expression of three non-allelic genes coding calmodulin exhibit similar localization on the central nervous system of adult rats. J Neurosci Res. 1993, 36: 111-119.
    Ikura M, Clore G M, Gronenborn A M, et al. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science, 1992, 256 (5057): 632-638.
    Ikura M, Kay L E, Krinks M, et al. Triple resonance mutidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: indication of a conformational change in the central helix. Biochemistry, 1991, 30 (22): 5498-5504.
    Iwabe N, Kuma K, Miyata T. Evolution of gene families and relationship with organismal evolution: rapid divergence of tissuespecific genes in the early evolution of chordates. Mol Biol Evol. 1996, 13: 483-493.
    Jaillon O, Bouneau L, Fischer C, Ozoef Costaz C, Bernot A et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature. 2004, 431: 946-957.
    Johnson RL, Laufer E, Riddle RD et al. Ectopic expression of sonic hedgehog alters dorsol-ventral patterning of smites. Cell. 1994, 79: 115-73.
    Jollie M. What are the “Calcichordata”? and the larger question of the origin of chordates. Zool. J. Linn.Soc. 1982, 75: 167-88.
    Joyal JL, Burks DJ, Pons S, Matter WF, Vlahos CJ, White MF, Sacks DB. Calmodulin activates phosphatidylinositol 3-kinase. J Biol Chem. 1997, 272 (45): 28183-6.
    Kakiuchi S, Yamazaki R. Calcium dependent phosphodiesterase activity and its activating factor (PAF) from brain studies on cyclic 3',5'-nucleotide phosphodiesterase (3). Biochem Biophys Res Commun. 1970, 41(5): 1104-10.
    Kakkar R, Taketa S, Raju RV, Proudlove S, Colquhoun P, Grymaloski K, Sharma RK. In vitro phosphorylation of bovine cardiac muscle high molecular weight calmodulin binding protein by cyclic AMP-dependent protein kinase and dephosphorylation by calmodulin-dependent phosphatase. Mol Cell Biochem. 1997, 177 (1-2): 215-9.
     Karabinos A, Bhattacharya D. Molecular evolution of calmodulin and calmodulin-like genes in the cephalochordate Branchiostoma. J Mol Evol. 2000, 51: 141-148.
    Karabinos A, Bhattacharya D, Morys-Wortmann C, Kroll K, Hirschfeld G, Kratzin HD, Barnikol-Watanabe S et al. The divergent domains of the NEFA and nucleobindin proteins are derived from an EF-hand ancestor. Mol Biol Evol. 1996, 13: 990-998.
    Karabinos A, Riemer D. The single calmodulin gene of the cephalochordate Branchiostoma. Gene. 1997, 195: 229-233.
    Kato M, Watanabe Y, Iino S, Takaoka Y, Kobayashi S, Haga T, Hidaka H. Cloning and expression of a cDNA encoding a new neurocalcin isoform (neurocalcin K) from bovine brain. Biochem J. 1998, 331: 871-876.
    Kawasaki H, Kretsinger RH. Calcium-binding proteins 1: EF-hands. Protein Profile. 1995, 2: 297-490.
    Kawasaki H, Nakayama S, Kretsinger RH. Biometals. 1998, 11: 277-295.
    Klaerke DA, Rojkjaer R, Christensen L, Schousboe I. Identification of beta2-glycoprotein I as a membrane-associated protein in kidney: purification by calmodulin affinity chromatography. Biochim Biophys Acta. 1997, 1339 (2): 203-16.
    Kobayashi M, Takamatsu K, Saitoh S, Miura M, Noguchi T. Molecular cloning of hippocalcin, a novel calcium-binding protein of the recoverin family exclusively expressed in hippocampus. Biochem Biophys Res Commun. 1992, 30;189(1): 511-7.
    Koller M, Schnyder B, Strehler EE. Structural organization of the human CaMIII calmodulin gene. Biochim Biophys Acta. 1990, 1087: 180-189.
    Kortschak RD, Samuel G, Saint R, Miller DJ. EST analysis of the cnidarian Acropora millepora reveals extensivegene loss and rapid sequence divergence in the model invertebrates. Curr Biol. 2003, 13: 2190-2195.
    Kovalick GE, Beckingham K. Calmodulin transcription is limited to the nervous system during Drosophilia embryogenesis. Dev Biol. 1992, 150: 33-46.
    Kozmik Z, Holland ND et al. Characterization of an amphioxus paired box gene, AmphiPax2/5/8:developmental expression patterns in optic support cells, nephridium, thyroid-like structure , and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development. 1999, 126: 1295-1304.
    Krause KH et al. Calcium-storage organells. FEBS Lett . 1991, 285: 225-229.
    Kretsinger RH. Evolution and function of calcium-binding proteins. Int Rev Cytol. 1976, 46: 323-93.
    Lagece′ L, Chandra T, Woo SLC, Means AR. Identification of multiple species of calmodulin messenger RNA using a full length complementary DNA. J Biol Chem. 1983, 258: 1684-1688.
    Lazzaro D, Price M et al. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development. 1991, 113: 1093-1104.
    Lee SJ, Ju CC, Chu SL, Chien MS, Chan TH, Liao WL. Molecular cloning, expression and phylogenetic analyses of parvalbumin in tilapia, Oreochromis mossambicus. J Exp Zoolog A Comp Exp Biol. 2007, 307a: 1, 51.
    Lin Y, Zhang X, Liang K, Yang H, Zhang H. Phylogenetic analysis and developmental expression of brp-like genes in amphioxus and zebrafish. Comp Biochem Phys. 2005, 141: 71-76.
    Liqht SF. Amphioxus fishers near the university of Amoy. China Science. 1923, VIII: 57-60.
    Liu Z, Zhang S, Liu M, Wang Y, Chu J, Xu A. Evolution and expression of the amphioxus AmphiHMGB gene encoding an HMG-box protein. Comp Biochem Physiol B Biochem Mol Biol. 2004, 137: 131-138.
    Liu Z, Zhang S, Yuan J, Sawant MS, Wei J, Xu A. Molecular cloning and phylogenetic analysis of AmphiUbf80, a new member of ubiquitin family from the amphioxus Branchiostoma belcheri tsingtauense. Curr Sci. 2002, 83: 50-53.
    Lodge AP, Walsh A, McNamee CJ, Moss DJ. Identification of chURP, a nuclear calmodulin-binding protein related to hnRNP-U. Eur J Biochem. 1999, 261 (1): 137-47.
    Luan J, Liu Z, Zhang S, Li H, Fan C, Li L. Characterization, evolution and expression of the calmodulin1 genes from the amphioxus Branchiostoma belcheri tsingtauense. Acta Biochim Biophys Sin. 2007, 39 (4): 255–264.
    Luke GN, Castro LF, McLay K, Bird C, Coulson A, Holland PWH. Dispersal of NK homeobox gene clusters in amphioxus and humans. Proc Natl Acad Sci USA. 2003, 100: 5292–5295.
    Martin-Nieto J, Villalobo A. The human epidermal growth factor receptor contains a juxtamembrane calmodulin-binding site. Biochemistry. 1998, 37 (1): 227-36.
    Marzoli A, Renne PR, Piccirillo EM. Extensive 200-million-year-old continental flood basalts of the central Atlantic magmatic provinc. Science. 1999, 284: 616-618.
    Matsuo K, Sato K, Ikeshima H, Shimoda K, Takano T. Four synonymous genes encode calmodulin in the teleost fish, medaka (Oryzias latipes): conservation of the multigene one-protein principle. Gene. 1992, 119: 279-281.
    Mc-Lysaght A., Hokamp K, Wolfe KH. Extensive genomic duplication during early chordate evolution. Nat Genet. 2002, 31: 200–204.
    Meador WE, Means AR, Quiocho FA. Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structure. Science. 1993, 262 (5113): 1718-1721.
    Michalak M et al. Isolation and characterization of calcium binding glycoproteins of cardiac sarcolemmal vesicles. J Biol Chem. 1990, 265: 5869-5874.
    Miles KY, Julie AS, Olivia HP, Brian JM, Sara LT. Structure and expression of the Drosophila calmodulin gene. Nucl Acids Res. 1987, 15: 3335-3348.
    Moreno CS, Park S, Nelson K, Ashby D, Hubalek F, Lane WS, Pallas DC. WD40 repeat proteins striatin and S/G(2) nuclear autoantigen are members of a novel family of calmodulin-binding proteins that associate with protein phosphatase 2A. J Biol Chem. 2000, 275 (8): 5257-63.
    Morgan RO, Martin-Almedina S, Iglesias JM, Gonzalez-Florez MI, Fernandez MP. Evolutionary perspective on annexin calcium-binding domains. Biochim Biophys Acta. 2004, 1742: 133-140.
    Muallem S et al. Calcium-storage organelles. Rev Physiol. 1989, 51: 83-105.
    Müller W. ?ber die hypobranchialrinne der tunicaten und deren vorhandersein bei amphioxus und den cyklostomen. Jena Z Med Naturw. 1873, 7: 327-332.
    Nakayama S, Kretsinger RH. Evolution of the EF-hand family of proteins. Annu Rev Biophys Biomol Struct. 1994, 23: 473-507.
    Nalefski EA, Falke JJ. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci. 1996, 5: 2375-2390.
    Naruse K, Tanaka M, Mita K et al. A Medaka Gene Map: The Trace of Ancestral Vertebrate Proto-Chromosomes Revealed by Comparative Gene Mapping. Genome Res. 2004, 14: 820-828.
    Nash PD et al. Calreticulin: Not just another ealciumbinding protein. Mol Cell Biochem. 1994, 135: 71-78.
    Nelson MR, Chazin WJ. Calmodulin as a Calcium Sensor. In: Van Eldik LJ, Watterson DM, editors. Calmodulin and Signal Transduction. New York, Academic Press. 1998, p 17-64.
    Nojima H. Structural organization of multiple rat calmodulin genes. J Mol Biol. 1989, 208: 269-282.
    Nojima H, Sokabe H. Structure of a gene for rat calmodulin. J Mol Biol. 1987, 193: 439-445.
    Odenthal J, Haffter P, Vogelsang E, Brand M, van Eeden FJ, Furutani Seiki M, Granato M, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Warga RM, Allende ML, Weinberg ES, Nusslein Volhard C. Mutations affecting the formation of the notochord in the zebrafish, Danio rerio. Development. 1996, 123: 103-15.
    Ohno S. Patterns in genome evolution. Current Opinion in Genetics and Devel. 1993, 3: 911-14.
    Okazaki K, Watanabe M, Ando Y, Hagiwara M, Terasawa M, Hidaka H. Full sequence of neurocalcin, a novel calcium-binding protein abundant in central nervous system. Biochem Biophys Res Commun. 1992, 29, 185 (1): 147-53.
    Parekh AB, Parekh AB, Penner R. Store depletion and calcium influx. Physiol Reviews. 1997, 77: 902-930.
    Pebusque MJ, Coulier F, Birnbaum D, Pontarotti P. Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. Mol Biol Evol. 1998, 15: 1145-1159.
    Pongs GM, Lindemeier J, Zhu XR, Engelkamp D, Krahjentgens I, Lambrecht H-G, Koch K-W, Schwemer J, Rivosecchi R, Mallart A, Galceran J, Canal I, Barbas JA, Ferrus A. Frequenin-A novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron. 1993, 11: 15-28.
    Poss SG, Boschung HT. Lancelets (Cephalochordata: Branchiostomatidae): How many species are valid? Israel J Zool. 1996, 42:13-66.
    Postlethwait JH, Woods IG, Hazelett PN, Yan YL, Kelly PD et al. Zebrafish Comparative Genomics and the Origins of Vertebrate Chromosomes. Genome Res. 2000, 10: 1890-1902.
    Rao ST, Wu S, Satyshar K A, et al. Structure of Paramecium tetraurelia calmodulin at 1.8 ? resolution. Protein Sci. 1993, 2 (3): 436-447.
    Rasmussen SW. DNATools, a software package for nucleotide and protein sequences. Published on the internet ar http: //www.dnatools.dk 1998-2001.
    Raynal P, Pollard HB. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994, 1197: 63–93.
    Rehm BH. Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification. Appl Microbiol Biotechnol. 2001, 57: 579-592.
    Rhyner JA, Ottiger M, Wicki R, Greenwood TM, Strehler EE. Structure of the human CALM1 calmodulin gene and identification of two CALM1-related pseudogenes CALM1P1 and CALM1P2. Eur J Biochem. 1994, 225: 71-82.
    Robson KJ. Sequence divisity in the intron of the calmodulin gene from Plasmodium falciparum. Mol Biochem Parasitol. 1993, 60 (1): 1-8.
    Sambrook J, Fritsch, Maniatis EFT. Molecular cloning. A Laboratory Manual, 2nd edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
    Santella L, Carafoli E. Cacium signaling in the cell nucleus. FASEB J. 1997, 11: 1091-1109.
    SenGupta B, Friedberg F, Detera-Wadleigh SD. Molecular analysis of human and rat calmodulin complementary DNA clones. Evidence for additional active genes in these species. J Biol Chem. 1987, 262: 16663-16670.
    Schuurink RC, Shartzer SF, Fath A, Jones RL. Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Proc Natl Acad Sci USA. 1998, 95 (4): 1944-9.
    Shimeld SM. Characterization of amphioxus HNF-3 genes: conserved expression in the notochord and floor plate. Dev Biol. 1997, 183: 74-85.
    Simmen RC, Tanaka T, Ts’ui KF, Putkey JA, Scott MJ, Lai EC, Means AR. The structural organization of the chicken calmodulin gene. J Biol Chem. 1985, 260: 907-912.
    Smith ML, Johanson RA, Rogers KE, Coleman PD, Slemmon JR. Identification of a neuronal calmodulin-binding peptide, CAP-19, containing an IQ motif. Brain Res Mol Brain Res. 1998, 62 (1): 12-24.
    Smith VL, Doyle KE, Maune JF, Munjaal RP, Beckingham K. Structure and sequence of the Drosophila melanogaster calmodulin gene. J Mol Biol. 1987, 196: 471-485.
    Smoake JA, Song SY, Cheung WY. Cyclic 3’, 5’-nucleotide phosphodiesterase distribution and developmental changes of the enzyme and its protein activator in mammalian tissues and cells. Biochim Biophys Acta. 1974, 341: 402-411.
    Snedden WA, Fromm H. Calmodulin as a versatile calcium signal transducer in plants. New Phytol. 2001, 151: 35-66.
    Sobieszek A, Andruchov OY, Nieznanski K. Kinase-related protein (telokin) is phosphorylated by smooth-muscle myosin light-chain kinase and modulates the kinase activity. Biochem J. 1997, 328 ( Pt 2): 425-30.
    St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999, 13(16): 2072-86.
    Stokes MD, Holland ND. The lancelet: Also known as “amphioxus”, this curious creature has returned to the limelight as a player in the phylogenetic history of the vertebrates. Amer Sci. 1998, 86: 552-560.
    Stull JT. Ca2+-dependent cell signaling through calmodulin-activated protein phosphatases and protein kinases. J Biol Chem. 2001, 276: 2311–2312.
    Sturchler E, Cox JA, Durussel I, Weibel M, Heizmann CW. S100A16, a novel calcium-binding protein of the EF-hand superfamily. J Biol Chem. 2006, 281 (50): 38905-38917.
    Sun XP, Cellamaras N, Marchant JS, et al. A continuum of InsP3-mediated elementary Ca2+ signaling events in Xenopus oocytes. J Physiol. 1998, 509: 67-80.
    Swanson ME, Sturner SF, Schwartz JH. Structure and expression of the Aplysia californica calmodulin gene. J Mol Biol. 1990, 216: 545-553.
    Takagi T, Petrova T, Comte M, Kuster T, Heizmann CW, Cox JA. Characterization and primary structure of amphioxus troponin C. Eur J Biochem. 1994, 221 (1): 537-46.
    Tarlor D A, Sack J S, Maune J F, et al. Structure of a recombinat calmodulin from Drosophila melanogaster at 2.2 ? resolution. J Biol Chem. 1991, 266 (38): 21375-21380.
    Tautz D and Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryo reveals translation control of the segmentation gene hunchback. Chromosoma. 1989, 98: 81-85.
    Teo TS, Wang JH. Mechanism of activation of a cyclic adenosine 3':5'-monophosphate phosphodiesterase from bovine heart by calcium ions. Identification of the protein activator as a Ca2+ binding protein. J Biol Chem. 1973, 248 (17): 5950-5.
    Torok K, Stauffer K, Evans WH. Connexin 32 of gap junctions contains two cytoplasmic calmodulin-binding domains. Biochem J. 1997, 326 ( Pt 2): 479-83.
    Trejo R, Delhumeau G. Calmodulin content, Ca2+-dependent calmodulin binding proteins, and testis growth: identification of Ca2+-dependent calmodulin binding proteins in primary spermatocytes. Mol Reprod Dev. 1997, 48 (1): 127-36.
    Tung TC, Wu SC, Tung YY. The development of isolated blastomeres of amphioxus. Sci Sin. 1950, 7: 1280-1320.
    Turbeville JM, Schulz JR, Raff RA. Deuterostome phylogeny and the sister group of the chordates: evidence from moleculesthe sister group of the chordates: evidence from molecules and morphology. Mol Biol Evol. 1994, 11: 648-655.
    Usuda N, Arai H, Sasaki H, Hanai T, Nagata T, Muramatsu T, Kincaid RL, Higuchi S. Differential subcellular localization of neural isoforms of the catalytic subunit of calmodulin-dependent protein phosphatase (calcineurin) in central nervous system neurons: immunohistochemistry on formalin-fixed paraffin sections employing antigen retrieval by microwave irradiation. J Histochem Cytochem. 1996, 44 (1): 13-8.
    Vandonselaar M, Hickit R, Quail J W, et al. Trifluoperzine-induced conformational change in Ca2 +-calmodulin. Nature Struct Biol. 1994, 1 (11): 795-801.
    Van Eldik LJ, Roberts DM. Calcium modulated proteins in pathophysiology. In: Thompson MP, ed. Calcium-binding proteins. Volume II: Biological functions. Washington, DC: CRC Press, Florida. 1988, 401-403.
    Van Eldik LJ, Watterson DM. Calmodulin and Signal transduction. In: Van Eldik LJ, Watterson DM, eds. Calmodulin and signal transduction. New York: Academic Press. 1998, 1-19.
    Venkatesh TV, Holland ND, Holland LZ, Su MT, Bodmer R. Sequence and developmental expression of AmphiNk2-1: Insights into the evolution origin of the vertebrate thyroid gland and forebrain. Dev Genes Evol. 1999, 209: 254-59.
    Vogel HJ. Calmodulin: a versatile calcium mediator protein. Biochem Cell Biol. 1994, 72 (9): 357-376.
    Wada H, Satoh N. Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc Natl Acad Sci USA. 1994, 91: 1801-1804.
    Wang L, Zhang S, Liu Z, Li H, Wang Y, Jiang S. Characterization and expression of amphioxus ApoD gene encoding an archetype of vertebrate ApoD proteins. Cell Biol Int. 2007, 31 (1): 74-81.
    Wu SH, Zhang SC, Wang YY, Bao BL, Qu YM, Jiang XJ. Laboratory observation on spawning, fecundity and larval development of amphioxus (Branchiostoma belcheri tsingtaunese). Chinese Journal of Oceanology and Limnology. 1994, 12: 289-294.
    Xu X, Zhang X, Wu N, He Z. Zhonghua Yan Ke Za Zhi. Treating early giant retinal tears altogether with perfluorodecalin and perfluoropropane. 1998, 34 (4): 247-9, 16.
    Xue J, Zhang S, Liu N, Liu Z. Verification, characterization and tissue-specific expression of UreG, a urease accessory protein gene, from the amphioxus Branchiostoma belcheri. Acta Biochim Biophys Sin. 2006, 38: 549-55.
    Yabe D, Nakamura T, Kanazawa N et al. Calumenin, a Ca2+-binding protein retained in the endoplasmic reticulum with a novel carboxylterminal sequence, HDEF. J Biol Chem. 1997, 272 (29): 18232-18239.
    Yamamoto Y, Sokawa Y, Maekawa S. Biochemical evidence for the presence of NAP-22, a novel acidic calmodulin binding protein, in the synaptic vesicles of rat brain. Neurosci Lett. 1997, 224 (2): 127-30.
    Ye Q, Berchtold MW. Structure and expression of chicken calmodulin I gene. Gene. 1997, 194: 63-68.
    Youn HD, Sun L, Prywes R, Liu JO. Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor MEF2. Science. 1999, 286 (5440): 790-3.
    Yu CJ, Yan LJ, Wei Q. Research proceeding of calcineurin. Chinese Bulletin of Life Sciences. 2000, 12 (2): 89-92.
    Yuan J, Zhang S, Liu Z, Luan Z, Hu G. Cloning and phylogenetic analysis of an amphioxus myogenic bHLH gene AmphiMDF. Biochem Biophys Res Commun. 2003, 301: 960-967.
    Yuasa HJ, Cox JA, Takagi T. Genomic structure of the amphioxus calcium vector protein. J Biochem (Tokyo). 1999, 126 (3): 572-577.
    Yuasa HJ, Yamamoto H, Takagi T. The structural organization of the ascidian Halocynthia roretzi calmodulin genes: The vicissitude of introns during the evolution of calmodulin genes. Gene. 1999, 229: 163-169.
    Zhang M, Tanaka T, Ikura M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nature Struct Biol. 1995, 2 (11): 758-766.
    Zhang SC, Yuan JD, Li HY. Amphioxus m?odel animal for insights into the origin and evolution of the vertebrates. Chin Bull Life Sci. 2001, 13: 214-218.
    Zhao B, Zhang S, Wang Y, Liu Z, Kong D. Characterization and expression of p23 gene in the amphioxus Branchiostoma belcheri. Comparative Biochemistry and Physiology, Part B. 2006, 145: 10-15.
    Zucchi R, Ronca T. The sarcolasmic reticulum Ca2+channel/ryanodine receptor modulation by endogenous effectors, drug and disease states. Pharmacol Rev. 1997, 49: 1-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700