用户名: 密码: 验证码:
双侧向测井资料迭代正则化反演与各向异性地层多分量感应测井数值仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要分为以下两部分工作:
     第一部分:根据非线性反演理论与Morozov偏差原理研究建立从双侧向测井(DLL)资料中同时重构原状地层电阻率、侵入带电阻率、侵入半径、层界面位置以及井眼泥浆电阻率的迭代正则化算法。利用Tikhonov正则化反演理论将双侧向测井资料的反演问题转化为含有稳定泛函的非线性目标函数极小化问题,并由Gauss-Newton算法确定极小化解。为得到稳定的反演结果,有效实现测井资料的最佳拟合,在迭代过程中将Morozov偏差原理和Cholesky分解技术相结合,建立了一套后验选择正则化因子的方法。此外,为了比较双侧向和双感应测井仪器的探测特性,利用几何因子理论考察了双侧向和双感应测井仪器在探测深度和纵向分辨率上的差异;由规范化的Fréchet导数矩阵对比分析了双侧向和双感应测井响应对各地层模型参数的敏感程度;针对不同理论模型对比分析了双侧向反演中不同因素对各模型参数反演效果的影响。最后对大庆油田三个不同区块五十多口井的测井资料进行了反演处理,并将解释结果与实际试油结论进行对比,验证了新算法在处理薄层或薄交互层上的双侧向测井资料时能够取得比双感应反演更为满意的效果。
     第二部分:采用传播矩阵技术研究建立层状各向异性地层中多分量感应测井响应的有效算法。通过Fourier变换将频率空间域中的Maxwell方程组求解问题转化为频率波数域中关于电磁场水平分量常微分方程组的定解问题。利用该方程组系数矩阵的本征值和归一化本征向量将电磁场分解成上行波和下行波模式的组合,推导出均匀各向异性介质中由任意方向磁偶极子产生的电磁波模式解析表达式;在此基础上,利用叠加原理和边界条件研究了电磁波在层状各向异性地层中的反射和透射,给出各个界面上的广义反射系数和不同地层中电磁波振幅的递推公式,进而得到电磁波模式的解析解。为了有效确定频率空间域中的电磁场,采用二维Patterson自适应求积算法结合有限连分式展开技术计算傅氏逆变换。最后通过数值模拟结果证明了该算法的有效性,考察了层状正交各向异性地层中不同各向异性系数、不同井眼倾角以及仪器长度和工作频率变化等情况下的多分量感应测井响应特征。
The work of this paper can be divided into two parts: in the first part, according to the difficulty of interpretation and evaluation about thin reservoirs and thin interactive reservoirs in current Daqing oil field, whose thickness of individual laminate is smaller than 1 m, we present a iterative regularization algorithm to simultaneously reconstruct all the model parameters, including the virgin formation resistivity, flushed zone resistivity, invasion radius, horizontal boundary depth and mud resistivity per bed, from dual-laterolog (DLL) datum based on nonlinear inversion theory and Morozov discrepancy principle. In the second part, we present an efficient algorithm to numerically simulate the responses of multi-component induction logging (MCIL) tool in layered anisotropic formations by using propagator matrix method (PMM) for investigating the response characteristics of MCIL tool in layered general anisotropic formations, which can become a theoretical basis of new instrument design and data processing.
     The electrical logging is one of the most basic and important logging method in petroleum logging. It can classify the lithology, estimate the hydrocarbon saturation and predict the oil-gas production capacity by detecting formation resistivity. The DLL tool is the most widely used logging tool in current domestic, in practical application it usually combined with microspherically focused logging (MSFL) tool to determine the position of permeability formation and identificate the oil-water bed. How to fast and efficiently simulate the logging response in complex formations has important significance to logging data interpretation and inversion algorithm establishment. In chapter 2, a fast forward algorithm for DLL in layered inhomogeneous medium has been set up. The fast algorithm and the semi-analytical expression of Green’s function in layered inhomogeneous formations have been given by numerical mode matching method (NMM) firstly. Then the integral equations on potential values and current distributions of beam electrode, shielding electrodes and monitor electrodes have been established by considering the special structure of DLL tool. Finally, we combine the integral equations with focusing conditions to calculate the logging responses of deep and shallow lateral. Besides, the differences in detecting depth and vertical resolution between dual induction logging tool (DIT) and DLL tool are investigated by geometric factor theory. The numerical results show that the DIT has deeper detecting depth than the DLL tool, and the vertical resolution of DLL tool is much higher than the DIT’s.
     With the development of oil field, people find the logging response values in thin reservoirs and thin interactive reservoirs cannot completely, even incorrectly, reflect the formation parameter information because of the influence of complex environment around the borehole and the self-limiting of instrument. So the inversion processing of well-logging datum is necessary. The inversion of well-logging datum is a mathematically representative ill-posed problem for the nonuniqueness and instability. In order to improve the reliability of inversion results, we present a new iterative regularization inversion algorithm in chapter 3. First, the Born’s approximate formulae of DLL responses and the relation between perturbations of formation conductivity and small changes of model vector are given by perturbation principle. In combination with the forward modeling method, a fast algorithm of normalized Fréchet derivative matrix has been set up. Then a stabilizing function is introduced, which is a non-quadratic function including the derivative of electric conductivity and invasion radius. From the Tikhonov regularization inversion theory, the inversion problem can be transformed into the minimization problem of non-quadratic objective function with the stabilizing functional defined on model space. The minimization of objective function can be obtained by using Gauss-Newton method. In the iterative process, the combination of Morozov discrepancy principle and Cholesky decomposition is executed to propose an a-posteriori regularization factor choice strategy in order to obtain a stable and reliable inversion solution. Thus, not only the objective function and the fitting error of well-logging responses decreased continually, but also the best fit of input data with modeling logs has been realized. The numerical results of theoretical models show that the full-parameter iterative regularization inversion technique can not only reconstruct the real values of virgin formation resistivity and flushed zone resistivity effectively, but also improve the stability and reliability of inversion solutions. It is necessary to make the mud resistivity as a independent inversion parameter when inversing DLL datum, because the detecting depth of DLL tool is more shallow and its response is more sensitive to the changes of mud resistivity than DIT’s. The inversion results of field logs measured from Daqing oil field show that the inversion results of DIT and DLL datum accord with the test oil conclusion at many test oil layers, but the inversion effect of DLL datum are much better than DIT’s in thin reservoirs and thin interactive reservoirs, whose thickness of individual laminate is smaller than 1 m, and it has very important significance to inverse DLL datum in thin reservoirs identification and classification.
     The electric anisotropy phenomenon hadn’t aroused attention to people in early stage of electrical prospecting. With the constrant progress of drilling and logging technology, the study on response characteristics of logging tool in anisotropic formations and influence of formation anisotropy to instrument measure have been gradually concerned by people. The multi-component induction logging (MCIL) is a newly logging technology which can simultaneously measure the formation conductivity with different directions in anisotropic formations. The study on simulation and inversion of logging response under different formation conditions is a very important research topic in current petroleum logging. The forward study in stratified medium is mostly assumed the formation is transverse isotropy (TI), there is no report about the numeirical simulation of MICL responses in layered general anisotropic formations now. In chapter 4, an efficient algorithm to numerically simulate the responses of MCIL in layered anisotropic formations by using propagator matrix method. First, the solving problem of Maxwell’s equations in frequency-spatial domain is transformed into a definite solution problem of first-order ordinary differential systems in frequency-wavenumber domain by Fourier transform. The electromagnetic (EM) field can be decomposed into upgoing and downgoing mode by using eigenvalues and normalized eigenvectors of the system matrix. And an analytical expression of electromagnetic wave emitted by an arbitrary direction of magnetic dipole in homogeneous anisotropic media is derived. Then we derive the recurrence formula of generalized reflection coefficient per interface and that of amplitude of electromagnetic wave each bed by studying the reflection and transmission of electromagnetic wave in layered anisotropic formations based on superposition principle and interface conditions. By this method, it can avoid computing lots of matrices multiple directly. In order to determine numerical solution of electromagnetic field in frequency-spatial domain, a 2D adaptive Patterson integral formula and the limitedly continued fraction expansion technique are used to compute the 2D inverse Fourier transform, which can improve the operation efficiency and the calculation accuracy. Finally, the numerical tests validate the new algorithm and investigate the response characteristics of MCIL tool in layered orthorhombic anisotropic formations: the variations of horizontal anisotropy coefficient can not change the logging response of Y axis, the variations of vertical anisotropy coefficient can not change the logging response of Z axis, the growth of tool length can lead to the vertical resolution reduction, the increase of work frequency can cause much higher skin effect, the changes in borehole dipping angles can not only affect the logging responses in three principle axes direction but also generate counter responses of X axis and Z axis.
引文
[1]张建华,刘振华,仵杰.电法测井原理与应用[M].西安:西北大学出版社,2002.
    [2]楚泽涵.地球物理测井方法与原理(上册)[M].北京:石油工业出版社,2007.
    [3]张庚骥.电法测井[M].山东东营:石油大学出版社,1996.
    [4]斯伦贝谢测井公司著,李舟波,潘葆芝,等译.测井解释原理与应用[M].北京:石油工业出版社,1991.
    [5]李大潜,郑宋穆,谭永基,等.有限元素法在电法测井中的应用[M].北京:石油工业出版社,1980.
    [6]田子立,孙以睿,刘桂兰.感应测井理论及其应用[M].北京:石油工业出版社,1984.
    [7]李继安,赵国辉.三侧向测井电极系的参数选择及岩层电阻率的计算[J].西北铀矿地质,2007,33(1):68-72.
    [8]杨峰,聂在平.双侧向电极系测井响应的精确模拟[J].测井技术,1997,21(4):265-268.
    [9]吕殿中,葛桂江,赵应祥,等.微球形聚焦测井仪技术改造[J].石油仪器,2000,14(1):49-50.
    [10]张鲁惠,刘国民.微电极曲线在特殊油层中的应用[J].测井技术,2000,24(2):125-129.
    [11]唐永福.微侧向测井的边界积分方程解法[J].大庆油田,1982,1(2):145-156.
    [12]冯启宁,郑学新.测井仪器原理(电法测井仪器)[M].山东东营:石油大学出版社,1991.
    [13]杨健弟.双感应测井刻度方法及测量误差分析[J].测井技术,2002,26(3):247-251.
    [14]王汝泉.高分辨率感应测井仪[J].测井技术,2004,28(3):240-242.
    [15]马火林. AIL阵列感应测井原理方法及应用研究[D].北京:中国地质大学地球物理与信息技术学院,2007.
    [16]仵杰,胡启.国外感应测井仪器的研究进展[J].石油仪器,1998,12(1):3-7.
    [17] ANDERSON B,CHANG S K. Synthetic induction logs by the finite element method [C]. SPWLA 23rd Annual Logging Symposium,1982,paper M.
    [18] KIM J H,TOWLE G H,WHITMAN W W. Electric log modeling with a finite difference method [J]. The Log Analyst,1988,29(3):184-195.
    [19]张庚骥.电阻率测井响应的积分方程解法[J].地球物理学报,1985,28(5):519-525.
    [20] CHEW W C,BARONE S,ANDERSON B,et al. Diffraction of axisymmetric waves in a borehole by bed boundary discontinuties [J]. Geophysics,1984,49(10):1586-1595.
    [21] CHEW W C,ANDERSON B. Propagation of electromagnetic waves through geological beds in a geophysical probing environment [J]. Radio Science,1985,20(3):611-621.
    [22] CHEW W C,NIE Z P,LIU Q H,et al. An efficient solution for the response of electrical well logging tools in a complex environment [J]. IEEE Transactions on Geoscience and Remote Sensing,1991,29(2):308-313.
    [23] DAVID M P. Induction log modeling using vertical eigenstates [J]. IEEE Transactions on Geoscience and Remote Sensing,1991,29(2):211-213.
    [24] TAMARCHENKO T V,Druskin V. Fast modeling of induction and resistivity logging in the model with mixed boundaries [C]. SPWLA 34th Annual Logging Symposium,1993,paper GG.
    [25] TSANG L,CHAN A K,GIANZERO S. Solution of the fundamental problem in resistivity logging with a hybrid method [J]. Geophysics,1984,49(10): 1596-1604.
    [26] MEZZATESTA A G,ECKARD M H,STRACK K M. Integrated 2-D interpretation of resistivity logging measurements by inversion methods [C]. SPWLA 36th Annual Logging Symposium,1995,Paper WW.
    [27] TABAROVSKY L A,ROBINOVICH M B. Real 2D inversion of inductionlogging data [J]. Journal of Applied Geophysics,1998,38:251-275.
    [28]汪宏年,陶宏根,王桂萍,等.双感应测井资料的快速近似迭代反演[J].地球物理学报,2007,50(5):1614-1622.
    [29]张玲玲.双感应测井资料的正反演理论及其在大庆油田的应用[M].长春:吉林大学物理学院,2007.
    [30]陶宏根,李庆峰,王桂萍,等.双感应测井资料实用化快速近似迭代反演技术及其在大庆油田的应用[J].测井技术,2007,31(5):441-444.
    [31]张业荣,聂在平,漆兰芬.地层电导率非线性反演方法-双感应测井数据反演[J].测井技术,1998, 22(3):163-167.
    [32]杨峰,聂在平.用变分玻恩迭代方法重建二维非均匀介质结构[J].地球物理学报,2000,43(4):550-556.
    [33]高杰,贾晓平.双感应电阻率反演研究及在土哈油田的应用[J].测井技术,1999, 23(5):334-337.
    [34]朱军,张庚骥.最大熵在感应测井反演中的应用[J].测井技术,1992,16(6):441-450.
    [35]张业荣,聂在平,漆兰芬.地层电导率非线性反演方法-阵列感应数据反演[J].测井技术,1997,21(5):305-309.
    [36]汪宏年,其木苏荣.阵列感应测井资料的快速迭代反演[J].石油地球物理勘探,2002,37(6):644-652.
    [37]张鑫.水平层状非均质地层中阵列感应测井响应数值模拟与全参数迭代反演[M].长春:吉林大学物理学院,2009.
    [38]匡正,刘家琪,唐永福,等.侧向测井反演方法[J].大庆石油地质与开发,1991,10(1):66-70.
    [39]王才经.三侧向测井电阻率反演[J].石油大学学报,1989,13(4):75-81.
    [40]汪宏年,杨善德,常明澈.水平层状介质中侧向电阻率测井快速迭代反演与应用[J].地球物理进展, 1998,13(4):97-107.
    [41]汪宏年,陶宏根,其木苏容,等.水平层状介质中双侧向资料的全参数正则化迭代反演与应用[J].地球物理学报,2002,45(增刊):387-399.
    [42] WANG H N,YANG S D. A multiparameter iterative inversion of dual-laterolog
    [43]赵延文,聂在平.双侧向电阻率测井反演算法研究[J].地球物理学报,1998,41(3):424-431.
    [44]陈华,范宜仁,邓少贵,等.双侧向测井反演的差分进化方法[J].物探化探计算技术,2009,31(4):377-380.
    [45] YIN H Z,WANG H M. Method for 2D Inversion of dual laterolog measurements [P]. US Patent Application Publication,2002.
    [46]张友生,魏斌,杨慧珠.低阻油层双侧向测井的反演研究[J].地球物理学进展,2003,18(1):85-89.
    [47]白东华,陶辅周,李小平,等.双侧向测井的数学反演[J].四川大学学报,1992,29(3):352-359.
    [48] AUKEN E,CHRISTIANSEN A V. Layered and laterally constrained 2D inversion of resistivity data [J]. Geophysics,2004,69(3):752-761.
    [49]张美玲,王英武,杨善德.高频电磁波测井几何边界参数和物理参数的交替反演方法[J].测井技术,2000,24(增刊):483-486.
    [50]刑光龙,张美玲,刘曼芬,等.利用高频电磁波测井反演地层介电常数和电阻率[J].地球物理学报,2002,45(3):435-443.
    [51]张美玲,刑光龙,刘曼芬,等.阻尼型高斯-牛顿法及其在高频电磁波测井反演中的应用[J].计算物理,2002,19(2):155-158.
    [52]赵明,高杰,孙友国.常规电测井联合反演研究与实际应用[J].测井技术,2003,27(1):16-19.
    [53] LIU Z H,LIN H. Jiont inversion of induction / laternal / normal logs,case studies at Shenli field site,China. Journal of Petroleum Science and Engineering [J]. 2002,34:55-64.
    [54] NAYARAN S,DUSSEAULT M B,NOBES D C. Inversion techniques applied to resistivity inverse problems [J]. Inverse Problem,1994,10:669-686.
    [55]汪宏年,杨善德,王艳.各向异性地层中电阻率测井的响应特征[J].石油地球物理勘探,1999,34(6):649-657.
    [56]汪宏年,杨善德,常明澈.水平层状各向异性介质中侧向电阻率测井的快速数值模拟与应用[J].测井技术,1998,22(1):28-31.
    [57] KLEIN J D,MARTIN P R,ALLEN D F. The petrophysics of electrically anisotropic reservoirs [J]. The Log Analyst,1997,38(3):25-36.
    [58]原宏壮.各向异性介质岩石物理模型及应用研究[D].山东东营:中国石油大学地球资源与信息学院,2007.
    [59]夏宏泉,吴宝玉,房军方,等.随钻电阻率测井的各向异性影响及校正方法研究[J].国外测井技术,2007,22(1):12-14.
    [60]周灿灿,王昌学.水平井测井解释技术综述[J].地球物理学进展,2006,21(1):152-160.
    [61] KRIEGSHIUSER B F , FANINI O N , FORGANG S , et al. A new multi-component induction logging tool to resolve anisotropic formations [C]. SPWLA 41st Annual Logging Symposium,2000,paper D.
    [62] KRIEGSHIUSER B F,FANINI O N,MOLLISON R A,et al. Increased oil-in-place in low resisitivity reservoirs from mulicomponent induction log data [C]. SPWLA 41th Annual Logging Symposium,2000,paper A.
    [63] KRIEGSHIUSER B F,FANINI O N,FORGANG S,et al. Improved shaly sand interpretation in highly deviated and horizontal wells using multicomponent induction log data [C]. SPWLA 42th Annual Logging Symposium,2001,paper S.
    [64] FANINI O N,KOELMAN J M,KRIEGSHAUSER B F,et al. Enhanced evaluation of low-resistivity reservoirs using multi-component induction log data [J]. Petrophysics,2001,42(6):611-622.
    [65] HUSSAIN F , ALDRED R , RABINOVICH M , et al. Contributions of multi-component induction logs in difficult well bore environments in north Kuwait low resistivity pay evaluation [C]. SPWLA 46nd Annual Logging Symposium,2005,Paper VV.
    [66] RABINOVICH M , TABAROVSKY L , CORLEY B , et al. Processing multicomponent induction data for formation dip and azimuth in anisotropic formations [C]. SPWLA 46th Annual Logging Symposium,2005,Paper XX.
    [67] RABINOVICH M , TABAROVSKY L. Enhanced anisotropy from jointprocessing of multi-component and multi-array induction tools [C]. SPWLA 42nd Annual Logging Symposium,2001,paper HH.
    [68] RABINOVICH M,BESPALOV A,CORLEY B,et al. Effect of fractures on multi-component and multi-array induction logs [C]. SPWLA 45th Annual Logging Symposium,2004,paper UU.
    [69] RABINOVICH M,GONFALINI M,ROCQUE T,et al. Multicomponent induction logging:10 years after [C]. SPWLA 48th Annual Logging Symposium,2007,paper CC.
    [70] MOLLISON R A,FANINI O N,KRIEGSHAUSER B F,et al. Impact of multicomponent induction technology on a deepwater turbidite sand hydrocarbon saturation evaluation [C]. SPWLA 42nd Annual Logging Symposium,2001,paper T.
    [71] GOMES R,DENICOL P,DA C A,et al. Using multicomponent induction log data to enhance formation evaluation in deepwater reservoirs from Campos Basin offshore Brazil [C]. SPWLA 43th Annual Logging Symposium,2002,paper N.
    [72] ROSTHAL R,BARBER T,BONNER S,et al. Field test results of an experimental fully-triaxial induction tool [C]. SPWLA 44th Annual Logging Symposium,2003,paper QQ.
    [73] ZHANG Z Y,AKINSANMI O,HA K T,et al. Triaxial induction logging - an operator’s perspective [C]. SPWLA 48th Annual Logging Symposium,2007,paper Y.
    [74] WANG T,FANG S. 3-D electromagnetic anisotropic modeling using finite differences [J]. Geophysics,2001,6(5):1386-1398.
    [75] WEISS C J,NEWMAN G A. Electromagnetic induction in a generalized 3D anisotropic earth,Part 2:The LIN precondition [J]. Geophysics,2003,68(3):922–930.
    [76] WEISS C J,NEWMAN G A. Electromagnetic induction in a fully 3-D anisotropic earth [J]. Geophysics,2002,67(4):1104-1114.
    [77] NEWMAN G A,ALUMBAUGH D L. Three-dimensional induction logging problems,Part 2:A finite difference solution [J]. Geophysics,2002,67(2):484-491.
    [78] DAVYDYCHEVA S,DRUSKIN V,HABASHY T. An efficient finite-difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media [J]. Geophysics,2003,68(5):1525-1536.
    [79]沈金松.用有限差分法计算各向异性介质中多分量感应测井的响应[J].地球物理学进展,2004,19(1):101-107.
    [80]王昌学,杨韡,储昭坦,等.多分量感应测井响应得交错网格有限差分法模拟[J].石油大学学报,2005,29(3): 35-40.
    [81]杨守文,汪宏年,陈桂波,等.倾斜各向异性地层中多分量电磁波测井响应三维时域有限差分(FDTD)算法[J].地球物理学报,2009,52(3):833-841.
    [82]杨守文.层状各向异性地层多分量电磁感应测井资料的正反演算法研究[D].长春:吉林大学物理学院,2009.
    [83] BADEA E A,EVERETT M E,NEWMAN G A,et al. Finite-Element Analysis of Controlled-Source Electromagnetic Induction Using Coulomb-Gauged Potentials [J]. Geophysics,2001,66(3):786–799.
    [84]孙向阳,聂在平,赵延文,等.用矢量有限元方法模拟随钻测井仪器在倾斜地层中的电磁响应[J].地球物理学报,2008,51(5):1600–1607.
    [85] AVDEEV D B , KUVSHINOV A V , PANKRATOV O V , et al. Three-dimensional induction logging problems,Part 1:An integral equation solution and model comparisons [J]. Geophysics,2002,67(2):413–426.
    [86] ZHDANOV M S,LEE S K,YOSHIOKA K. Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity [J]. Geophysics,2006,71(6):G333-G345.
    [87] GAO G Z,CARLOS T V,SHENG F. Fast 3D modeling of borehole induction measurements in dipping and anisotropic formations using a novel approximation technique [J]. Petrophysics,2004,45(4):335-349.
    [88]刘晓军.层状横向同性介质中多分量感应测井响应的传输线算法与响应特征[M].长春:吉林大学物理学院,2009.
    [89] MICHALSKI K A,MOSIG J R. Multilayered media green’s functions in integral equation formulations [J]. IEEE Transactions on Antennas and Propagation,1997,45(3):508-519.
    [90] ANDERSON W L. Fast hankel transform using related and lagged convolutions [J]. ACM Transactions on Mathematical Software(TOMS),1982,8(4): 344-368.
    [91] ZHONG L L, LI J,SHEN L C. Computation of triaxial induction logging tools in layered anisotropic dipping formations [J]. IEEE Transactions on Geoscience and Remote Sensing,2008,46(4):1148-1163.
    [92] LIU Q H,CHEW W C. Diffraction of nonaxisymmetric waves in cylindrically layered media by horizontal discontinuities [J]. Radio Science,1992,27(5):569-581.
    [93] LIU Q H. Electromagnetic field generated by an off-axis source in a cylindrically medium with an arbitrary number of horizontal discontinuities [J]. Geophysics,1993,58(5):616-626.
    [94] WANG H N,SO P,YANG S W,et al. Numerical modeling of multicomponent induction well-logging tools in the cylindrically stratified anisotropic media [J]. IEEE Transactions on Geoscience and Remote Sensing,2008,46(4):1134-1146.
    [95] WANG H N,TAO H G,YAO J J,et al. Fast multiparameter reconstruction of multicomponent induction well logging datum in deviated well in a horizontally stratified anisotropic formation [J]. IEEE Transactions on Geoscience and Remote Sensing,2008,46(5):1525-1534.
    [96]汪宏年,陶宏根,姚敬金,等.用模式匹配算法研究层状各向异性倾斜地层中多分量感应测井响应[J].地球物理学报,2008,51(5):1591-1599.
    [97]魏宝军,张庚骥,LIU Q H.层状单轴各向异性介质并矢Green函数的递推算法及精确计算[J].中国科学,2007,37(6):836-850.
    [98]魏宝军,王甜甜,王颖.用磁流源并矢Green函数的递推矩阵法计算层状各向异性地层中多分量感应测井响应[J].地球物理学报,2009,52(11):2920-2928.
    [99]洪德成,杨善德.张量感应测井视值解释方法的改进[J].地球物理学进展,2008,23(1):178-185.
    [100]洪德成,杨善德.张量感应测井资料处理中若干问题的研究[J].地球物理学报,2009,52(4):1121-1130.
    [101]洪德成.三轴感应测井资料处理方法研究[D].长春:吉林大学物理学院,2009.
    [102]张美玲,孙宏智,杨善德.地球物理测井反演问题的发展[J].国外测井技术,1999,14(5):8-10.
    [103]肖庭延,于慎根,王彦飞.反问题的数值解法[M].北京:科学出版社,2006.
    [104]王彦飞.反演问题的计算方法及其应用[M].北京:高等教育出版社,2007.
    [105] Kirsch A. An introduction to the mathematical theory of inverse problem [M]. New York: Springer Verlag, 1996.
    [106] MOROZOV V A. Linear and nonlinear ill-posed problems [J]. Journal of Mathematical Sciences,1975,4(6):706-736.
    [107] Xu P L. Truncated SVD methods for discrete linear ill-posed problems [J]. Geophysical Journal International,1998,135:505-514.
    [108] Hansen P C. The truncated SVD as a method for regularization [J]. BIT Numerical Mathematics,1987,27:534-553.
    [109]姚东华.水平层状介质中双侧向测井资料的迭代Tikhonov正则化反演[J].地球物理学报(录用待刊).
    [110] SCHOENBERG M. Reflection of elastic waves from periodically stratified media with interfacial slip [J]. Geophysical Prospecting,1983,31(2):265-292.
    [111]陈桂波,汪宏年,姚敬金,等.用积分方程法模拟各向异性地层中三维电性异常体的电磁响应[J].地球物理学报,2009,52(8):2174-2181.
    [112]沈金松,郭乃川.各向异性层状介质中视电阻率与磁场响应研究[J].地球物理学报,2008,51(5):1608-1619.
    [113] CRAMPIN S. Effective anisotropic elastic constants for wave propagation through cracked solids [J]. Geophysical Journal of the Royal Arstronomical Society,1984,76(1):135-145.
    [114]阮爱国,毛桐恩,李清河,等.层状方位各向异性介质的视电阻率计算[J].地震学报,2002,24(5):502-509.
    [115] LI X B,PEDERSEN L B. The electromagnetic response of an azimuthally anisotropic half-space [J]. Geophysics,1991,56(9):1462-1473.
    [116]杜启振,杨慧珠.方位各向异性黏弹性介质波场有限元模拟[J].物理学报,2003, 52(8):2010-2014.
    [117]仵杰,庞巨丰,徐景硕.感应测井几何因子理论及其应用研究[J].测井技术,2001,25(6):417-422.
    [118]胡启,刘振华.侧向测井的伪几何因子[C].中国地球物理学会第六届学术年会论文集,1990.
    [119] FRüHAUF F,SCHERZER O,LEIT?O A. Analysis of regularization methods for the solution of ill-posed problems involving discontinuous operators [J]. SIAM Journal on Numerical Analysis,2005,43(2):767-786.
    [120] HANSEN P C,O’LEARY D P. The use of the L-curve in the regularization of discrete ill-posed problems [J]. SIAM Journal on Scientific Computing. 1993,14(6):1487-1503.
    [121] BURGER M , KALTENBACHER B. Regularizing newton-kaczmarz methods for nonlinear ill-posed problems [J]. SIAM Journal on Numerical Analysis,2007,44(1):153-182.
    [122] KALTENBACHER B. Regularization by truncated Cholesky factorization:a comparison of four different approaches [J]. Journal of Complexity,2007,23:225-244.
    [123] KALTENBACHER B. Some Newton-type methods for the regularization of nonlinear ill-posed problems [J]. Inverse Problems,1997,13:729-753.
    [124] HABER E,OLDENBURG D. A GCV based method for nonlinear ill-posed problems [J]. Computational Geosciences,2000,4:41-63.
    [125] WANG J J,LI G S. A Modified Tikhonov Regularization Method for solving ill-posed problems [J]. Chinese Quarterly Journal of Mathematics. 2000,15(2):98-101.
    [126] NEUBAUER A. Tikhonov regularisation for non-linear ill-posed problems:optimal convergence rates and finite-dimensional approximation [J]. Inverse Problems,1989,5:541-557.
    [127] HONERKAMP J,WEESE J. Tikhonovs regularization method for ill-posed problems [J].Continuum mechanics and Thermodynamics,1990,2:17-30.
    [128] LU S,PEREVERZEV S V,RAMLAU R. An analysis of Tikhonov regularization for nonlinear ill-posed problems under a general smoothness assumption [J]. Inverse Problems,2007,23:217-230.
    [129] B?CKMANN C,PORNSAWAD P. Iterative Runge–Kutta-type methods for nonlinear ill-posed problems [J]. Inverse Problems , 2008 , 24 , doi :10.1088/0266-5611/24/2/025002.
    [130] CEZARO A D , HALTMEIER M , LEIT?O A , et al. On Steepest-Descent-Kaczmarz methods for regularizing systems of nonlinear ill-posed equations [J]. Applied Mathematics and Computation,2008,202:596-607.
    [131] REGI?SKA T. A regularization parameter in discrete ill-posed problems [J]. SIAM Journal on Scientific Computing. 1996,17(3):740-749.
    [132] JIN Q N. Applications of the modified discrepancy principle to Tikhonov regularization of nonlinear ill-posed problems [J]. SIAM Journal on Numerical Analysis,1999,36(2):475-490.
    [133] RAMM A G. A new discrepancy principle [J]. Journal of Mathematical Analysis and Applications. 2005,310:342-345.
    [134] GEORGE S,NAIR M T. An optimal order yielding discrepancy principle for simplified regularization of ill-posed problems in Hilbert scales [J]. Journal of Apllied Mathematics and Decision Sciences. 2003,39:2487-2499.
    [135] KILMER M E,O’LEARY D P. Choosing regularization parameters in iterative methods for ill-posed problems [J]. SIAM Journal on Matrix Analysis and Applications. 2001,22(4):1204-1221.
    [136] Scherzert O,Engl H W,Kunisch K. Optimal a posteriori parameter choice for Tikhnov regularization for solving nonlinear ill-posed problems [J]. SIAM Journal on Numerical Analysis,1993,30(6):1796-1838.
    [137] Scherzer O,LINZ. The use of Morozov’s discrepancy principle for Tikhonovregularization for solving non-linear ill-posed problems [J]. Computing,1993,51:45-60
    [138] BONESKY T. Morozov’s discrepancy principle and Tikhonov-type functionals [J]. Inverse Problems,2009,25,doi: 10.1088/0266-5611/25/1/ 015015
    [139] GEORGE S,NAIR M T. Parameter choice by discrepancy principles for ill-posed problems leading to optimal convergence rates [J]. Journal of Optimization Theory and Applications. 1994,83(1):217-222.
    [140] Routh P S,Oldenburg D W. Inversion of controlled source audio-frequency magnetotellurics data for a horizontally layered earth [J]. Geophysics,1999,64(6):1689-1697.
    [141] ANDERSON B,BARBER T,HABASHY T. Interpretation and inversion of fully triaxial induction data:a sensitivity study [C]. SPWLA 43rd Annual Logging Symposium,2002,paper O.
    [142] WANG H M,BARBER T,MORRISS C,et al. Triaxial induction logging:Theory,Modeling,Inversion and Interpretation [C]. International Oil & Gas Conference and Exhibition in China,2006,paper 103897-MS.
    [143] ABUBAKAR A,HABASHY T,DRUSKIN V,et al. A 3D parametric inversion algorithm for triaxial induction data [J]. Geophysics,2006,71(1):G1-G9.
    [144]姚东华.用传播矩阵法研究层状正交各向异性地层中多分量感应测井响应[J].地球物理学报(评审中)
    [145] Patterson T N. The optimum addition of points to quadrature formulae [J]. Mathematics of Computation,1968,22(104):847-856.
    [146]阿特金森K E著,匡蛟勋,王国荣,等译.数值分析引论[M].上海:上海科学技术出版社,1986.
    [147] DAVIS P F,RABINOWITZ P. Methods of numerical integration [M]. London:ACADEMIC Press,1984.
    [148] EVANS G A,WEBSTER J R. A comparison of some methods for the evaluation of highly oscillatory integrals [J]. Journal of Computational andApplied Mathematics,1999,112:55-69.
    [149] EVANS G A,CHUNG K C. Evaluating infinite range oscillatory integrals using generalised quadrature methods. [J]. Applied Numerical Mathematics,2007,57:73-79.
    [150] BLAKMORE M,EVANS G A,HYSLOP J. Comparison of some methods for evaluating infinite range oscillatory integrals [J]. Journal of Computational Physics,1976,22:352-376.
    [151] HAEGEMANS A,PIESSENS R. Computation of fourier-transform integrals [J]. Applications of Mathematics,1976,21(3):229-236.
    [152] H?NGGI P,R?SEL F,TRAUTMANN D.Continued fraction expansions in scattering theory and statistical non-equilibrium mechanics [J]. Z.Naturforsch,1978,33a:402-417.
    [153] H?NGGI P,R?SEL F,TRAUTMANN D. Evaluation of infinite series by use of continued fraction expansions : A numerical study [J]. Journal of Computational Physics,1980,37(2):242-258.
    [154] Chave A D. Numerical integration of related Hankel transforms by quadrature and continued fraction expansion [J]. Geophysics,1983,48(12): 1671-1686.
    [155]张辉,李桐林,董瑞霞,等.利用高斯求积和连分式展开计算电磁张量格林函数积分[J].地球物理学进展,2005,20(3):667-670.
    [156]张弛平,施云慧.计算方法[M].北京:科学出版社,2003.
    [157] Bunse G A,Byers R,Mehrmann V. A chart of numerical methods for structured eigenvaluse problems [J]. SIAM Journal of Matrix Analysis and Its Applications,1992,13:419-453.
    [158] L?seth L O,Ursin B. Electromagnetic fields in planarly layered anisotropic media [J]. Geophysical Journal International,2007,170:44-80.
    [159] Ursin B. Review of elastic and electromagmetic wave propagation in horizontally layered media [J]. Geophysics,1983,48:1063-1081.
    [160] Chew W C著,聂在平,柳清伙译.非均匀介质中的场与波[M].北京:电子工业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700