用户名: 密码: 验证码:
肺结核合并2型糖尿病患者摄食因子leptin/ghrelin水平以及能量代谢特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的:
     2型糖尿病(T2DM)患者是肺结核病(TB)的高危人群,越来越多的研究提示T2DM是TB发生的重要危险因素,两病相互促进,使病情更加凶险。TB和T2DM的发生发展均可出现能量代谢紊乱。T2DM发生发展过程中出现高血糖和脂代谢紊乱,血循环中游离脂肪酸浓度增高,导致胰岛β细胞脂性凋亡和胰岛素分泌功能障碍。结核杆菌为了生长繁殖,会利用患者的能量物质进行菌体自身代谢,使得患者能量消耗增加,能量需求和蛋白质损失高于正常人群;结核杆菌菌体同时刺激引起炎性细胞因子分泌增多,直接作用于中枢神经系统的摄食中枢引起食欲减低,营养物质摄入减少导致合成代谢减少,易出现营养不良。两病共存,患者营养状况更复杂,代谢紊乱加剧。Leptin是食欲抑制因子,ghrelin是食欲刺激因子。Leptin/ghrelin是中枢能量平衡信息输入系统的两个互补因素,共同对食欲进行综合调节,并可能参与对炎性细胞因子表达水平的调节,leptin/ghrelin的不平衡与患者的食欲减低可能有密切联系。能量代谢酶活性的改变对能量代谢紊乱有重要影响,但是合并两种疾病后代谢酶活性的改变是否和单纯TB或者T2DM有区别,目前尚未有相关报道。B族维生素是体内多种能量代谢相关酶的辅酶,在调节机体能量代谢、预防和改善TB、T2DM等方面可能具有重要作用。TB患者因为食欲降低而导致B族维生素摄入减少,满足不了代谢酶合成的需求,也会加剧代谢紊乱。本研究通过选择TB合并T2DM患者作为研究对象,通过和TB、T2DM、巴胖患者以及正常人群对比,来系统了解TB合并T2DM患者体内摄食因子leptin/ghrelin水平变化和能量代谢的特征,并且探讨相关的影响因素及其与疾病发生发展的关系,为其临床诊疗与营养支持提供新思路。
     研究方法:
     采用流行病学横断面调查方法,根据横断面调查定量变量指标计算公式n=U1-2/a2S2/d2计算样本含量,在某地区结核病防治所和医院选择2011年7月-2013年7月纳入治疗的确诊肺结核患者(TB)40名、肺结核合并2型糖尿病患者(TB+T2DM)40名、糖尿病患者(T2DM)40名,同时在医院体检中心选择肥胖患者(体质指数BMI≥28)(OB)40名,正常对照组(C)76名,测量身高、体重。抽取空腹全血和静脉血,采用酶联免疫吸附法测定摄食因子leptin/ghrelin、炎性细胞因子水平,比色法测定全血和血浆代谢酶,留取晨尿采用荧光法进行B族维生素水平测定。
     研究结果:
     TB+T2DM组的空腹血糖值比T2DM组更高(9.51mM versus7.75mM,P<0.05),血脂和蛋白水平均低于其余组别。TB+T2DM组的血浆leptin水平要明显低于TB组(11.47ng/ml versus72.61ng/ml, P<0.05)却高于C组。TB+T2DM组的血浆TNF-a和IFN-y水平均为最高。对调查对象的BMI和摄食因子、炎性细胞因子等相关因素进行了相关性分析,显示TB+T2DM组、TB组的BMI和leptin呈明显的负相关(P<0.05),而在其余组别呈正相关。TB+T2DM组的ghrelin和BMI呈明显正相关(r=0.478,P<0.05)。多重线性回归分析结果显示TB+T2DM组的甘油三酯、leptin、 ghrelin、TNF-a是BMI的预测因子。多因素Logistic回归危险度分析结果显示低体重(BMI<18.5)发生TB+T2DM的风险是正常体重者的2.587倍(OR2.587,95%CI1.0-6.68). Leptin水平与TB+T2DM和TB的发病风险呈正相关,其最高四分位者患TB+T2DM的风险比最低四分位者要高50%左右(OR0.525,95%CI0.08-0.88),而ghrelin水平与TB+T2DM和TB的发病风险呈负相关,其最低四分位者患TB+T2DM的风险比最高四分位者要高10.605倍(OR10.605,95%CI2.15-52.24)。
     TB+T2DM组的红细胞转酮醇酶活性系数(ETKac)和红细胞谷胱甘肽还原酶活性系数(EGRac)显著高于C组(38.12versus8.00, and1.23versus0.86, P<0.05),红细胞Na+-K+-ATP酶、血浆丙酮酸激酶(PK)、琥珀酸脱氢酶(SDH)活性均要低于C组。TB+T2DM组的维生素B1和维生素B2水平远低于C组(636.05versus976.56and425.24versus705.74, P<0.05)。TB+T2DM组的ETKac、EGRac和BMI呈负相关,PK、SDH和BMI呈显著的正相关(P<0.05). TB+T2DM组的ETKac%EGRac、维生素B1、维生素B2是BMI的预测因子。TB+T2DM组的ETKac和蛋白水平呈显著负相关(r=-0.363and r=-0.314, P<0.05),说明TK活性和机体的血清蛋白水平相关。TB+T2DM组的ETKac、EGRac和leptin水平呈显著正相关(r=0.304and r=0.209,P<0.05),其余能量代谢酶活性以及维生素B1和B2水平均和leptin水平均呈负相关,说明leptin水平升高引起的食欲减退对代谢酶活性和B族维生素水平有一定的影响。代谢酶活性和维生素B1和B2水平和TB+T2DM的发病风险均呈负相关,说明代谢酶和B族维生素是疾病的保护因素。
     结论:
     TB+T2DM患者体内摄食因子leptin/ghrelin水平出现紊乱,对炎性细胞因子的水平变化有一定影响。TB+T2DM患者能量代谢酶活性低下,作为代谢酶辅酶的B族维生素水平低,代谢酶活性和B族维生素水平与疾病发病风险相关。考虑TB+T2DM患者的营养不良(低BMI、低血脂和低血清蛋白水平)和leptin/ghrelin水平紊乱引起食欲减退,造成合成代谢酶的营养物质摄入减少而导致能量代谢功能失调有一定的关系。
Background and Objects:
     Type2diabetes mellitus (T2DM) patients have a higher risk of acquiring pulmonary tuberculosis (TB), and T2DM may also impair TB treatment.TB and T2DM can cause metabolism disorder. T2DM occurred in hyperglycemia and lipid metabolism, free fatty acid concentrations may increase in blood circulation, resulting in pancreatic β cell apoptosis and dysfunction of insulin secretion. Mycobacterium tuberculosis use the energy of the patients for growth and reproduction, so TB patients may increase energy consumption, the energy demand and loss of protein is higher than normal. Mycobacterium tuberculosis can stimulate the secretion of inflammatory cytokines, which may direct effect feeding center in the central nervous system, cause poor appetite. Poor appetite reduce nutrient intake, lead to reduce anabolic reduction and prone to malnutrition. When TB combined T2DM, the nutritional status of patients is more complex. Leptin is an appetite suppressor, ghrelin is an appetite-stimulating factor. Leptin/ghrelin are two complementary factors in the energy balance of feeding center, which regulate appetite, and may participate in regulating the expression levels of inflammatory cytokines. Leptin/ghrelin imbalances may reduce the patient's appetite. Changes in metabolic enzyme activities has important effects on energy metabolism, but whether there are differences between TB combined T2DM and TB or T2DM only of metabolic enzyme activities remains unknown. B vitamins are cofactors of a variety of metabolic enzymes, involved in energy balance and have beneficial in TB and T2DM treatment. Because of decreased appetite, lead to reduce intakes of B vitamins in TB patients, and can not meet the needs of the metabolic enzyme synthesis, also exacerbate metabolic disorders. In this study, we selected pulmonary tuberculosis with type2diabetes patients, and TB, T2DM, obese patients and the normal population as study subjects, contrast to systematic understanding of leptin/ghrelin levels and energy metabolism characteristics in pulmonary tuberculosis with diabetes patients, also their related factors and relations with the disease, inorder to provide new ideas for clinical treatment and nutritional support.
     Methods:
     Used epidemiological cross-sectional survey method to choose40patients in an area of TB dispensaries and hospitals from July2011to July2013, who diagnosed as tuberculosis (TB), and40patients as pulmonary tuberculosis with type2diabetes (TB+T2DM),40type2diabetes (T2DM) patients, selected40obese patients (body mass index BMI≥28)(OB) and76normal control subjects (C) in a medical center. BMI, biochemical parameters and plasma levels of leptin, ghrelin, inflammatory cytokines and urine specimens levels of B vitamins were measured.
     Results:
     Fasting blood glucose levels of TB+T2DM group was higher than T2DM (9.51mM versus7.75mM, P<0.05). Levels of serum lipid and protein of TB+T2DM group were lower than C group. The levels of leptin were significantly lower in TB+T2DM than TB groups (11.47ng/ml versus72.61ng/ml, P<0.05). TB+T2DM group had the highest levels of plasma TNF-a and IFN-y. Leptin showed a negative correlation with BMI in TB+T2DM and TB groups (P<0.05), but a positive correlation with BMI in other groups. Contrary ghrelin showed a positive correlation with BMI in TB+T2DM group (r=0.478, P<0.05). Triglycerides, leptin, ghrelin, TNF-a were the predictive factors of BMI in TB+T2DM group.The riskratio of TB+T2DM was2.587fold (OR2.587,95%CI1.0-6.68) in low weight (BMI<18.5) compared with normal weight,1.5fold (OR0.525,95%CI0.08-0.88) in highest levels of leptin compared with lowest levels of leptin,10.605fold (OR10.605,95%CI2.15-52.24) in lowest levels of ghrelin compared with highest levels of ghrein.
     Erythrocyte transketolase activity coefficient (ETKac) and erythrocyte glutathione reductase activity coefficient (EGRac) in TB+T2DM group was significantly higher than the C group (38.12versus8.00, and1.23versus0.86, P<0.05), erythrocyte Na+-K+-ATPase, plasma pyruvate kinase (PK), succinate dehydrogenase (SDH) activities were lower than C group. Levels of vitamin B1and vitamin B2in TB+T2DM group were significantly lower than C group (636.05versus976.56and425.24versus705.74, P<0.05).ETKac and ETKac showed a negative correlation with BMI, while PK and SDH showed a positive correlation with BMI in TB+T2DM group. ETKac, EGRac, vitamin B1and vitamin B2were the predictive factors of BMI in TB+T2DM group. ETKac showed a positive correlation with serum protein levels in TB+T2DM group (r=-0.363and r=-0.314, P<0.05), indicated that TK activites may relate to protein levels. ETKac and ETKac showed a positive correlation with leptin (r=0.304and r=0.209, P<0.05), while other metabolic enzymes and B vitamins were negative correlation with leptin, indicated high levels of leptin may reduce the patient's appetite, had an effect on enzyme activities and levels of B vitamins. Higher levels of enzyme activities and B vitamins may be beneficial to disease prevention.
     Conclusions:
     Imbalance of leptin/ghrelin may affect the expression levels of inflammatory cytokines. TB+T2DM group had lower levels of enzyme activities and B vitamins, which related to the risk of TB+T2DM. Poor nutrition of of TB+T2DM (low BMI, lower levels of serum lipids and proteins) may cause by poor appetite, which reduce nutrient intake and lead to reduce anabolic reduction.
引文
1 Kazemnejad A, Arsang Jang S, Amani F, et al. Global Epidemic Trend of Tuberculosis during 1990-2010:Using Segmented Regression Model. J Res Health Sci.2014; 14(2):115-121.
    2 Bleed D, Dye C, Raviglione MC. et al. Dynamics control ofthe global tuberculosis epidemic. Curt Opin Pulm Ivied.2000; 6 (3):174-179.
    3王陇德.结核病防治.北京:中国协和医科大学出版社.2004:59-67.
    4朱祥坤,李醒.结核病的流行现状及分析.现代医药卫生.2009;25(16):2547-2548.
    5谭金玲.肺结核病的流行趋势与跟踪治疗的具体办法的探讨.中国保健营养.2010;5:51-52.
    6 International Diabetes Federation. Diabetes atlas. Brussels.2010. Available:http://www. Diabetesatlas. Org.
    7 Carreira S,Costeira J,Gomes C,el al. Impact ofdiabetes on the presenting features oftuberculosis in hospitalized patients. Rev Port Pneumol.2012;18(5):239-243.
    8 Chang JT, Dou HY, Yen CL, el al. Effect of Type 2 Diabetes Mellitus On the Clinical Severity and Treatment Outcome in Patients With Pulmonary Tuberculosis:A Potential Role in the Emergence Of Multidrug-resistance. JFormos MedAssoe.2011;110(6):372-381.
    9 Jeon CJ, Murray MB. Diabetes Mellitus Increases the Risk of Active Tuberculosis:A Systematic Review of 13 Observational Studies. PloS MEDICINE.2008;5:1091-1100.
    10 Pablos-Mendez A, Blustein J, Knirsch CA. The role ofdiabetes mellitus in the higher prevalence of tuberculosis among Hispanics. Am J Public Health.1997; 87:574-579.
    11 Ponce-De-Leon A, Garcia-Garcia Md Mde L, Garcia-Sancho MC, et al. Tuberculosis and diabetes in southern Mexico. Diabetes Care.2004; 27:1584-1590.
    12 Young ECritchley JA, Johnstone LK. A review of co-morbidity between infectious and chronic disease in Sub Saharan Africa:TB and Diabetes Mellitus, HW and Metabolic Syndrome, and the impact of globalization. Globalization and Health.2009; 5:9.
    13谢惠安,阳国太,林善梓,等.现代结核病学.北京:人民卫生出版社,2000:421-430.
    14 Wang Q, Han X, Ma A, et al. Screening and intervention of diabetes mellitus in patients with pulmonary tuberculosis in poverty zones in China:rationale and study design. Diabetes Res Clin Pract.2012; 96:385-391.
    15 Schwenk A, Hodgson L, Rayner CF, et al. Leptin and energy metabolism in pulmonary tuberculosis. Am J Clin Nutr.2003; 77:392-398.
    16 van Crevel R, Karyadi E, Netea MG, et al. Decreased plasma leptin concentrations in tuberculosis patients are associated with wasting and inflammation. J Clin Endocrinol Metab.2002; 87:758-763.
    17 Buyukoglan H, Gulmez I, Kelestimur F, et al. Leptin levels in various manifestations of pulmonary tuberculosis. Mediators Inflamm.2007; 2007:64859.
    18 Yuksel I, Sencan M, Dokmetas HS, et al. The relation between serum leptin levels and body fat mass in patients with active lung tuberculosis. Endocr Res.2003; 29:257-264.
    19 Chang SW, Pan WS, Lozano Beltran D, et al. Gut hormones, appetite suppression and cachexia in patients with pulmonary TB. PLoS One.2013; 8(1):e54564.
    20 Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science.1995; 269:543-546.
    21 Kojima M, Hosoda H, Date Y. Ghrelin is growth-hormone-releasing acylated peptid e fromstomach. Nature.1999; 402 (6762):656-660.
    22 Leite-Moreira AF, Soares JB. Physiological, pathological and potential therapeutic roles of ghrelin. Drug Discov Today.2007; 12:276-288.
    23焦深山.血清瘦素与肺结核患者营养状况的相关性研究.江西医药.2010;45(3):223-224.
    24 Lord GM, Matarese G, Howard JK, et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature.1998; 394:897-901.
    25 Schwenk A, Macallan DC. Tuberculosis, malnutrition and wasting. Curr Opin Clin Nutr Metab Care.2000; 3:285-291.
    26 Karyadi E, Dolmans WM, West CE, et al. Cytokines related to nutritional status in patients with untreated pulmonary tuberculosis in Indonesia. Asia Pac J Clin Nutr.2007; 16:218-226.
    27 Unsal E, Aksaray S, Ko" ksal D, et al. Potential role of interleukin 6 in reactive thrombocytosis and acute phase response in pulmonary tuberculosis. Postgrad Med J.2005; 81:604-607.
    28 Bottasso O, Bay ML, Besedovsky H, et al. The immuno-endocrine component in the pathogenesis of tuberculosis. Scand J Immunol.2007; 66:166-175.
    29 Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression oftumor necrosis factor-alpha: direct role in obesity-linked insulin Resistance. Science.1993; 259(5091):87-91.
    30朱光萍.结核病与营养不良的探讨.现代医药卫生.2006;22(11):1752.
    31梁彩松.102例肺结核病人营养不良的原因及护理.广西医学.2006,28(8):1312-1313.
    32谭守勇,谢灿茂.营养不良与结核病的发病和治疗.中国防涝杂志.2004;26(2):110-113.
    33卢春丽,刘秋玲.老年肺结核合并2型糖尿病患者的营养状况调查.中国临床营养杂志.2004;12(3):186-189.
    34 Gougeon R, Lamarche M, Yale J-F, et al. The prediction of resting energy expenditure in type 2 diabetes mellitus is improved by factoring for glycernia. Int J Obes Relat Metab Disord.2002; 26(12):1547-1552.
    35 PfiitznerA, WeberMM, ForstT. A biomarker concept for assessment of insulin resistance, beta-cell function and chronic systemic inflammation in type 2 diabetes mellitus. Clin Lab.2008;54(11-12): 485-490.
    36 Assaad W, Buteau J, Peyot M, et al. Saturated fatty acids synergize with elevated glucose to cause pancreatic B-cell death. Endocrinology.2003; 144(9):4154-4163.
    37 Haber EP, Ximenes HM, Procopio J, et al. Pleiotropic effects of fatty acids on pancreatic B cells. J Cell Physiol.2003; 194(1):1-12.
    38 Voloshin IM, Suslov II, chepel PI, et al. The pulmonary microangiopathy in patients with tuberculosis coexisting with diabetes mellitlls. klin Khir.2000;(11):37-39.
    39 Hansel, B, Giral, P, Nobecourt E,et al. Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity. J. Clin. Endocr. Metab.2004; 89,4963-4971.
    40 Calderon-Santiago M, Priego-Capote F, Galache-Osuna JG et al. Method based on GC-MS to study the influence of tricarboxylic acid cycle metabolites on cardiovascular risk factors. J. Pharm. Biomed. Anal.2013; 74,178-185.
    41张惠芬.实用糖尿病学.第二版北京:人民卫生出版社,2001:457-459.
    42 Restrepo BI, Schlesinger LS. Host-pathogen interactions in tuberculosis patients with type 2 diabetes mellitus. Tuberculosis (Edinb).2013;93:10-4.
    43王瑛琨,韩秀霞,汪求真,等.结核病患者膳食多样化及营养素摄入情况调查分析,中同食物与营养,2011;17(1):73-77.
    44 Cheng MH. Asia-Pacific faces diabetes challenge. Lancet.2010; 375(9733):2207-2210.
    45 Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis:a systematic review of 13 observational studies. PLoS Med.2008; 5:152.
    46 Stevenson CR, Critchley JA, Forouhi NG, et al. Diabetes and the risk of tuberculosis:a neglected threat to public health? Chronic Iln.2007; 3:228-245.
    47 Restrepo BI, Camerlin AJ, Rahbar MH, et al. Cross-sectional assessment reveals high diabetes prevalence among newly-diagnosed tuberculosis cases. Bull World Health Organ.2011; 89:352-359
    48 Lonnroth K, Jaramillo E, Williams BG, et al. Drivers of tuberculosis epidemics:the role of risk factors and social determinants. Soc Sci Med.2009; 68:2240-2246.
    49 Dooley KE, Tang T, Golub JE, et al. Impact of diabetes mellitus on treatment outcomes of patients with active tuberculosis. Am J Trop.2009; 80:634-639.
    50 Alisjahbana B, Sahiratmadja E, Nelwan EJ, et al. The effect of type 2 diabetes mellitus on the presentation and treatment response of pulmonary tuberculosis. Clin Infect Dis.2007; 45:428-435.
    51 Miller SG, De Vos P, Guerre-Millo M, et al. The adipocyte specific transcription factor C-EBPalpha modulates human ob gene expression. Proc Natl Acad Sci US A.1996; 93:5507-5511.
    52 Cakir B, Yonem A, Guler S, et al. Relation of leptin and tumor necrosis factor alpha to body weight changes in patients with pulmonary tuberculosis. Horm Res.1999; 52:279-283.
    53 Beutler B, Cerami A. Cachectin:More than a tumor necrosis factor. N Engl J Med.1987; 316: 379-385.
    54 Fujiwara H, Kleinhens ME, Wallis RS,et al. Increased interleukin-1 production and monocyte suppressor cell activity associated with human tuberculosis. Am Rev Respir Dis.1986; 133: 73-77.
    55 Karyadi E, Dolmans WM, West CE, et al. Cytokines related to nutritional status in patients with untreated pulmonary tuberculosis in Indonesia. Asia Pac J Clin Nutr.2007; 16:218-226.
    56 Langhans W. Anorexia of infection:current prospects. Nutrition.2000; 16:996-1005.
    57 Suchanek P, Kralova Lesna I, Mengerova O, et al. Which index best correlates with body fat mass: BAI, BMI, waist or WHR? Neuro Endocrinol Lett.2012; 33:78-82.
    58 Gallagher D, Heymsfield SB, Heo M, et al. Healthy percentage body fat ranges:an approach for developing guidelines based on body mass index. Am J Clin Nutr.2000; 72:694-701.
    59 Ma GS, Li YP, Hu XQ, et al. Report on childhood obesity in China (2). Verification of BMI classification reference for overweight and obesity in Chinese children and adolescents. Biomed Environ Sci.2006; 19:1-7.
    60 Du SM, Ma GS, Li YP, et al. Relationship of body mass index, waist circumference and cardiovascular risk factors in Chinese adult. Biomed Environ Sci.2010; 23:92-101.
    61 Zhang ZQ, Deng J, He LP, et al. Comparison of various anthropometric and body fat indices in identifying cardiometabolic disturbances in Chinese men and women. PLoS One.2013; 12; 8: e70893.
    62翁建平.对糖尿病流行病学、循证医学及基础研究的探索.中山大学学报(医学科学版).2010; 31(2):166-178.
    63陈学英.50例糖尿病病人营养状况评价.肠外与肠内营养.2008;15(3):158-160.
    64郭金芸,叶伟生,余永晟,邱锦娜.2型糖尿病合并肺结核患者血清蛋白和血脂水平分析.中华实用诊断与治疗杂志.2010;24(10):1034-1035.
    65 Grigor'eva GV. Serum lipids in pulmonary tuberculosis patients with various types of diabetes mellitus. Probl Tuberk.1997;(3):56-58.
    66苏丽芳,李进升,陈恩泰.老年肺结核合并糖尿病患者的营养状况评价分析.中国临床护理.2011;3(6):461-463.
    67闫忠芳,孙凤.肺结核合并糖尿病患者的营养状况分析,中国防痨杂志.2005;27(4):236-238.
    68沈夕坤,江国荣,茅彩萍,等.糖尿病模型鼠血清白蛋白水平分析.苏州大学学报(医学版).2004;24(5):643-644.
    69葛惠男,江国荣,徐德颐.血清白蛋白水平与高血糖的相关性研究.苏州大学学报(医学版).2003;23(6):699-700.
    70宋雨悼,马文浩,成瑶,等.甘肃地区肺结核合并糖尿病患者膳食营养分析.中国全科医学.2012;15(30):3541-3543.
    71 Cribb PJ, Williams AD, Stathis CG,et al. Effects of whey isolate, creatine, and resistance training on muscle hypertrophy. Med Sei Sports Exert.2007;39(2):298-307.
    72 Ferguson TB. Syrotuik DG. Effects of ereatine monohydrate supplementation Oil body composition and strength indices in experienced resistance trained woment. J Strength Cond Res. 2006; 20(4):939-946.
    73 Solangi GA, Zuberi BF, Shaikh S, et al. Pyrazinamide induced hyperuricemia in patients taking anti-tuberculous therapy. J Coll Physicians Surg Pak..2004; 14(3):136-138.
    74 Mohan VP, Scanga CA, Yu K, et al. Effects of tumornecrosis factor alpha on host immune response in chronic persistent tuberculosis:possible role for limiting pathology. Infection and Immunity. 2001; 69:1847-1855.
    75. Goyal R, Faizy AF, Siddiqui SS, et al. Evaluation of TNF-a and IL-6 Levels in Obese and Non-obese Diabetics:Pre- and Postinsulin Effects. N Am J Med Sci.2012; 4:180-184.
    76汪菊萍,赵星.84例糖尿病合并肺结核患者的临床分析.中国医药指南.2011;9(12):182-183.
    77 Douvas GS, Looker DL, Vatter AE, et al. Gamma interferon activates human macrophages to become tumoricidal and leishmanicidal but enhances replication of macrophage-associated mycobacteria. Infect Immun.1985; 50:1-8.
    78 Adane M, Yonas B, Kidest B, et al. Plasma cytokines and chemokines differentiate between active disease and non-active tuberculosis infectionJournal of Infection.2013; 66,357-365.
    79吴晓燕,汤旭磊,高林.2型糖尿病免疫炎症的初步探讨.中国免疫学杂志.2007;23(10):944-6.
    80 Leng Q, Bentwich z. Beyond self and nonself:fuzzy recognion of the immune system. J Immunol. 2002; 56(2):224-232.
    81 Rayner DV Trayhurn P. Regulation of leptin production:sympathetic nervous system in teractions. J Mol Med (Berl).2001; 79(1):8-20.
    82庄少侠,周敏.血清瘦素对肺结核患者营养状态影响的临床研究.中华结核和呼吸杂志.2002;25(6):379-338.
    83 Sarraf P, Frederich RC, Turner EM, et al. Multiple cytokines and acute inflammation raise mouse leptin levels:potential role in inflammatory anorexia. J Exp Med.1997; 185:171-175.
    84 Kim JH, Lee CT, Yoon HI, et al. Relation of ghrelin, leptin and inflammatory markers to nutritional status in active pulmonary tuberculosis. Clin Nutr.2010; 29:512-518.
    85 German JP, Wisse BE, Thaler JP, et al. Leptin deficiency causes insulin resistance induced by uncontrolled diabetes. Diabetes.2010; 59:1626-1634.
    86 Marino JS, Xu Y, Hill JW. Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol. Metab.2011; 22:275-285.
    87 Enfiofi PJ, Evans AE, Sinnayah P, et al. leptin resistance and obesity. Obesity(Silver Spring). 2006; 14(5):254-258.
    88 Correia MI, Haynes WG. Lessons from leptin, s molecular biology:Potential therapeutic actions of recombinant leptin and leptin-related compounds. Mini Rev Med Chem.2007; 7(1):31-38.
    89 Kojima M, Hosoda H, Date Y. Ghrelin is growth-hormone-releasing acylated peptid e fromstomach. Nature.1999; 402 (6762):656-660.
    90 Dixit VD, Schafer EM, Pyle RS, et al. Ghrelin inhibits leptin and activation induced proinflammatory cytokine expression by humanmonoces and T cells. J ClinInvest.2004; 114: 57-66.
    91 MONTI V, CARLSON JJ, HUNT SC, et al. Relationship of ghrelin and leptin hormones with body mass index and waist circumference in a raIldom sample of aduhs, J Am Diet Assoc.2006; 106 (6): 822-828.
    92姚莹,王军,刘玉峰,等.肺结核合并糖尿病患者临床特征及血脂水平分析.中国防痨杂志.2013;35(4):255-259.
    93 Viswanathan Ⅵ, Kumpatla S, Aravindalochanan V, et al. Prevalence of diabetes and pre-diabetes and associated risk factors among tuberculosis patients in India. PLoS One.2012;7(7):e41367.
    94 Pednekar MS1, Hakama M, Gupta PC. Tobacco use or body mass--do they predict tuberculosis mortality in Mumbai, India? Results from a population-based cohort study. PLoS One.2012; 7(7):e39443
    95谭守勇,谢灿茂.营养不良与结核病的发病和治疗明.中国防痨杂志.2004;26(2):110-113.
    96 Hayashi S, Takeuchi M, Hatsuda K, Ogata Ket al. The impact of nutrition and glucose intolerance on the development of tuberculosis in Japan. Int J Tuberc Lung Dis.2014;18(1):84-88.
    97顾进,胡坚.血清瘦索测定在活动性肺结核诊治中的临床意义.实验与检验医学.2009;27(4):341-342.
    98 Hakan B, Inci G, Fahrettin K, et al. Leptin Levels in VariousManifestations of Pulmonary Tuberculosis. Mediators of Inflammation.2007; 10:1-6.
    99 Wren AM, Seal LJ, Cohen MA, et al. Ghrelin enhan ces appetite and increases food intake in humans. J Clin Endocrinol Metab.2001; 86:5992.
    100 Ying Zheng, Aiguo Ma, Qiuzhen Wang, et al. Relation of Leptin, Ghrelin and Inflammatory Cytokines with Body Mass Index in Pulmonary Tuberculosis Patients with and without Type 2 Diabetes Mellitus. PloS one.2013; 8(11):e80122.
    101于守洋,刘志诚主编.营养与食品卫生监督检验方法指南.北京:人民卫生出社.1989:160-174.
    102孙长颢主编.营养与食品卫生学,第六版.北京:人民卫生出版社.2008:92-161.
    103 Evertsen F, Medbo JI, Jebens E, et al. Effect of training on the activity of five muscle enzymes studied on elite cross-country skiers. Acta Physiol Scand.1999; 167(3):247-257.
    104 Huang S, Millar AH. Succinate dehydrogenase:the complex roles of a simple Enzyme. Curt Opin Plant Biol.2013; 16(3):344-349.
    105 Yamano S, Eto D, Mukai K, et al. Effect of high intensity training on anaerobic capacity of middle qlutea muscle in Thoroughbred horses. Res Vet Sci.2004; 76(2):139-144.
    106 Watanabe S, Zimmermann M, Goodwin MB, et al. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog.2011; 7(10): e1002287.
    107 Vasil'eva OA, Urazova OI, Serebriakova VA,et al. Evaluation of the effects of antituberculous drugs on the cytochemical status of lymphocytes in vitro. Probl Tuberk Bolezn Legk.2008; 3: 27-30.
    108 Afanasiev SA, Egorova MV, Kondratyeva DS, et al. Comparative analysis of changes of myocardial angiogenesis and energy metabolism in postinfarction and diabetic damage of rat heart. J Diabetes Res.2014;2014:827896.
    109 MacDonald MJ. Differences between mouse and rat pancreatic islets:succinate responsiveness, malic enzyme, and anaplerosis. Am J Physiol Endocrinol Metab.2002;283(2):302-310.
    110 Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes.2002; 51(10):2944-2950.
    111李琦,梁清涛,操敏等.肺结核合并低氧血症或呼吸衰竭患者氧化/抗氧化特点的观察.国际呼吸杂志.2009;29(8):456-458.
    112 Tian J, Bryk R, Itoh M,et al. Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of alpha-ketoglutarate decarboxylase. Proc Natl Acad Sci U S A.2005 26; 102(30):10670-10675.
    113张宏馨,袁李军,袁杨,等.富铬酵母对试验性糖尿病小鼠糖代谢酶活性的影响.黑龙江畜牧兽医.2009;4:82-83.
    114韩素萍,张承玉.黄芪生药对游泳大鼠糖代谢相关酶影响的研究.中国体育科技.2008;44(2)129-132.
    115 CHAUDHURI SN, SUTER E, SHAH NS, et al. Metabolism in infection:study on the enzymatic damage in kidney of guinea pig infected with Mycobacterium tuberculosis. J Exp Med.1963; 117:71-79.
    116 Ohman R, Ridell M. Purification and characterisation of isocitrate dehydrogenase and malate dehydrogenase from Mycobacterium tuberculosis and evaluation of their potential as suitable antigens for the serodiagnosis of tuberculosis.Tuber Lung Dis.1996; 77(5):454-461.
    117杨宏莉,张宏馨,李兰会,等.本草消渴丹对实验性糖尿病大鼠糖代谢酶活性的影响.时针国医国药.2009;20(7):1615-1616.
    118 Jitrapakdee S, Wutthisathapornchai A, Wallace JC,et al. Regulation of insulin secretion:role of mitochondrial signalling. Diabetologia.2010; 53 (6):1019-1032.
    119周爱儒,查锡良.生物化学.第5版,北京:人民卫生出版社,2000;102.
    120 Chavadi S, Wooff E, Coldham NG, et al. Global effects of inactivation of the pyruvate kinase gene in the Mycobacterium tuberculosis complex. J Bacteriol.2009;191(24):7545-53.
    121 Arora G, Sajid A, Gupta M,et al. Understanding the role of PknJ in Mycobacterium tuberculosis: biochemical characterization and identification of novel substrate pyruvate kinase A. PLoS One. 2010;5(5):e10772.
    122 VaIl Berkel TJ,Knlijt JK,Koster JF.Hormone-induced changes in pyruvate kinase. Effects ofglucagon and starvation. Eur J Biochem.1977; 81(3):423-432.
    123胡玉章,罗成仁,严密,等.高糖对已糖激酶和丙酮酸激酶活性的影响.眼科研究.1993;11(2):91-92.
    124杨梅,艾静,王宇,等.血糖安对2型糖尿病大鼠丙酮酸激酶的影响.哈尔滨医科大学学报.2004;38(1):16-18.
    125 Anand P, Murali KY, Tandon V, et al. Chem Biol Interact. Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenol-pyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats.2010; 186(1):72-81.
    126 Wang H, Chu W, Das SK,et al. Liver pyruvate kinase polymorphisms are associated with type 2 diabetes in northern European Caucasians. Diabetes.2002; 51(9):2861-2865.
    127 BeRendorff L. Thiamine.thiamine phosphates,and their metabolizing enzymes in human brain. J Neurochem..1996;66(1):250-258.
    128 NISHIK A W A T, EDELSTEIN D, DU X L, et al. Nonllalizing mitoc-hondrial supemxide prloduction block8 three pathways of hyperglycaemic damage. Nature,2000; 404(4):787-790.
    129 Michalak S, Michalowska-Wender G, Adamcewicz G, et al. Erythrocyte transketolase activity in patients with diabetic and alcoholic neuropathies. Folia Neuropathol.2013;51(3):222-226.
    130 Tanhauserova V, Kuricova K, Pacal L, et al. Genetic variability in enzymes of metabolic pathways conferring protection against non-enzymatic glycation versus diabetes-related morbidity and mortality. Clin Chem Lab Med.2014; 52(1):77-83.
    131 Ruzinova MB, Benezra R. Id proteins in development, cell cycle and cancer. Trends Cell Biol. 2003; 13(8):410-418.
    132 Norton JD. ID helixloophelix proteins in cell growth, differenceation and tumorigenesis. J Cell Sci. 2000;113(22):3897-3905.
    133 Diizova H, Asma D, Emre MH. Neutrophil superoxide anion production, and CAT and GSSGR activity in patients with tuberculosis. New Microbiol.2003;26(3): 289-298.
    134 Dalvi SM, Patil VW, Ramraje NN. The roles of glutathione, glutathione peroxidase, glutathione reductase and the carbonyl protein in pulmonary and extra pulmonary tuberculosis. J Clin Diagn Res.2012; 6(9):1462-1465.
    135陆艳娟,李晓林,李晓梅.成年糖尿病大鼠重要器官组织GSH-Px,GSH和GR水平变化.吉林大学学报(医学版).2004;30(3):348-349.
    136 Straatsma BR, Lightfoot Do, Barke RM, et al. Lens capsule and epithelium in age-related cataract. Am J ophalmol.1991; 112(3):283-296.
    137 Kumawat M, Sharma TK, Singh I, et al. Antioxidant Enzymes and Lipid Peroxidation in Type 2 Diabetes Mellitus Patients with and without Nephropathy. N Am J Med Sci.2013; 5(3):213-219.
    138 Hodgkinson AD, Bartlett T, Oates P J, et al. The response of antioxidant genes to hyperglycemia is abnormal in patients with type 1 diabetes and diabetic nephropathy. Diabetes.2003; 52(3): 846-851.
    139 Chung SS, Ho EC, Lam KS, et al. Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol.2003,14(8):233-236.
    140 Lee AY, Chullg SS. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J.1999; 13(1):23-30.
    141 Peral B, Camafeita E, Fernandez-Real JM, et al. Tackling the human adipose tissue proteome to gain insight into obesity and related pathologies. Expert Rev. Proteomics.2009; 6:353-361.
    142 Seherzer P, Popovtzer MM. Segmental localization of mRNAs encoding Na+.K+-ATPase al and B1-subunits in diabetic rat kidneys using RT-PCR. AM Physiol Renal Physiol.2002; 282: 492-500.
    143 Efendiev R. Hypertension-linked mutation in the adducin alpha-subunit leads to higher AP2-mu2 phosphorylation and impaired Na+,K+-ATPase trafficking in response to GPCR signals and intracellular sodium, Circ. Res.2004; 95:1100-1108.
    144 White MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab.2002; 283:413-422.
    145 Belin de Chantem-le EJ, AliM I, Mintz J, et al. Obesity induced-insulin resistance causes endothelial dysfunction without reducing the vascular response to hind limbischemia. Basic Res Cardiol.2009; 104(6):707-717.
    146杨晓晖,梁金环,尹玮.养阴活血方药对糖尿病大鼠肝脏线粒体琥珀酸脱氢酶和三磷酸腺苷酶的影响.中国医药导报.2013;10(26):16-18.
    147 Mishra N, Rizvi SI.Quercetin modulates Na(+)/K(+) ATPase and sodium hydrogen exchanger in type 2 diabetic erythrocytes. Cell Mol Biol (Noisy-le-grand).2012;58(1):148-52.
    148 Rosta K, Tulassay E, Enzsoly A, et al. Insulin induced translocation of Na+/K+-ATPase is decreased in the heart of streptozotocin diabetic rats. Acta Pharmacol Sin.2009;30 (12):1616-1624.
    149 Bagrov YY, Manusova NB, Frolova EV,et al. Endogenous sodium pump inhibitors, diabetes mellitus and preeclampsia Preliminary observations and a hypothesis. Pathophysiology.2007; 14 (3-4):147-151.
    150李承坤,汪求真,韩秀霞,等.农村结核病患者与健康人群营养素摄入及食物多样化水平对比分析.中国食物与营养.2012;18(5):74-78.
    151李少旦,曾辉.糖尿病患者血清微量元素的含量分析.微量元素与健康研究.2007;24(4):7-8.
    152 Macal Ian DC, McNurlan M, Kurpad AV, et al. Whole body protein metabol ism in human pulmonary tuberculosis and undernutrition:evidence for anabolic block in tuberculosis. ClinSci (Colch).1998; 94(3):321-331.
    153陈璐,韩秀霞,汪求真,等.肺结核患者膳食营养与健康知识知晓情况调查分析.中国食物与营养.2011;17(3):75-79.
    154苏丽萍,连素琴,李向国,等.武威市结核病患者膳食多样化水平及营养素摄入状况调查.2013,13(33):6566-6571.
    155 Huffman FG, Vaccaro JA, Zarini GG, et al. Inadequacy of micronutrients, fat, and fiber consumption in the diets of Haitian-, African-and Cuban-Americans with and without type 2 diabetes. Int J Vitam Nutr Res.2012; 82(4):275-287.
    156张晓冬,杨军,黄磊,等.北京某地糖尿病患者膳食能量、蛋白质及B族维生素营养状况调查.中国全科医学.2006;9(21):1794-1795.
    157黄素霞,林晓霞,朱寿民.2型糖尿病患者抗坏血酸和核黄素缺乏的调查.浙江预防医学.2001;13:10-11.
    158 Chamberlain BR, Buttery JE, Pannal PR. A stable reagent mixture for the whole blood transketolase assay. Ann Clin Biochem.1996; 33(4):352-354.
    159 Hill MH, Bradley A, Mushtag S, et al. Effects of methodological variation on assessment of riboflavin status using the erythrocyte glutathione reductase activation coefficient assay. Br J Nutr.2009; 102(2),273-238.
    160 Mohammad A, Zehra A. Anionic-nonionic surfactants coupled micellar thin-layer chromatography:synergistic effect on simultaneous separation of hydrophilic vitamins. J Chromatogr Sci.2010; 48(2):145-149.
    161 Amare B, Moges B, Moges F, et al. Nutritional status and dietary intake of urban residents in Gondar, Northwest Ethiopia. BMC Public Health.2012; 12:752.
    162 Winkvist A, Bertz F, Ellegard L, et al. Metabolic Risk Profile among Overweight and obese Lactating Women in Sweden. PLoS One.2013; 8:e63629. 163 Perez-Perez R, Garcia-Santos E, Ortega-Delgado FJ,et al. Attenuated metabolism is a hallmark of obesity as revealed by comparative proteomic analysis of human omental adipose tissue. J Proteomics.2012; 75:783-795.
    164 Codoner-Franch P, Bataller Alberola A, Domingo Camarasa JV, et al. Influence of dietary lipids on the erythrocyte antioxidant status of hypercholesterolaemic children. Eur J Pediatr.2009; 168, 321-327.
    165 Uttara B, Singh,AV, Zamboni P, et al. Oxidative stress and neurodegenerative diseases:a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol.2009; 7:65-74.
    166 Echiburu-Chau C, Roy D, Calaf GM. Metastatic suppressor CD44 is related with oxidative stress in breast cancer cell lines. Int J.Oncol.2011; 39:1481-1489.
    1 Kazemnejad A, Arsang Jang S, Amani F, et al. Global Epidemic Trend of Tuberculosis during 1990-2010:Using Segmented Regression Model. J Res Health Sci.2014; 14(2):115-121.
    2 WHO. Global tuberculosis control:a short update to the 2009 report.2009:17-22.
    3 vail Wier MF, Lakerveld J, Bot SD, et al. Economic evaluation of a lifestyle intervention in primary care to prevent type 2 diabetes mellitus and cardiovascular diseases:a randomized controlled trial. BMC Fam Pract.2013; 14(1):45.
    4 world Heath Organization. Global tuberculosis control:epidemiology, strategy, financing.2009. Available at:http://www. Who. int/tb/publications/global report/2009/en/.
    5杨显琴.浅谈农村地区肺结核病现状及防治对策.中国中医药咨讯.2011;15:69-70.
    6全国第五次结核病流行病学抽样调查技术指导组,全国第五次结核病流行病学抽样调查办公室.2010年全国第五次结核病流行病学抽样调查报告.中国防痨杂志.2012;8(34):485-508.
    7 The WHO/IUATLD Global Project on Anti-tuberculosis Drug Resistance Surveillance. Anti-tuberculosis drug resistance in the world report no.3.Geneva,2004.
    8 van den Hof S, Tursynbayeva A, Abildaev T, et al. Converging risk factors but no association
    between HIV infection and multidrug-resistant tuberculosis in Kazakhstan. Int J Tuberc Lung Dis. 2013;17(4):526-531.
    9胡善联,刘国恩,许樟荣.我国糖尿病流行病学和疾病经济负担研究现状四.中国卫生.2008;27(8):5-8.
    10 International Diabetes Federation. Diabetes and Impaired glucose tolerance, global burden: prevalence and projections,2010 and 2030. Available at:http://www.Diabetesatlas.org/ content/diabetes-and-impaired-glucosetolerance.
    11 Gougeon R, Lamarche M, Yale J-F, et al. The prediction of resting energy expenditure in type 2 diabetes mellitus is improved by factoring for glycernia. Int J Obes Relat Metab Disord.2002; 26 (12):1547-1552.
    12 PfiitznerA, WeberMM, ForstT. A biomarker concept for assessment of insulin resistance, beta-cell function and chronic systemic inflammation in type 2 diabetes mellitus. Clin Lab.2008; 54(11-12): 485-490.
    13张惠芬.实用糖尿病学.第二版北京:人民卫生出版社,2001:457-459.
    14 Restrepo BI, Schlesinger LS. Host-pathogen interactions in tuberculosis patients with type 2 diabetes mellitus. Tuberculosis (Edinb).2013; 93:4-10.
    15 Restrepo BI. Convergence ofthe tuberculosis and diabetes epidemics:renewal of old acquaintances. Clin Infect Dis.2007; 45:436-438.
    16 Chang JT, Dou HY, Yen CL, et al. Effect of type 2 diabetes mellitus on the clinical severity and treatment outcome in patients with pulmonary tuberculosis.-a potential role in the emergence of multidrug-resistance. J Formos Med Assoc.2011; 110(6):372-381.
    17 Root H. The association ofdiabetes and tuberculosis. N Engl J Med.1934; 210:127,178.
    18马兆琴,余明芳.糖尿病肺部感染患者临床特征分析.中华医院感染学杂志.2011;21(24):5177-5178.
    19 Yamashiro S, Kawakami K, Uezu K, et al. Lower expression of Thl related cytokines and inducible nitric oxide synthase in mice with streptozotocin。induced diabetes mellitus infected with Mycobaeterium tuberculosis. Clin Exp Immunol.2005; 139:57-64.
    20 Zykova SN, Jenssen TG, Berdal M, et al. Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic type Ⅱ-like db/db mice. Diabetes.2000; 49:1451-1458.
    21 Yuk JM, Shin DM, Yang CS, et at. Role ofapoptosis-regulating signal kinase-1 in innate immune responses by Myeobacterium bovis bacillus Calmette-Gu6rin. Immunol Celt Bio 1.2009; 87: 100-107.
    22 Restrepo BI, Fisher-Hoch Se,Pino PA, et al.Tuberculosis in poorly controlled type 2 diabetes: altered cytokine expression in periphern white blood cells. Clin Infect Dis.2008; 47:634-641.
    23 AI-Attiyah RJ, Mustafa AS. Mycobacterial antigen-induced T helper type 1 (Thl)and Th2 reactivity of pedpherat blood mononuclear cells from diabetic and non-diabetic tuberculosis patients and Mycobacterium bovis bacilli CalmeRe-Guerin(BCG)-vaccinated heakhy subjects. Clin Exp Immunol.2009; 158:64-73.
    24 Martens GW Arikan MC,Lee J,et al. Tuberculosis susceptibility of diabetic mice. Am J Respir Cell Mol Biol.2007; 37:518-524.
    25 Stalenhoef JE, Alisjahbana B, Nelwan EJ, et al. The role of interferon-gamma in the increased tuberculosis risk in type 2 diabetes mellitus. Eur J Clin Micmbiol Infect Dis.2007; 27:97-103.
    26 Jeon CY,Harries AD, Baker MA, el al. Bi-directional screening for tuberculosis and diabetes:a systematic review. Trop MedInt Health.2010; 15:1300-1314.
    27 Larsen PR, Kronenberg HM, Melmed S, et al. Williams'textbook of endocrinology (10th edn): Philadelphia:WB Saunders Company,2003.
    28金关甫,林明贵.糖尿病合并肺结核.人民军医.2003;46(7):418-420.
    29徐海燕.肺结核合并糖尿病273例临床治疗及护理.齐鲁护理杂志.2008;14(11):17-18.
    30杨晓春.肺结核合并糖尿病与单纯性肺结核临床疗效对比研究.临床肺科杂志.2005;10(4):435-436..
    31 Abrass CK. Fc-receptor-mediated phagocytosis:abnormalities associated with diabetes mellitus. Clin Immunol Immunopathol.1991; 58(1):1-17.
    32 Nichols GR. Diabetes among young tuberculous patients; a review of the association of the two diseases. Am Rev Tuberc.1957; 76:1016-1630.
    33 Oluboyo PO, Erasmus RT. The signifi cance of glucose intolerance in pulmonary tuberculosis. Tubercle.1990; 71:135-138.
    34 Basoglu OK, Bacakoglu F, Cok G, et al. The oral glucose tolerance test in patients with respiratory infections. Monaldi Arch Chest Dis.1999; 54:307-310.
    35 Misjahbana B, vall Crevel R, Sahiratmadja E, et al. Diabetes mellitus is stongly associated with tuberculosis in Indonesia. Int J Tuberc Lung Dis.2006; 10:696-700.
    36 Nunez-Rocha GM, Salinas-Marfinez AM, Villarreal-Rios E, et al. Nutritional risk in patients with pulmonary tuberculosis:the patients's or the health servic's problem. Salud publiea Mex.2000; 42(2):126-132.
    37朱祥坤,李醒.结核病的流行现状及分析.现代医药卫生.2009;25(16):2547-2548.
    38谭守勇,谢灿茂.营养不良与结核病的发病和治疗.中国防痨杂志.2004;26(2):110-113.
    39卢春丽,刘秋玲.肺结核住院患者的营养状况与肺功能的相关性分析.临床肺科杂志.2007;12(2):136-137.
    40 Schwenk A, Hodgson L, Rayner CF, Griffin GE, Macallan DC. Leptin and energy metabolism in pulmonary tuberculosis. Am J Clin Nutr.2003; 77:392-398.
    41梁彩松.102例肺结核病人营养不良的原因及护理.广西医学.2006;28(8):1312-1313.
    42谭守勇,谢灿茂.营养不良与结核病的发病和治疗.中国防痨杂志.2004;26(2):110-113.
    43王传湄.82例肺结核患者的营养状况调查分析.临床肺科杂志.2010;15(5):689-690.
    44 Adeiga AA, Akinosho RO, Onyewche J. Evaluation of immune response in infants with different nutritional status:Vaccinated against tuberculosis, measles and poliomyelitis. Journal of Tropical pediatrics.1994; 40(12):345-350.
    45王勃,许优.营养不良对复治结核病患者治疗效果的影响.临床肺科杂志.2008;13(5):615-617
    46李锡太,叶临湘,施侣元,等.肺结核复发危险因素logistic回归分析.中华流行病学杂志.2004;25(8):658-660.
    47 Villamor E, Mugusi F, Urassa W, et al. A Trial ofthe Effect of Micronutrient Supplementation on Treatment Outcome, T Cell Counts, Morbidity,and Mortality in Adults with Pulmonary Tuberculosis. Infect Dis.2008; 197:1499-1505.
    48申露.补充微量营养素可提高肺结核患者的治疗效果.中华医学信息导报.2008;23(20):13.
    49闫忠芳,孙凤.肺结核合并糖球病患者的营养状况分析.中国防痨杂志.2005;8(4):236-237.
    50马淑彦.糖尿病合并肺结核36例临床分析.中国实用医药.2010;5(16):84-85.
    51谢惠安,阳国太,林善梓,等.现代结核病学.北京:人民卫生出版社,2000.
    52金关甫,林明贵.糖尿病合并肺结核.人民军医.2003;46(7):418-420.
    53 Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science.1995; 269:543-546.
    54 Shimizu LL, Mori M. Role of leptin and its receptor in the regulation of diet and body fat. Nippon .R Jnsho.2001; 59(3):421-442.
    55 Robaziczvk MG. Evaluation of leptin levels on plasma and their reliance on other hormonals affecting tissue fat leves in people with varies levels of endogenous cotisol. Ann Acad Med Stetin. 2002; 48:283-300.
    56黄婷婷,丘小汕,杜敏联,等IUGR大鼠脂肪组织TNF-α mRNA表达与胰岛素抵抗关系的研究.中华儿科杂志.2005;43(1):39-43.
    57 Scharf MT, Ahima RS. Gut peptides and other regulators in obesity. Semin Liver Dis.2004; 24: 335-347.
    58焦深.山血清瘦素与肺结核患者营养状况的相关性研究.江西医药.2010;45(3):223-224.
    59顾进,胡坚.血清瘦索测定在活动性肺结核诊治中的临床意义.实验与检验医学.2009;27(4):341-342.
    60 Hakan B, Inci G,Fahrettin K, et al. Leptin Levels in VariousManifestations of Pulmonary Tuberculosis. Mediators of Inflammation.2007; 10:1-6.
    61庄少侠,周敏.血清瘦素对肺结核患者营养状态影响的临床研究.中华结核和呼吸杂志.2002;25(6):379-338.
    62李曦,施炳龙.瘦素在恶性腹水和结核性腹水的表达.中国实用医药.2010;18(5):4-5.
    63 Sarraf P, Frederich RC, Turner EM, et al. Multiple cytokines and acute inflammation raise mouse leptin levels:potential role in inflammatory anorexia. J Exp Med.1997; 185:171-175.
    64 Cakir B, Yonem A, Guler S, Odabasi E, Demirbas B, et al. Relation of leptin and tumor necrosis factor alpha to body weight changes in patients with pulmonary tuberculosis. Horm Res.1999; 52:279-283.
    65 German JP, Wisse BE, Thaler JP, et al. Leptin deficiency causes insulin resistance induced by uncontrolled diabetes. Diabetes.2010; 59:1626-1634.
    66 Marino JS, Xu Y, Hill JW. Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol. Metab.2011; 22:275-285.
    67 Enfiofi PJ, Evans AE, Sinnayah P, et al. leptin resistance and obesity. Obesity (Silver Spring). 2006; 14(5):254-258.
    68 Correia MI, Haynes WG. Lessons from leptin, s molecular biology:Potential therapeutic actions of recombinant leptin and leptin-related compounds. Mini Rev Med Chem.2007; 7(1):31-38.
    69 Kojima M, Hosoda H, Date Y. Ghrelin is growth-hormone-releasing acylated peptide from stomach. Nature.1999; 402 (6762):656-660.
    70 Kamegai J. Tamura H, Shimizu T, et al. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes 2001; 50:2438-2443.
    71 Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature 2001; 409:194-198.
    72 Wren AM, Seal LJ, Cohen MA, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab.2001; 86:5992-5995.
    73 Cummings DE, Purnell JQ, Frayo RS, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes.2001; 50:1714-1719.
    74 Natalucci G, Riedl S, Gleiss A, et al. Spontaneous 24-h ghrelin secretion pattern in fasting subjects:maintenance ofa meal-related pattern. Eur J Endocrinol.2005; 152:845-850.
    75 da MS. Wilding JP, Pinkney JH. Gut peptides and the regulation of appetite. Obes Rev.2006; 7: 163-182.
    76 Cowley MA, Smith RG Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron.2003; 37: 649-661.
    77 Chang SW, Pan WS, Lozano Beltran D, et al. Gut hormones, appetite suppression and cachexia in patients with pulmonary TB. PLoS One.2013; 8 (1):e54564.
    78 Kim JH, Lee CT, Yoon HI, et al. Relation of ghrelin, leptin and inflammatory markers to nutritional status in active pulmonary tuberculosis. Clin Nutr.2010; 29:512-518.
    79 Dixit VD, Schafer EM, Pyle RS, et al. Ghrelin inhibits leptin and activation induced proinflammatory cytokine expression by humanmonoces and T cells. J ClinInvest.2004; 114: 57-66.
    80 MONTI V, CARLSON JJ, HUNT SC, et al. Relationship of ghrelin and leptin hormones with body mass index and waist circumference in a raIldom sample of aduhs. J Am Diet Assoc.2006; 106 (6):822-828.
    81 Wren AM, Seal LJ, Cohen MA, et al. Ghrelin enhan ces appetite and increases food intake in humans. J Clin Endocrinol Metab.2001; 86:5992.
    82 Evertsen F, Medbo JI, Jebens E, et al. Effect of training on the activity of five muscle enzymes studied on elite cross-country skiers. Acta Physiol Scand.1999; 167 (3):247-257.
    83孙飞,饶子和.膜蛋白三维结构研究的新突破-线粒体呼吸链膜蛋白复合物Ⅱ结构解析.中国 科学院院刊.2005;20(5):381-384.
    84 Saraste M. Oxidative phosphorylation at the fin de siecle. Science.1999; 283(5407):1488-1493.
    85王喜忠,丁明孝,张穿茂(译),Gerald Karp(原著).分子细胞生物学(中文版).北京:高等教育出版社.2005:177-210.
    86 Huang S, Millar AH. Succinate dehydrogenase:the complex roles of a simple enzyme. Curt Opin Plant Biol.2013; 16(3):344-349.
    87 Yamano S, Eto D, Mukai K, et al. Effect of high intensity training on anaerobic capacity of middle qlutea muscle in Thoroughbred horses. Res Vet Sci..2004; 76(2):139-144.
    88 Watanabe S, Zimmermann M, Goodwin MB, et al. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog.2011; 7(10): e1002287.
    89 Vasil'eva OA, Urazova OI, Serebriakova VA,et al. Evaluation of the effects of antituberculous drugs on the cytochemical status of lymphocytes in vitro. Probl Tuberk Bolezn Legk.2008; 3: 27-30.
    90 Afanasiev SA, Egorova MV, Kondratyeva DS,et al. Comparative analysis of changes of myocardial angiogenesis and energy metabolism in postinfarction and diabetic damage of rat heart. J Diabetes Res.2014; 2014:827896.
    91 MacDonald MJ. Differences between mouse and rat pancreatic islets:succinate responsiveness, malic enzyme, and anaplerosis. Am J Physiol Endocrinol Metab.2002;283(2):302-310.
    92 Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes.2002; 51(10):2944-2950.
    93李琦,梁清涛,操敏,等.肺结核合并低氧血症或呼吸衰竭患者氧化/抗氧化特点的观察.国际呼吸杂志.2009;29(8):456-458.
    94 Voloshin IM, Suslov Ⅱ, chepel PI, et al. The pulmonary microangiopathy in patients with tuberculosis coexisting with diabetes mellitlls. klin Khir.2000; (11):37-39.
    95 Tian J, Bryk R, Itoh M, et al. Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of alpha-ketoglutarate decarboxylase. Proc Natl Acad Sci USA.2005; 102 (30): 10670-10675.
    96张宏馨,袁李军,袁杨,等.富铬酵母对试验性糖尿病小鼠糖代谢酶活性的影响.黑龙江畜牧兽医.2009;4:82-83.
    97韩素萍,张承玉.黄芪生药对游泳大鼠糖代谢相关酶影响的研究.中国体育科技.2008;44(2)129-132.
    98 CHAUDHURI SN, SUTER E, SHAH NS, et al. Metabolism in infection:study on the enzymatic damage in kidney of guinea pig infected with Mycobacterium tuberculosis. J Exp Med. 1963;117:71-79.
    99杨宏莉,张宏馨,李兰会,等.本草消渴丹对实验性糖尿病大鼠糖代谢酶活性的影响.时针国医国药.2009;20(7):1615-1616.
    100 Jitrapakdee S, Wutthisathapornchai A, Wallace JC, et al. Regulation of insulin secretion:role of mitochondrial signalling. Diabetologia.2010; 53 (6):1019-1032.
    101周爱儒,查锡良.生物化学.第5版,北京:人民卫生出版社,2000;102.
    102 Chavadi S, Wooff E, Coldham NG,et al. Global effects of inactivation of the pyruvate kinase gene in the Mycobacterium tuberculosis complex. J Bacteriol.2009;191(24):7545-7553.
    103 Arora G, Sajid A, Gupta M, et al. Understanding the role of PknJ in Mycobacterium tuberculosis: biochemical characterization and identification of novel substrate pyruvate kinase A. PLoS One. 2010; 5(5):e10772.
    104 VaIl Berkel TJ, Knlijt JK, Koster JF. Hormone-induced changes in pyruvate kinase. Effects ofglucagon and starvation. Eur J Biochem.1977; 81(3):423-432.
    105胡玉章,罗成仁,严密,等.高糖对已糖激酶和丙酮酸激酶活性的影响.眼科研究.1993;11(2):91-92.
    106杨梅,艾静,王宇,等.血糖安对2型糖尿病大鼠丙酮酸激酶的影响.哈尔滨医科大学学报,2004;38(1):16-18.
    107 Anand P, Murali KY, Tandon V, et al. Insulinotropic effect ofcinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenol-pyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chem Biol Interact.2010; 186(1):72-81.
    108 Wang H, Chu W, Das SK,et al. Liver pyruvate kinase polymorphisms are associated with type 2 diabetes in northern European Caucasians. Diabetes.2002; 51(9):2861-2865.
    109 NISHIKAWA T, EDELSTEIN D, DU X L, et al. Nonllalizing mitoc-hondrial supemxide prloduction block8 three pathways of hyperglycaemic damage. Nature.2000; 404(4):787-790.
    110 Michalak S, Michalowska-Wender G, Adamcewicz G,et al. Erythrocyte transketolase activity in patients with diabetic and alcoholic neuropathies. Folia Neuropathol.2013; 51(3):222-226.
    111 Tanhauserova V, Kuricova K, Pacal L, et al.Genetic variability in enzymes of metabolic pathways conferring protection against non-enzymatic glycation versus diabetes-related morbidity and mortality. Clin Chem Lab Med.2014; 52(1):77-83.
    112 Polle A. Dissecting the superoxide dismutaseaseorbate-Glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol.2001; 126:445-462.
    113 Wells WW, Xu DP, Yang Y, et al. Mammalian thioltransferase(glutaredoxin)and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem.1990; 265:15361-15364.
    114 Dixon DP, Davis BG,Edwards R.. Functional divergence in the glutathione transferase superfamily in plants. Indentigication of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem.2002; 277:30859-30869.
    115 Foyer CH and Halliwell B. glutathione reductase in chloroplast:The presence of glutathione and A proposed role in ascorbic acid metabolism. Planta.1976; 133:21-25.
    116 Alscher RG. Biosynthesis and antioxidant function of glutarnylcysteine synthetase in tomato cells selected for glutathione in plants. Physiol Plant,1989; 77:457-464.
    117 Ruzinova MB, Benezra R. Id proteins in development, cell cycle and cancer. Trends Cell Biol. 2003; 13(8):410-418.
    118 Norton JD. ID helixloophelix proteins in cell growth, differenceation and tumorigenesis. J Cell Sci. 2000; 113(22):3897-3905.
    119 Diizova H1, Asma D, Emre MH. Neutrophil superoxide anion production, and CAT and GSSGR activity in patients with tuberculosis. New Microbiol.2003;26(3):289-298.
    120 Dalvi SM, Patil VW, Ramraje NN. The roles of glutathione, glutathione peroxidase, glutathione reductase and the carbonyl protein in pulmonary and extra pulmonary tuberculosis. J Clin Diagn Res.2012; 6(9):1462-1465.
    121陆艳娟,李晓林,李晓梅.成年糖尿病大鼠重要器官组织GSH-Px、GSH和GR水平变化.吉林大学学报(医学版).2004;30(3):348-349.
    122 Straatsma BR, Lightfoot Do, Barke RM, et al. Lens capsule and epithelium in age. related cataract. Am J ophalmol,1991; 112(3):283-296.
    123 Kumawat M, Sharma TK, Singh I, et al. Antioxidant Enzymes and Lipid Peroxidation in Type 2 Diabetes Mellitus Patients with and without Nephropathy. N Am J Med Sci.2013; 5(3):213-219.
    124 Chung SS, Ho EC, Lam KS, et al. Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol.2003; 14(8):233-236.
    125 Lee AY, Chullg SS. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J.1999; 13(1):23-30.
    126 Peral B, Camafeita E., Fernandez-Real JM, et al. Tackling the human adipose tissue proteome to gain insight into obesity and related pathologies. Expert Rev. Proteomics.2009; 6:353-361.
    127 Seherzer P, Popovtzer MM. Segmental localization of mRNAs encoding Na+.K+-ATPase al and Bl-subunits in diabetic rat kidneys using RT-PCR. AM Physiol Renal Physiol.2002; 282: 492-500.
    128 Efendiev R, et al. Hypertension-linked mutation in the adducin alpha-subunit leads to higher AP2-mu2 phosphorylation and impaired Na+,K+-ATPase trafficking in response to GPCR signals and intracellular sodium, Circ. Res.2004; 95:1100-1108.
    129 White MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab.2002; 283:413-422.
    130 Belin de Chantem-le EJ, AliM I, Mintz J, et al. Obesity induced-insulin resistance causes endothelial dysfunction without reducing the vascular response to hind limbischemia. Basic Res Cardiol.2009; 104(6):707-717.
    131杨晓晖,梁金环,尹玮.养阴活血方药对糖尿病大鼠肝脏线粒体琥珀酸脱氢酶和三磷酸腺苷酶的影响.中国医药导报.2013;10(26):16-18.
    132 Mishra N, Rizvi SI.Quercetin modulates Na(+)/K(+) ATPase and sodium hydrogen exchanger in type 2 diabetic erythrocytes. Cell Mol Biol (Noisy-le-grand).2012;58(1):148-52.
    133 Rosta K, Tulassay E, Enzsoly A,et al. Insulin induced translocation of Na+/K+-ATPase is decreased in the heart of streptozotocin diabetic rats. Acta Pharmacol Sin.2009;30 (12):1616-1624.
    134 Bagrov YY, Manusova NB, Frolova EV, et al. Endogenous sodium pump inhibitors, diabetes mellitus and preeclampsia Preliminary observations and a hypothesis. Pathophysiology.2007; 14 (3-4):147-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700