用户名: 密码: 验证码:
废弃农村固废简易填埋场污染现状调查及其渗滤液处理技术(多介质层系统)研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国作为一个发展中国家,超过半数人口居住在农村地区,农村地区的生态环境质量对农民生活具有重要意义。在过去的几十年间,中国农村环境保护建设远落后于城市,农村基本上没有建立固体废物收集和处置体系。目前,中国农村固体废物与农村生活污水一起,已经成为影响农村环境卫生的主要污染源之一。此外,中国农村快速的城市化进程也是农村固体废物污染物的产量逐渐升高的原因之一,农村生态环境恶化趋势日趋严重。
     中国农村受到技术、投资与运行成本等因素限制,简易填埋成为农村固废的主要处置方式之一。随着我国经济的快速发展,2000年后农村地区逐渐采用规范化方式处置农村固废,原有的简易填埋场逐渐处于废弃状态。但是由于缺乏环境保护措施,废弃农村固废简易填埋场对周围环境的污染并没有得到根本防治,但目前对于此类简易填埋场的环境污染现状与相应污染控制措施等缺乏相关的系统研究。本研究以宁波市为例,对废弃农村固废简易填埋场进行了环境污染调查,在此基础上,探索采用多介质层系统(MML)处理简易填埋场垃圾渗滤液。主要研究结果如下:
     1.废弃农村固废填埋场环境污染调查
     通过现场实地调查与走访就近农村居民,表明:宁波地区有100多个废弃农村固废简易填埋场。由于填埋期较久,简易填埋场的固废物理组成与市政填埋场固废有较大差别,其中前者固废残余物含量高达85.0%,且混有较多工业固废。填埋场内固废有机质与Cd含量较高,分别达到69.8 g/kg(以干重计,下同)与17.6 mg/kg。氮和COD是垃圾渗滤液中主要污染物,但其浓度远远小于卫生填埋场的垃圾渗滤液浓度,极度地降雨稀释很可能是造成这一现象的重要原因。
     COD、氮与磷是简易填埋场周围地表水中主要污染物,营养盐污染远大于重金属污染,根据水质综合污染指数值,填埋场周围120 m范围内约78.0%地表水样归类为中度—严重污染。
     填埋场周围土壤中TN、TP与Cr、Cu、Zn和Cd有积累趋势,Cr、Cu与Cd其污染程度均为未污染—中度污染,土壤Cd污染最重。与土壤Ⅱ级标准的Cd规定值相比,场内土壤Cd平均值是其10.3倍以上,因此填埋场周围100m范围内土壤只适合作为林地,而不适合作为农业用地。
     2.废弃农村简易填埋场周围土壤—水稻生态系统污染
     以高桥简易填埋场为研究对象,研究了该填埋场周围土壤重金属与水稻重金属含量受填埋场的影响,结果表明:农村废弃填埋场周围120 m范围内,土壤—水稻生态系统已经受到污染。土壤Cd含量高于农业土壤最大允许值。重金属Igeo值表明:土壤已经受到了Cd中度污染,而土壤中Cr、Cu与Pb污染状况为未污染-中度污染。水稻根部、茎叶和籽粒均呈现显著地重金属积累趋势。水稻籽粒中Cr和Pb含量高于阈值,它们的平均含量分别是阈值的2.9-6.7倍与1.0-1.5倍。线性相关分析结果表明:填埋场渗滤液呈弱碱性是造成土壤pH升高,并进而影响水稻对Cd吸收的一个重要原因。
     3.MML对简易填埋场渗滤液的处理效果
     针对现有常规渗滤液处理工艺投资与运行成本高,操作维护较复杂等缺点,论文探索了采用MML工艺处理废弃农村固废简易填埋场渗滤液的可行性研究。MML具有管理方便与无动力处理的特点,适合处理此类填埋场渗滤液。本实验设置了4个水力负荷,并改进了土壤块(SMB)组成,在低曝气与不曝气条件下,研究了MML对渗滤液的处理效果。结果表明,MML可以有效地去除垃圾渗滤液中的COD、NH3-N与P。MML在HLR 200L/(m2·d)和400 L/(m2·d)与无曝气条件下,NH3-N去除效率与COD去除效率分别为97.4%和82.4%与72.0%和62.0%;在HLR 800和1600 L/(m2·d)与间歇曝气时,NH3-N与COD去除效率分别为62.3%和53.4%与45.3%和35.3%。由于强烈的硝化作用,TN去除效率不高,在试验结束时,MML实际上基本丧失了对TN的去除能力。在HLR 200 L/(m2-d)时,MML对P去除效率在75.6-91.9%,而其它3个水力负荷下P去除效率在26.1-54.9%之间。实验结果表明,MML用于处理该类填埋场渗滤液具有较好的前景。
     4.MML流态分析
     由于目前自然处理系统设计主要采用经验公式,而实际应用中由于受到所处地理位置、地质条件与气候等多种外界因素影响,其水流流态常常偏离设计,影响了其设计的有效性。本章实验通过投加示踪剂,求出MML停留时间分布曲线,进而明确其内部流体流动状态,明确其有效体积,为对MML反应器优化和高效利用提供依据。在水力负荷分别为200、400、800与1600 L/(m2·d)条件下,MML反应器示踪实验结果表明:
     (1)MML在HLR 200-1600 L/(m2·d)返混程度中等偏下(d<0.3),流动状态以平推流为主,但是随着HLR提高到实验最高负荷(1600 L/(m2·d)),反应器流态有由平推流向全混流转变的趋向。
     (2)水力停留时间是决定MML反应器死区比例的一个关键因素之一,二者存在良好的负相关性。
As a developing country, more than half populations in China live in rural areas. The ecological environment quality in rural areas is very important to the quality of rural residents. In the past few decades, the sanitation facilities in rural areas lag far behind the cities. Nowadays, the solid waste and the wastewater in rural regions have been one of the main barriers of affecting the sanitation and residential living in rural areas. Additionally, the rapid urbanization in rural areas in China was also one of the reasons which contribute the increasing production of solid wastes, and the environmental degradation trends in rural areas worsened gradually.
     Limited by the factors including the available technology, investment and operation costs, etc., the unsanitary landfills became one of the main disposal pathways of rural waste. After 2000s, they were replaced by the newly established sanitary landfills, and then they were abandoned gradually. However, there are few systematic researches on the environmental contamination of the abandoned rural unsanitary landfills and the corresponding decontamination process.
     We choose the Ningbo city as the representative region of east China, and investigate the current environment contamination of these unsanitary landfills. Then, the decentralized wastewater technology-the improved Multi-soil-layering system (MML) was applied to treat the leachate from these landfills. The experiment results are listed below:
     1. Pollution investigation of the abandoned rural unsanitary landfills
     Based on the field survey and visit to the adjacent villagers, it is found that there are at least 100 unsanitary landfills in Ningbo. The was an evident difference between the physical components of solid wastes from the abandoned unsanitary landfill with the sanitary landfills, high portion of residues,85 percent, and a part of industrial waste was commingled with the rural waste. Chemical analyzation of the the adjacent surface water and soil show that the organic components and Cd content of the rural waste were high,69.8 g/kg (dry weight, DW) and 17.6 mg/kg (DW), respectively. Nitrogen and chemical oxygen demand (COD) were the primary products in the leachate in the unsanitary landfills, and their concentrations were much lower than that from the sanitary landfill. It was assumed that the great dilution effect caused the result.
     COD, N and P were the prevalent contaminants in the surface water around the unsanitary landfills, and the nutrient contamination was much higher than the pollution of trace elemments in surface water. According to the integrated pollution index (IPI), more than 78.0% water samples were classified as the moderate to serious pollution degree within 120 m around the unsanitary landfills.
     Higer average contents of soil TN, TP, Cu, Zn and Cd indicate that they have accumulation trend. Geoaccumulation index values of soil Cd and Cu show the soil moderate pollution with Cd and unpolluted to moderately polluted with Cu, respectively. Compared with the cadmium threshold level, the average soil Cd content was 10.3-fold higher. To protect the human health, the soils within 100 m around the unsanitary landfills were suitable for forest land only, not for agricultural usage.
     2. Heavy metal contamination in a soil-rice system in the vicinity of abandoned rural unsanitary landfill
     Gaoqiao unsanitary landfill was chosen as the research object, and the soil and rice adjacent to the unsanitary landfill were sampled to evaluate the metal contamination of the soil-rice ecosystem. The experiment results showed that the ecosystem adjacent to the abandoned rural unsanitary landfill has been contaminated. The soil Cd was higher than the maximum allowable content of agricultural soil. Geoaccumulation index values of soil Cd suggests that the soil was moderately polluted with Cd, while the soils were unpolluted-moderately overall by Cr, Cu as well as Pb. There was a remarkable bioaccumulation trend of heavy metals in the rice organs (rice root, stem & leaf and grain). The Cr and Pb contents in rice grain were much higher than the threshold levels,2.9-6.7 folds and 1.0-1.5 folds of the legislation limits, respectively.Linear correlation analysis showed that the slightly alkaline leachate from the unsanitary landfill was one of the main factors causing the higher soil pH and then affecting the absorption of rice on the Cd.
     3. Treatment of leachate from rural unsanitary landfill using Multi-media layering system (MML)
     The existing processing technologies demand the expensive investment, high cost operation and skillful professionals to operate and maintain. Thus, it is assumed that they are not suitable for the utilization for the abandoned unsanitary landfills in the rural areas. MML has the characteristics of administrative convenience and non-power handling. Four MMLs with altered SMB and different hydraulic load rate (HLR) were applied in the experiment to investigate the treatment of the landfill leachate under without or low aeration supply. The experiment results showed that the MML could effectively treat the COD, NH3-N and P. COD and NH3-N removal efficiencies of MML were 97.4%,82.4% and 72.0%,62.0%, respectively under HLRs of 200 and 400 L/(m2-d) without aeration; COD and NH3-N removal efficiencies of M800 and M1600 were 62.3%,53.4% and 45.3%,35.3% respectively under intermittent aeration. N removal efficiency was low due to the strong nitrification effect, and MML almost lost the nitrogen removal capacity. P removal efficiency of MML was 75.6 to 91.9% under HLR 200 400 L/(m2·d), and the P removal of other three reactors was 26.1 to 54.9%. The experiment result indicated that MML presents an appealing prospect to be utilized to treat the leachate from the rural unsanitary landfill.
     4. Flow pattern of MML
     Since the current design of natural treatment process (NTP) mainly depends on the emperial equation; however, the flow pattern of NTP often deviates the design and the designing effectiveness is impaired due to the geography location, geological condition and weather, etc. The objective of the experiment was to detect the residence time distribution (RTD) of MML, clarify its flow condition and effective volume under hydraulic load rate 200 to 1600 L/(m2·d) utilizing tracer experiment. The experiment results were listed below.
     The flow pattern of MML was close to plug-flow with middle backmixing (d<0.3) under hydraulic load rate (HLR) 200 to 1600 L/(m2·d). However, the flow pattern had the tendency to shift to completely stirred flow.
     Hydraulic retention time was one main factor determining the volume proportion of dead zone (Vd), and there was excellent linear correlation betweenθwith the latter (R2=0.999).
引文
[1].国家统计局农村社会经济调查司.中国农村统计年鉴[M].2010,北京:中国统计出版社
    [2].吉崇拮,张云,隋儒楠.沈阳市典型农村生活垃圾调查及污染防治对策[J].环境卫生工程,2006.14(2):51-54.
    [3].武攀峰,崔春红,周立祥,李超.农村经济相对发达地区生活垃圾的产生特征与管理模式初探—以太湖地区农村为例[J].农业环境科学学报,2006.25(1):237-243.
    [4].邱才娣.农村生活垃圾资源化技术及管理模式[D].2008.硕士.
    [5].单华伦,朱伟,张春雷,李磊.发达农村生活垃圾特性调查及治理技术探讨[J].江苏环境科技,2006.19(6):3-5.
    [6].李书田,刘荣乐,陕红.我国主要畜禽粪便养分含量及变化分析[J].农业环境科学学报,2009.28(1):6.
    [7].王洪涛,陆文静.农村固体废物处理处置与资源化技术[M].2006,北京:中国环境科学出版社.
    [8].陈婷婷,周伟国,阮应君.大型养殖业粪污处理沼气工程导入CDM的可行性分析[J].中国沼气,2007.25(3):3.
    [9].李伟,蔺树生,谭豫之,汤修映.作物秸秆综合利用的创新技术[J].农业工程学报,2000.16(1):14-17.
    [10].边炳鑫,赵由才.农业固体废弃物的处理与综合应用[M].2004,北京:化学工业出版社.
    [11].王小鲁.城市化与经济增长[J].经济社会体制比较,2002(1):10.
    [12].施正连.治理农村垃圾污染措施的探讨[J].农业装备技术,2001(3):1.
    [13].罗如新.农村垃圾管理现状与对策[J].中国环境管理,2006(4):23-26.
    [14].杨天周.关于农村生活垃圾处置工作的实践与探讨[J].污染防治技术,2007(5):42-44.
    [15].施金标,杨云根.垃圾处理在小城镇中的推广和应用[J].小城镇建设,2004(4):69-69.
    [16].张维理,武淑霞,冀宏杰,K.H.中国农业面源污染形势估计及控制对策 Ⅰ.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004.37(7):1008-1017.
    [17].张绪美,董元华,王辉,沈旦.中国畜禽养殖结构及其粪便N污染负荷特征分析[J].环境科学,2007.28(6):1311-1318.
    [18].曾悦,洪华生,田燕,黄晓冬,周丽.南方山地丘陵区规模畜禽养殖对水环境影响及评价[J].水资源保护,2010.26(5):45-49.
    [19].陈永山,章海波,骆永明,胡冠九,赵永刚,宋静.苕溪流域典型断面底泥14种抗生素污染特征[J].环境科学,2011.32(3):667-672.
    [20].晁雷,周启星,崔爽,陈苏,任丽萍.堆肥对土壤重金属垂直分布的影响与污染评价[J].应用生态学报,2007.18(06):1346-1350.
    [21].王辉,董元华,张绪美,李德成,安琼.集约化养殖畜禽粪便农用对土壤次生盐渍化的影响评估[J].环境科学,2008.29(1):183-188.
    [22].张慧敏,章明奎,顾国平.浙北地区畜禽粪便和农田土壤中四环素类抗生素残留[J].生态与农村环境学报,2008.24(3):69-73.
    [23]. Zhang, S., L. Cai, J.A. Koziel, S.J. Hoff, D.R. Schmidt, C.J. Clanton, L.D. Jacobson, D.B. Parker, A.J. Heber. Field air sampling and simultaneous chemical and sensory analysis of livestock odorants with sorbent tubes and GC-MS/olfactometry[J]. Sensors and Actuators B:Chemical,2010.146(2): 427-432.
    [24]. Nicholson, F.A., S.J. Groves, B.J. Chambers. Pathogen survival during livestock manure storage and following land application[J]. Bioresource Technology,2005.96(2):135-143.
    [25].张克强,高怀文.畜禽养殖业污染物处理与处置[M].2005,北京:化学工业出版社.
    [26].张颖.农业固体废物资源化利用[M].2005,北京:化学工业出版社.
    [27].何立明,王文杰,王桥,魏斌,厉青,王昌佐,刘晓曼.中国秸秆焚烧的遥感监测与分析[J].中国环境监测,2007.23(]):42-50.
    [28].吕薇,李彦栋,柳建华,邵海江.生物质秸秆燃烧动力学特性分析[J].哈尔滨理工大学学报,2010.15(5):129-131.
    [29].任国贤.中国乡镇工业企业的污染损失计算[D].2000.
    [30].周洁.热解炭黑的表面特性及其资源化应用研究[D].材料与化工学院, 2006.博士.
    [31].杨家宽,肖波,姚鼎文,王秀萍.黄磷渣热态直接成型资源化[J].化工环保,2003.23(1):5.
    [32].刘转年,赵西成.粉煤灰廉价吸附剂资源化利用的现状和对策分析[J].西安建筑科技大学学报(自然科学版),2007.39(5):691-694.
    [33].杨现斌.新时代药业制药污水深度处理试验研究[D].化学工程,2005.硕士.
    [34].汪国连,金彦平.我国农村垃圾问题的成因及对策[J].现代经济(现代物业下半月刊),2008.7(10):44-45+51.
    [35].潘美媛.杭州市余杭区农村面源污染状况与治理对策[J].能源工程,2003(01):43-45.
    [36].居亚平.突破农村垃圾集中处理的瓶颈[J].农村工作通讯,2007(7):17-18.
    [37].罗如新,黄文芳.农村废弃物“就地消纳”可行性研究—上海市松江区新浜镇许家草村调查[J].生态经济,2007(1):136-138.
    [38].陈燕,杨常亮.滇池沿岸农村固体废物污染调查研究--呈贡县大渔乡案例分析[J].云南环境科学,2005.24(z1):122-124.
    [39].张烽文,刘小鹏,刘希风.宁夏西海固地区农业生态环境面源污染调查研究[J].干旱区资源与环境,2007.21(7):75-80.
    [40].姚丽文,郑文育.江西省农村生态环境问题分析及对策探讨[J].江西农业大学学报(社会科学版),2006.5(3):59-61.
    [41]. Kocasoy, G., K. Curi. The Umraniye-Hekimbasi Open Dump Accident[J]. Waste Management & Research,1995.13(4):305-314.
    [42].廖利,侯艳雯.简易垃圾填埋场对环境的分析评价[J].环境卫生工程,1999(3):107-110.
    [43].王里奥,林建伟,刘元元.城市生活垃圾简易堆放场稳定化周期的研究[J].上海环境科学,2003(2):89-93.
    [44]. Kjeldsen, P., M.A. Barlaz, A.P. Rooker, A. Baun, A. Ledin, T.H. Christensen. Present and long-term composition of MSW landfill leachate:A review[J]. Critical Reviews in Environmental Science and Technology,2002.32(4): 297-336.
    [45]. Xie, H.J., Y.M. Chen, L.T. Zhan, R.P. Chen, X.W. Tang, R.H. Chen, H. Ke. Investigation of migration of pollutant at the base of Suzhou Qizishan landfill without a liner system[J]. Journal of Zhejiang University-Science A,2009. 10(3):439-449.
    [46]. Kulikowska, D., E. Klimiuk. The effect of landfill age on municipal leachate composition[J]. Bioresource Technology,2008.99(13):5981-5985.
    [47]. Lee, J.-Y., J.-Y. Cheon, H.-P. Kwon, H.-S. Yoon, S.-S. Lee, J.-H. Kim, J.-K. Park, C.-G. Kim. Attenuation of landfill leachate at two uncontrolled landfills[J]. Environmental Geology,2006.51(4):581-593.
    [48]. Liu, C.L., Y. Zhang, F. Zhang, S. Zhang, M.Y. Yin, H. Ye, H.B. Hou, H. Dong, M. Zhang, et al. Assessing pollutions of soil and plant by municipal waste dump[J]. Environmental Geology,2007.52(4):641-651.
    [49]. Luna, Y, E. Otal, L.F. Vilches, J. Vale, X. Querol, C.F. Pereira. Use of zeolitised coal fly ash for landfill leachate treatment:A pilot plant study[J]. Waste Management,2007.27(12):1877-1883.
    [50]. Booth, S.D.J., D. Urfer, G. Pereira, K.J. Cober. Assessing the impact of a landfill leachate on a Canadian waste water treatment plant[J]. Water Environment Research,1996.68(7):1179-1186.
    [51]. Primo, O., A. Rueda, M.J. Rivero, I. Ortiz. An integrated process, Fenton reaction-Ultrafiltration, for the treatment of landfill leachate:Pilot plant operation and analysis[J]. Industrial & Engineering Chemistry Research,2008. 47(3):946-952.
    [52].王宝贞,王琳.城市固体废物渗滤液处理与处置[M].2005,北京:化学工业出版社.
    [53]. Zhang, S.J., Y.Z. Peng, S.Y. Wang, S.W. Zheng, J. Guo. Organic matter and concentrated nitrogen removal by shortcut nitrification and denitrification from mature municipal landfill leachate[J]. Journal of Environmental Sciences-China,2007.19(6):647-651.
    [54]. Trabelsi, I., I. Sell ami, T. Dhifallah, K. Medhioub, L. Bousselmi, A. Ghrabi. Coupling of anoxic and aerobic biological treatment of landfill leachate[J]. Desalination,2009.246(1-3):506-513.
    [55]. Yu, J., S. Zhou, W. Wang. Combined treatment of domestic wastewater with landfill leachate by using A2/O process[J]. Journal of Hazardous Materials, 2010.178(1-3):81-88.
    [56]. Singh, M., R.K. Srivastava. Sequencing batch reactor technology for biological wastewater treatment:areview[J]. Asia-Pacific Journal of Chemical Engineering,2011.6(1):3-13.
    [57]. Chan, Y.J., M.F. Chong, C.L. Law, D.G. Hassell. A review on anaerobic-aerobic treatment of industrial and municipal wastewater[J]. Chemical Engineering Journal,2009.155(1-2):1-18.
    [58]. Morling, S. Nitrogen removal and heavy metals in leachate treatment using SBR technology[J]. Journal of Hazardous Materials,2010.174(1-3):679-686.
    [59]. Kennedy, E.J., E.M. Lentz. Treatment of landfill leachate using sequencing batch and continuous flow upflow anaerobic sludge blanket (UASB) reactors[J]. Water Research,2000.34(14):3640-3656.
    [60]. Kettunen, R.H., T.H. Hoilijoki, J.A. Rintala. Anaerobic and sequential anaerobic-aerobic treatments of municipal landfill leachate at low temperatures[J]. Bioresource Technology,1996.58(1):31-40.
    [61]. Deng, Y., J.D. Englehardt. Electrochemical oxidation for landfill leachate treatment[J]. Waste Management,2007.27(3):380-388.
    [62]. Wang, Z.P., Z. Zhang, Y.J. Lin, N.S. Deng, T. Tao, K. Zhuo. Landfill leachate treatment by a coagulation-photooxidation process[J]. Journal of Hazardous Materials,2002.95(1-2):153-159.
    [63]. Deng, Y, J.D. Englehardt. Treatment of landfill leachate by the Fenton process[J]. Water Research,2006.40(20):3683-3694.
    [64]. Mariam, T., L.D. Nghiem. Landfill leachate treatment using hybrid coagulation-nanofiltration processes[J]. Desalination,2010.250(2):677-681.
    [65]. Li, F.Y., K. Wichmann, W. Heine. Treatment of the methanogenic landfill leachate with thin open channel reverse osmosis membrane modules[J]. Waste Management,2009.29(2):960-964.
    [66]. Yalcuk, A., A. Ugurlu. Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment[J]. Bioresource Technology, 2009.100(9):2521-2526.
    [67]. Justin, M.Z., M. Zupancic. Combined purification and reuse of landfill leachate by constructed wetland and irrigation of grass and willows[J]. Desalination,2009.246(1-3):157-168.
    [68]. Mojca Loncnar, Marija Zupancic, Peter Bukovec, M.Z. Justin. Fate of saline ions in a planted landfill site with leachate recirculation[J]. Waste Management,2010.30(1):110-118.
    [69]. Chiemchaisri, C., W. Chiemchaisri, J. Junsod, S. Threedeach, P.N. Wicranarachchi. Leachate treatment and greenhouse gas emission in subsurface horizontal flow constructed wetland[J]. Bioresource Technology, 2009.100(16):3808-3814.
    [70]. Nivala, J., M.B. Hoos, C. Cross, S. Wallace, G. Parkin. Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland[J]. Science of the Total Environment,2007.380(1-3):19-27.
    [71]. Tanner, C.C., J.P.S. Sukias, M.P. Upsdell. Organic matter accumulation during maturation of gravel-bed constructed wetlands treating farm dairy wastewaters[J]. Water Research,1998.32(10):3046-3054.
    [72]. Frascari, D., F. Bronzini, G. Giordano, G Tedioli, A. Nocentini. Long-term characterization, lagoon treatment and migration potential of landfill leachate: a case study in an active Italian landfill[J]. Chemosphere,2004.54(3): 335-343.
    [73]. Mehmood, M.K., E. Adetutu, D.B. Nedwell, A.S. Ball. In situ microbial treatment of landfill leachate using aerated lagoons[J]. Bioresource Technology,2009.100(10):2741-2744.
    [74]. Aziz, S.Q., H.A. Aziz, M.S. Yusoff, M.J.K. Bashir. Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process:Optimization by response surface methodology[J]. Journal Of Hazardous Materials,2011.189(1-2):404-413.
    [75]. Kabdasli, I., A. Safak, O. Tunay. Bench-scale evaluation of treatment schemes incorporating struvite precipitation for young landfill leachate[J]. Waste Management,2008.28(11):2386-2392.
    [76]. Gunay, A., D. Karadag, I. Tosun, M. Ozturk. Combining Anerobic Degradation and Chemical Precipitation for the Treatment of High Strength, Strong Nitrogenous Landfill Leachate[J]. Clean-Soil Air Water,2008. 36(10-11):887-892.
    [77]. Mino, E.R., T. Okuda, W. Nishijima, M. Okada. Calcium accumulation onto GAC used for landfill leachate treatment and its effects on 2,4-DCP adsorption[J]. Journal of Chemical Engineering of Japan,2007.40(3): 275-279.
    [78]. Foo, K.Y., B.H. Hameed. An overview of landfill leachate treatment via activated carbon adsorption process[J]. Journal of Hazardous Materials,2009. 171(1-3):54-60.
    [79]. Wu, Y., S. Zhou, F. Qin, H. Peng, Y. Lai, Y. Lin. Removal of humic substances from landfill leachate by Fenton oxidation and coagulation[J]. Process Safety And Environmental Protection,2010.88(4):276-284.
    [80]. Radha, K.V., V. Sridevi, K. Kalaivani. Electrochemical oxidation for the treatment of textile industry wastewater[J].Bioresource Technology,2009. 100(2):987-990.
    [81]. Visvanathan, C., R. Ben Aim, K. Parameshwaran. Membrane separation bioreactors for wastewater treatment[J]. Critical Reviews In Environmental Science And Technology,2000.30(1):1-48.
    [82]. Fane, A.G., C.A. Ng, D. Sun, J.S. Zhang, B. Wu. Mechanisms of Fouling Control in Membrane Bioreactors by the Addition of Powdered Activated Carbon[J]. Separation Science and Technology,2010.45(7):873-889.
    [83]. Kruzic, A.P. Natural Treatment and On-Site Processes[J]. Water Environment Research,1997.69(4):522-526.
    [84]. Verhoeven, J.T.A., A.F.M. Meuleman. Wetlands for wastewater treatment: Opportunities and limitations[J]. Ecological Engineering,1999.12(1-2):5-12.
    [85]. Healy, M.G., M. Rodgers, J. Mulqueen. Treatment of dairy wastewater using constructed wetlands and intermittent sand filters [J]. Bioresource Technology, 2007.98(12):2268-2281.
    [86]. Solano, M.L., P. Soriano, M.P. Ciria. Constructed Wetlands as a Sustainable Solution for Wastewater Treatment in Small Villages[J]. Biosystems Engineering,2004.87(1):109-118.
    [87]. US EPA. Design Manual:Constructed Wetlands and Aquatic Plant Systems for Municipal Wastewater Treatment.2003 [cited 2010 October 10]; Available from http://www.epa.gov/owow/wetlands/pdf/design.pdfl.Available from:http://www.epa.gov/owow/wetlands/pdf/design.pdf.
    [88].鄢璐,王世和,黄娟,刘洋,王峰.潜流型人工湿地基质堵塞特性试验研究[J].环境科学,2008.29(3):627-631.
    [89]. Knowles, P., G. Dotro, J. Nivala, J. Garcia. Clogging in subsurface-flow treatment wetlands:Occurrence and contributing factors[J]. Ecological Engineering,2011.37(2):99-112.
    [90]. Maehlum, T. Treatment of landfill leachate in on-site lagoons and constructed wetlands[J]. Water Science and Technology,1995.32(3):129-135.
    [91]. Wakatsuki T, Esumi H, O. S. High performance and N&P removal of an on-site domestic wastewater treatment system by multi-soil-layering method[J]. Water Science Technology,1993.27(1):31-40.
    [92]. Wakatsuki, T., Omura, S., Abe, Y, Izumi, K. Treatment of domestic waste water by Multi-Soil-Layering method[J]. Journal of Soil Science and Plant Nutrition (in Japanese),1989.60:335-351.
    [93]. Masunaga, T., K. Sato, T. Zennami, S. Fujii, T. Wakatsuki. Direct treatment of polluted river water by the Multi-Soil-Layering method[J]. Journal of Water and Environment Technology,2003.1(1):97-104.
    [94]. Luanmanee, S., T. Attanandana, T. Masunaga, T. Wakatsuki. The efficiency of a multi-soil-layering system on domestic wastewater treatment during the ninth and tenth years of operation[J]. Ecological Engineering,2001.18(2): 185-199.
    [95]. Attanandana, T., B. Saitthiti, S. Thongpae, S. Kritapirom, S. Luanmanee, T. Wakatsuki. Multi-media-layering system for food service wastewater treatment[J]. Ecological Engineering,2000.15(1-2):133-138.
    [96]. Attanandana, T., S. Luanmanee, B. Saitthiti, C. Panichajakul, T. Wakatsuki. A comparative study of zeolite with other materials as the components of the Multi-Soil layering System for wastewater treatment[C]. in Proceedings of the Symposium on Managing water and waste in the new millenium.2000. Johannesburg, South Africa.
    [97]. Masunaga, T., K. Sato, Y. Senga, Y. Seike, T. Inaishi, H. Kudo, T. Wakatsuki. Characteristics of CO2, CH4 and N2O emissions from a multi-soil-layering system during wastewater treatment[J]. Soil Science and Plant Nutrition,2007. 53(2):173-180.
    [98]. Sato, K., T. Masunaga, T. Wakatsuki. Characterization of treatment processes and mechanisms of COD, phosphorus and nitrogen removal in a multi-soil-layering system[J]. Soil Science and Plant Nutrition,2005.51(2): 213-221.
    [99]. Pattnaik, R., R.S. Yost, G. Porter, T. Masunaga, T. Attanandana. Improving multi-soil-layer (MSL) system remediation of dairy effluent[J]. Ecological Engineering,2008.32(1):1-10.
    [100]. Masunaga, T., T. Wakatsuki, M. Shirahama, T. Inaishi. High quality water remediation by the Multi Soil Layering Method[J]. Chemistry for Protection of the Environment,1999:303-309.
    [101]. Sato, K., T. Masunaga, T. Wakatsuki. Water movement characteristics in a multi-soil-layering system[J]. Soil Science and Plant Nutrition,2005.51(1): 75-82.
    [102]. Masunaga, T., K. Sato, J. Mori, M. Shirahama, H. Kudo, T. Wakatsuki. Characteristics of wastewater treatment using a multi-soil-layering system in relation to wastewater contamination levels and hydraulic loading rates [J]. Soil Science and Plant Nutrition,2007.53(2):215-223.
    [103]. Chen, X., K. Sato, T. Wakatsuki, T. Masunaga. Comparative study of soils and other adsorbents for decolorizing sewage and livestock wastewater [J]. Soil Science and Plant Nutrition,2007.53(2):189-197.
    [104]. Chen, X., K. Sato, T. Wakatsuki, T. Masunaga. Effect of aeration and material composition in soil mixture block on the removal of colored substances and chemical oxygen demand in livestock wastewater using multi-soil-layering systems[J]. Soil Science and Plant Nutrition,2007.53(4):509-516.
    [105]. Attanandana, T., B. Saithiti, S. Thongpae, S.Kritapirom, T. Wakatsuki. Wastewater treatment study using the Multi-Soil-Layering system[C]. in Soil Quality Management and Agro-Ecosystem Health. Proceedings of the Fourth International Conference of East and Southeast Asia Federation of Soil Science Societies.1997. Cheju, Korea.
    [106]. Luanmanee, S., P. Boonsook, T. Attanandana, B. Saitthiti, C. Panichajakul, T. Wakatsuki. Effect of intermittent aeration regulation of a multi-soil-layering system on domestic wastewater treatment in Thailand[J]. Ecological Engineering,2002.18(4):415-428.
    [107]. Luanmanee, S., P. Boonsook, T. Attanandana, T. Wakatsuki. Effect of organic components and aeration regimes on the efficiency of a multi-soil-layering system for domestic wastewater treatment[J]. Soil Science and Plant Nutrition, 2002.48(2):125-134.
    [108]. Chen, X., K. Sato, T. Wakatsuki, T. Masunaga. Effect of structural difference on wastewater treatment efficiency in multi-soil-layering systems: Relationship between soil mixture block size and removal efficiency of selected contaminants [J]. Soil Science and Plant Nutrition,2007.53(2): 206-214.
    [109]. Zhu, S., S. Chen. The impact of temperature on nitrification rate in fixed film biofilters[J]. Aquacultural Engineering,2002.26(4):221-237.
    [110].魏才倢,朱擎,吴为中,高航,李超.两段式沸石多级土壤渗滤系统强化脱氮试验[J].中国环境科学,2009.29(08):833-838.
    [111]. Wakatsuki, T., S. Luanmanee, T. Masunaga, T. Attanandana. High grade on-site treatment of domestic wastewater and polluted river water by Multi-Soil-Layering method[C]. in Managing Water and Waste in the New Millennium:Proceedings of IWA Conference.2000. Johannesburg, South Africa.
    [112]. Zhang, D.Q., S.K. Tan, R.M. Gersberg. Municipal solid waste management in China:Status, problems and challenges[J]. Journal Of Environmental Management,2010.91(8):1623-1633.
    [113]. Frascari, D., F. Bronzini, G. Giordano, G. Tedioli, M. Nocentini. Long-term characterization, lagoon treatment and migration potential of landfill leachate: a case study in an active Italian landfill[J]. Chemosphere,2004.54(3): 335-343.
    [114].宁波统计局,国家统计局宁波调查队.宁波统计年鉴-2006[M].2007,北京:中国统计出版社.
    [115].鲍士旦.土壤农化分析(第3版)[M].2005,北京:中国农业出版社.
    [116]. Shentu, J.L., Z.L. He, X.E. Yang, T.Q. Li. Accumulation properties of cadmium in a selected vegetable-rotation system of southeastern China[J]. Journal of Agricultural and Food Chemistry,2008.56(15):6382-6388.
    [117].中国国家环境保护总局.水和废水分析方法[M].4th ed.2002,北京:中国环境科学出版社.
    [118].何东升,张洁敏,石燎燃.宁波市城区生活垃圾处置现状及对策[J].环境卫生工程,2004.12(1):45-48.
    [119].郦桂芬.环境质量评价[M].1989,北京:中国环境出版社.
    [120].章明奎,王美青,符娟林.杭州城市土壤研究[M].2006,北京:中国农业科学技术出版社.
    [121]. Ji, Y., Y. Feng, J. Wu, T. Zhu, Z. Bai, C. Duan. Using geoaccumulation index to study source profiles of soil dust in China[J]. Journal of Environmental Sciences,2008.20(5):571-578.
    [122].夏小洪,毛乾光,高波,张科红.宁波市鄞州区生活垃圾卫生填埋场的运营管理[J].环境卫生工程,2010.18(5):27-29.
    [123]. Zhuang, Y., S.W. Wu, Y.L. Wang, W.X. Wu, Y.X. Chen. Source separation of household waste:A case study in China[J]. Waste Management,2008.28(10): 2022-2030.
    [124]. Banar, M., Z. Cokaygil, A. Ozkan. Life cycle assessment of solid waste management options for Eskisehir, Turkey[J]. Waste Management,2009.29(1): 54-62.
    [125]. Zhang, X.-Y, Y.-Y. Sui, X.-D. Zhang, K. Meng, S.J. Herbert. Spatial Variability of Nutrient Properties in Black Soil of Northeast China[J]. Pedosphere,2007.17(1):19-29.
    [126]. Zhao, Y.W., Z.F. Yang. Integrative fuzzy hierarchical model for river health assessment:A case study of Yong River in Ningbo City, China[J]. Communications in Nonlinear Science and Numerical Simulation,2009.14(4): 1729-1736.
    [127]. Wilcke, W., S. Muller, N. Kanchanakool, W. Zech. Urban soil contamination in Bangkok:heavy metal and aluminium partitioning in topsoils[J]. Geoderma, 1998.86(3-4):211-228.
    [128].国家环境保护总局,中华人民共和国地表水环境质量标准[S].2002.GB3838-2002.
    [129].国家环境保护总局,国家质量监督检验检疫总局.土壤环境质量标准,inGB 15618-1995.1996,中国环境出版社:北京.
    [130].周国华,董岩翔,张建明.浙江省农业地质环境调查评价方法技术[M].2007,北京:地质出版社.
    [131]. Christensen, T.H., P. Kjeldsen, P.L. Bjerg, D.L. Jensen, J.B. Christensen, A. Baun, H.J. Albrechtsen, C. Heron. Biogeochemistry of landfill leachate plumes[J]. Applied Geochemistry,2001.16(7-8):659-718.
    [132]. Prechthai, T., P. Parkpian, C. Visvanathan. Assessment of heavy metal contamination and its mobilization from municipal solid waste open dumping site[J]. Journal of Hazardous Materials,2008.156(1-3):86-94.
    [133]. Zhao, K.L., X.M. Liu, J.M. Xu, H.M. Selim. Heavy metal contaminations in a soil-rice system:Identification of spatial dependence in relation to soil properties of paddy fields[J]. Journal of Hazardous Materials,2010.181(1-3): 778-787.
    [134]. Fu, J., Q. Zhou, J. Liu, W. Liu, T. Wang, Q. Zhang, G. Jiang. High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health[J]. Chemosphere,2008. 71(7):1269-1275.
    [135]. Lu, L.-l., S.-k. Tian, X.-e. Yang, X.-c. Wang, P. Brown, T.-q. Li, Z.-l. He. Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii[J]. Journal Of Experimental Botany,2008.59(11): 3203-3213.
    [136].张红振,骆永明,章海波,宋静,夏家淇,赵其国.土壤环境质量指导值与标准研究V.镉在土壤-作物系统中的富集规律与农产品质量安全[J].土壤学报,2010.47(4):628-638.
    [137]. Kirkham, M.B. Cadmium in plants on polluted soils:Effects of soil factors, hyperaccumulation, and amendments[J]. Geoderma,2006.137(1-2):19-32.
    [138]. Li, P., X. Wang, T. Zhang, D. Zhou, Y. He. Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil[J]. Journal of Environmental Sciences,2008.20(4):449-455.
    [139].刘家宝.人工快速渗滤系统污染物去除机理及其处理效果研究[D].2006.博士.
    [140]. Boonsook, P., S. Luanmanee, T. Attanandana, A. Kamidouzono, T. Masunaga, T. Wakatsuki. A comparative study of permeable layer materials and aeration regime on efficiency of multi-soil-layering system for domestic wastewater treatment in Thailand[J]. Soil Science and Plant Nutrition,2003.49(6): 873-882.
    [141]. Sato, K., T. Masunaga, K. Inada, T. Tanaka, Y. Arai, S. Unno, T. Wakatsuki. The development of high speed treatment of polluted river water by the multi-soil-layering method:examination of various materials and structures[J]. Japanese journal of soil science and plant nutrition,2005.76:449-458.
    [142]. Jokela, J.P.Y., R.H. Kettunen, K.M. Sormunen, J.A. Rintala. Biological nitrogen removal from municipal landfill leachate:low-cost nitrification in biofilters and laboratory scale in-situ denitrification[J]. Water Research,2002. 36(16):4079-4087.
    [143].郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].2004,北京:科学出版社.
    [144]. Israel, S., P. Engelbrecht, G Tredoux, M.V. Fey. In Situ Batch Denitrification of Nitrate-Rich Groundwater Using Sawdust as a Carbon Source-Marydale, South Africa[J]. Water Air and Soil Pollution,2009.204(1-4):177-194.
    [145]. Xu, D.F., J.M. Xu, J.J. Wu, A. Muhammad. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems[J]. Chemosphere, 2006.63(2):344-352.
    [146]. Henze, M. Capabilities of Biological Nitrogen Removal Processes from Waste-Water[J]. Water Science and Technology,1991.23(4-6):669-679.
    [147]. Ramos, A.F., M.A. Gomez, E. Hontoria, J. Gonzalez-Lopez. Biological nitrogen and phenol removal from saline industrial wastewater by submerged fixed-film reactor[J]. Journal of Hazardous Materials,2007.142(1-2): 175-183.
    [148]. US EPA. Design Manual:Constructed Wetlands and Aquatic Plant Systems for Municipal Wastewater Treatment.2003 [cited 2010 October 10]; Available from:http://www.epa.gov/owow/wetlands/pdf/design.pdf.
    [149].魏才倢,朱擎,吴为中,李超,高航.2种不同模块化填料组合的多级土壤渗滤系统的比较[J].环境科学,2009.30(06):1860-1866.
    [150]. Lahav, O., M. Green. Ammonium removal using ion exchange and biological regeneration[J]. Water Research,1998.32(7):2019-2028.
    [151]. Jung, J.-Y, Y.-C. Chung, H.-S. Shin, D.-H. Son. Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modified SBR process[J]. Water Research,2004.38(2):347-354.
    [152]. Buchberger, S.G., GB. Shaw. An approach toward rational design of constructed wetlands for wastewater treatment[J]. Ecological Engineering, 1995.4(4):249-275.
    [153]. Martinez, C.J., W.R. Wise. Hydraulic analysis of Orlando Easterly Wetland[J]. Journal of Environmental Engineering-ASCE,2003.129(6):553-560.
    [154].付贵萍.复合垂直流湿地反应动力学及水流流态的研究[J].中国环境科学,2001.21(6):5.
    [155]. Pattanaik, B.R., A. Gupta, H.S. Shankar. Residence time distribution model for soil filters[J]. Water Environment Research,2004.76(2):168-174.
    [156]. Metcalf & Eddy, I. Wastewater engineering:treatment and reuse[M].4th ed. 2004, Beijing:Chemical Industry Press.
    [157].吴元欣,丁一刚,刘生鹏.化学反应工程[M].2010,北京:化学工业出版社.
    [158]. Levenspiel, O. Chemical reaction engineering[M].3rd ed.1999, New York.: Wiley.
    [159]. Salem, Z., K. Hamouri, R. Djemaa, K. Allia. Evaluation of landfill leachate pollution and treatment[J]. Desalination,2008.220(1-3):108-114.
    [160]. Chen, X.G., P. Zheng, Y.J. Guo, Q. Mahmood, C.J. Tang, S.A. Ding. Flow patterns of super-high-rate anaerobic bioreactor[J]. Bioresource Technology, 2010.101(20):7731-7735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700