用户名: 密码: 验证码:
长期碳氮投入对土壤有机碳氮库及环境影响的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期碳氮投入是华北平原保证粮食安全的主要措施之一,但也深刻地影响着该地区碳氮的生物地球化学循环。如何保证粮食产量、实现环境友好和提升土壤质量一直是该区重要的科学问题。本研究以四种不同的氮肥管理措施(对照不施氮、基于Nmin测试法的优化施氮、基于氮素平衡计算法的施氮和农民传统施氮)和两种不同的秸秆管理措施(秸秆还田与秸秆不还田)的长期定位试验为基础,通过田间原位观测,系统的研究了连续7年不同碳氮投入对作物产量、氮素利用、硝酸盐淋洗及N20排放的影响;通过室内培养试验,分析了长期不同碳氮投入对土壤有机碳氮库、土壤团聚体及有机碳组分、土壤N20基础排放能力及硝化-反硝化潜势的影响;并结合其他农业措施的碳排放,综合计算了长期不同碳氮投入对作物生产体系的全球净温室效应(Net-GWP)及温室气体排放强度(GHGI)的影响。
     对长期作物产量及氮素利用的研究表明,与农民传统施肥方式(Ncon和C+Ncon)(11.3和11.6tha-1yr-1)相比,基于Nmin测试法的优化氮肥管理方式(Nopt和C+Nopt)能够减少52-57%的氮肥投入量,且未显著降低籽粒产量(10.8和11.3t ha-1yr-1);而与农民传统施肥方式相比,基于氮素平衡计算的氮肥管理方式(C+M和C+W)既能减少45-85%的化肥氮投入,还能提高籽粒产量(12.8和12.4t ha-1yr-1)。农民传统施肥长期大量氮肥投入会导致冬小麦和夏玉米秸秆的CN比下降,降低作物对逆境和病虫害的抗性;与不施肥处理相比,碳氮投入能够增强作物产量的稳定性,而长期基于氮素平衡计算的有机肥处理更有利于作物产量的长期稳定。
     对0-1m氮素平衡和淋洗量的研究表明,与不施肥对照相比,农民传统施肥方式(Ncon和C+Ncon)由于长期过量氮肥投入导致大量的NO3-N累积(0-1m分别为320-896和449-699kg N ha-1;1-2m分别为265-873和323-911kg N ha-1)、表观氮损失(7年平均,分别为281和272kg N ha-1yr-1)和硝酸盐淋洗(3年平均,分别为33.7和43.9kg N ha-1yr-1)。与农民传统施肥方式相比,基于Nmin测试和平衡计算的氮素管理方式能够显著地降低0-1m和1-2m的N03-N累积量、表观氮损失量和淋洗量(P<0.05)。过量氮肥投入下,秸秆还田促进淋洗;优化氮肥投入下,秸秆还田能够降低淋洗;而有机肥投入并未增加淋洗。淋洗量与土壤剖面的硝态氮累积量具有很好的线性关系,其淋洗量分别为土壤0-1m和1-2m的硝态氮累积量的4.2%和4.3%。
     对土壤N20排放和Net-GWP的研究表明,与农民传统处理的N20排放量(3.4--4.5kg N20-Nha-1yr-1)相比,基于Nmin测试法的优化施氮措施能够降低46.1-46.6%。与秸秆不还田相比,秸秆还田措施能够增加26-36%的N20排放,但同时也可以提升0-20cm土壤的SOC含量(26.1vs22.4g kg-1)。传统的农民管理措施能够造成4121-3041kg CO2-eq ha-1yr-1的Net-GWP,基于Nmin测试法的管理措施可以通过减少氮肥投入而降低Net-GWP(2594-2409kg CO2-eq ha-1yr-1);而基于氮素平衡计算的管理措施既可以通过减少氮肥投入,又可以通过增加SOC含量来降低Net-GWP,而且为GWP的汇(-1939至-3330kg CO2-eq ha-1yr-1).农民传统处理的GHGI为0.24-0.35kg CO2-eqkg-1籽粒,基于Nmin测试法和氮素平衡计算法的优化氮肥管理措施分别降低了27%和141%。该地区冬小麦-夏玉米轮作体系的主要排放源是灌溉电力消耗,氮肥的生产和运输以及土壤N20排放,而土壤SOC固持则为主要汇。
     对土壤有机碳氮库、团聚体及有机碳组分的研究表明,与试验开始前土壤有机碳(SOC)含量相比(7.7g kg-1),6年来,除No处理下降外(6.9g kg-1),其余处理均增加了8.8-40.6%的SOC。在秸秆不还田的情况下,与不施氮对照处理相比,长期基于Nmin测试法和农民传统的氮肥管理措施对0-20cm的有机碳库无明显影响(P>0.05),却显著增加了0-20cm的土壤氮库(P<0.05)。在秸秆还田的情况下,与不施氮对照处理相比,基于Nmin测试法对0-20cm的有机碳库和氮库均无明显影响(P>0.05),农民传统仅能显著增加0-20cm的有机碳库(P<0.05),对氮库却无显著影响(P>0.05),而平衡氮素计算却均能显著增加0-20cm的有机碳库和氮库(P<0.05)。与不施氮对照处理相比,其他所有处理对20-40、40-60cm的有机碳库和氮库均无明显影响(P>0.05)。与不施氮对照处理相比,基于Nmin测试法的氮肥管理措施并未显著增加>250μm的团聚体比重(P>0.05),也并未显著增加各粒级大小团聚体的碳含量(P>0.05),但其显著增加了cPOM中的有机碳碳含量(P<0.05)。而与不施氮对照处理相比,农民传统施肥管理措施并未显著增加各粒级大小团聚体的碳含量(P>0.05),但显著增加了>250μm的团聚体比重(P<0.05),而且还显著增加了各有机碳组分的有机碳含量(P<0.05)。而与不施氮对照处理相比,平衡氮素计算法的氮肥管理由于投入了大量的有机质,既显著增加了>250μm的团聚体比重(9.4-9.5%vs6.8-7.3%)(P<0.05),也显著增加了2000-250μm团聚体中的碳含量(31.4-39.9g C kg-1vs21.4-22.2g C kg-1)(P<0.05),而且还分别增加了12.2-40.7%(iPOM_m)和8.5-30.8%(s+c_m)的稳定性碳库中的有机碳含量。土壤团聚体的碳含量基本符合团聚体层次模型,有机质是该类型土壤团聚体形成过程中主要的胶结物质。长期氮素平衡计算的管理措施不仅能够增加土壤有机碳氮库的数量,而且还能提高其质量。
     对土壤N2O基础排放能力和硝化-反硝化势的研究表明,与对照处理相比,除C+M处理外,长期不同碳氮投入对N20的基础排放能力无显著影响(P>0.05)。土壤N20基础排放来源既有硝化作用又有反硝化作用。采用NO3-N产生量在该类型土壤上能够较为准确的反映土壤硝化潜势的能力,土壤的硝化潜势与土壤的NH4-N具有显著的正相关关系(P<0.05)。采用气态产物(N20和N2)的产生总量能够较准确的反映土壤反硝化潜势的能力,土壤的反硝化潜势与土壤的有机碳和全氮含量具有显著的正相关关系(P<0.05)。
     综上所述,从合理施用氮肥、保证作物产量、降低硝酸盐淋洗和GWP来看,基于Nmin测试法的氮肥管理措施是较为优化的碳氮管理措施,但该措施不仅对土壤有机碳氮库的数量无影响,而且还有降低质量的风险。而在综合考虑氮肥合理施用、稳定作物产量、降低环境效应和提升土壤质量来看,基于氮素平衡计算的有机肥处理是该地区优化的碳氮管理措施。在优化氮肥管理的同时,实施秸秆还田,能够起到一定的增产和降低环境效应的作用。在优化碳氮管理的同时,要注意重视对水分的优化管理。但是,这些优化的碳氮水管理措施仍需长周期的进一步验证和研究。
Long-term carbon and nitrogen inputs is one of the main solutions to ensure the food security on North China Plain (NCP), which is also deeply effect the carbon and nitrogen biogeochemical cycles in this area. How to ensure food security simultaneously achieve environmental friendly and improve soil quality is always the important scientific problem in this area. We set up a long-term field experiment, which includes eight treatments with four nitrogen managements (zero-N control, improved Nmin, calculated N balance and conventional N) and two straw managements (straw removed and straw returned). Firstly, we systematic researched the effects of long-term carbon and nitrogen inputs on crop yield, N utilization, nitrate leaching and N2O emissions by the measurements in situ. Secondly, we systematic researched the effects of long-term carbon and nitrogen inputs on quantity of soil organic carbon and nitrogen, soil aggregates, soil organic carbon fractions, soil basal N2O emissions and potential nitrification and denitrification rates by the determinations in laboratory. At last, we calculate the effects of long-term carbon and nitrogen inputs on the net global warming potential (Net-GWP) and greenhouse gas intensity (GHGI) after integrated consider all carbon resource by all agricultural managements.
     Compared to conventional farming practice (Ncon and C+Ncon)(11.3and11.6t ha-1yr-1), the improved Nmin tested (Nopt and C+Nopt) could reduce52-57%fertilizer N inputs, but not obviously decreased the crop yield (10.8and11.3t ha-1yr-1). However, compared to conventional farming practice, the calculated N balance (C+M and C+W) could not only decrease45-85%fertilizer N inputs, but also slightly increase the crop yield (12.8and12.4t ha-1yr-1). The long-term conventional farming practice will be decrease the straw C:N ratio of wheat or maize since the excessive nitrogen input, which also make the plants to become more susceptible to insect attack and fungal diseases and can be prone to lodging. Compared to the control, the carbon and nitrogen inputs could enhance the yield stability. The organic fertilizer inputs from the calculated N balance could more benefit for the yield stability.
     Compared to the zero N treatments, the conventional farming practices have a large number of soil NO3-N accumulation (320-896and449-699kg N ha-1at0-1m depth, respectively;265-873and323-911kg N ha-1at1-2m depth, respectively), the vast apparent N loss (average281and272kg N ha-1yr-1in the whole7years, respectively) and nitrate leaching (average33.7and43.9kg N ha-1yr-1in the3years, respectively) since the N fertilizer overuse. Compared to conventional farming practice, the improved Nmin tested and calculated N balance could significantly reduce soil NO3-N accumulation at0-1m and1-2m depth, the apparent N loss, the nitrate leaching (P<0.05). On the condition of N fertilizer overuse, straw returning could stimulate nitrate leaching. On contrast, straw returning could decrease nitrate leaching under the optimum N input. Organic fertilizer input didn't increase nitrate leaching. There is a good linear relationship between the soil profile NO3-N accumulation and nitrate leaching. The nitrate leaching is4.2%and4.3%of soil NO3-N accumulation at0-1m and1-2m, respectively, in this kind of soil climate condition on NCP.
     Compared to the conventional farming practice (3.4-4.5kg N20-N ha-1yr-1), the N2O emissions from the improved Nmin tested could reduce46.1-46.6%. Compared to the straw removed, straw returned could increase N2O emission by26-36%, which also could promote0-20cm SOC content (26.1vs22.4g kg-1). The Net-GWP from the conventional farming practice is4121-3041kg CO2-eq ha-1yr-1. The improved Nmin tested could decrease the Net-GWP by reducing the N fertilizer inputs, which is2594-2409kg CO2-eq ha-1yr-1. The calculated N balance could decrease the Net-GWP not only by reducing the N fertilizer inputs but also increasing the SOC content, which is-1939to-3330kg CO2-eq ha-1yr-1. The GHGI from the conventional farming practice is0.24-0.35kg CO2-eq kg-1grain. The improved Nmin tested and calculated N balance could decrease by27%and141%, respectively. The main emission sources are the power consumption for irrigation, fertilizer N production, and N2O emissions, with SOC sequestration providing the main emission sink.
     Compared to the initial SOC content (7.7g kg-1), all treatments increased by8.4-40.6%except No (6.9g kg-1) after6years later. On the condition of straw removed, compared to zero N treatment, the improved Nmin tested and conventional farming practice didn't significantly increase the0-20cm SOC stocks (P>0.05), but significantly increase the0-20cm total nitrogen (TN) stocks (P<0.05). On the condition of straw returned, compared to the zero N treatment, the improved Nmin tested didn't significantly increase the0-20cm SOC and TN stocks (P>0.05); the conventional farming practice only significantly increase the0-20cm SOC stocks (P<0.05), didn't increase the0-20cm TN stocks (P>0.05); but the calculated N balance could significantly increase the0-20cm SOC and TN stocks (P<0.05). Compared to the zero N treatment, all treatments didn't significantly increase the20-40and40-60cm SOC and TN stocks (P>0.05). Compared to the zero N treatment, the improved Nmin tested didn't significantly increase the proportion of>250f.im soil aggregate and organic carbon (OC) content of all soil aggregates (P>0.05), but it significantly increase the OC content of all carbon fractions (P<0.05). Compared to the zero N treatment, the conventional farming practice didn't significantly increase the organic carbon (OC) content of all soil aggregates (P>0.05), but it significantly increase the proportion of>250p.m soil aggregate and also significantly increase the OC content of all carbon fractions (P<0.05). However, compared to the zero N treatment, the calculated N balance not only significantly increase the proportion of>250μm soil aggregate (9.4-9.5%vs6.8-7.3%)(P<0.05) and OC content of2000-250μm soil aggregate (31.4-39.9g C kg-1vs21.4-22.2g C kg-1)(P<0.05), but also increase the OC content of iPOM_m and s+c_m by12.2-40.7%and8.5-30.8%, respectively, since a large number of organic matter input. The results of OC content of different carbon fractions support the concept of aggregate hierarchy, which also means that the organic matter is the main binding agents on the formation of soil aggregates. Long-term organic fertilizer inputs from the calculated N balance could not only increase the SOC and TN stocks, but also promote the quality of SOC.
     Long-term different carbon and nitrogen inputs didn't significantly influence the soil N2O basal emissions except the C+M. The soil N2O basal emissions are not only from the nitrification but also the denitrification. It is a more precise indicator to reflect the potential nitrification rate by NO3-N generation on this kind of soil. There is a significant positive correlation between the soil potential nitrification rate and soil NH4-N content (P<0.05). Using the gaseous (N2O and N2) production to reflect the potential denitrification rate is a more accurate method on this kind of soil. There are significant positive correlations between the soil potential denitrification rate and SOC and TN content (P<0.05).
     In conclusion, judging from saving N fertilizer, ensuring crop yield, reducing nitrate leaching and Net-GWP, the improved Nmin tested is an optimum management. However, the improved Nmin tested not only didn't increase SOC and TN stocks, but also risking decrease the quality of SOC. The organic fertilizer inputs from the calculated N balance is a more optimum management on NCP after integrated consider saving N fertilizer, stabling crop yield, reducing environmental effects and promoting quantity and quality of SOC and TN. Effects of optimizing nitrogen management and straw returning simultaneously would slightly on increasing crop yield and reducing environmental impacts. It is also very important to pay attention to optimum water management and concomitantly optimize carbon and nitrogen management. Nonetheless, these optimum carbon, nitrogen and water managements need to further research in the long-term field experiment.
引文
蔡泽江,孙楠,王伯仁,徐明岗,张会民,张璐,李冬初,卢昌艾,2012.几种施肥模式对红壤氮素形态转化和pH的影响.中国农业科学,2877-2885.
    仇少君,2010.华北平原高累积硝态氮土壤碳氮交互作用机制研究.博士学位论文.
    窦森,郝翔翔,2013.黑土团聚体与颗粒中碳、氮含量及腐殖质组成的比较.中国农业科学,970-977.
    黄鸿翔,李书田,李向林,姚杰,曹卫东,王敏,刘荣乐,2006.我国有机肥的现状与发展前景分析.土壤肥料,3-8.
    黄涛,仇少君,杜娟,史振侠,巨晓棠,2013.碳氮管理措施对冬小麦厦玉米轮作体系作物产量、秸秆腐解、土壤CO2排放的影响.中国农业科学,756-768.
    巨晓棠,张福锁,2003.关于氮肥利用率的思考.生态环境,192-197.
    寇长林,2004.华北平原集约化农作区不同种植体系施用氮肥对环境的影响.中国农业大学.
    吕海霞,周鑫斌,张金波,蔡祖聪,2011.长白山4种森林土壤反硝化潜力及产物组成.土壤学报,39-46.
    马文奇,毛达如,张福锁,1999.山东省粮食作物施肥状况的评价.土壤通报,217-220.
    门明新,李新旺,许皞,2008.长期施肥对华北平原潮土作物产量及稳定性的影响.中国农业科学,2339-2346.
    王海飞,贾兴永,高兵,黄涛,苏芳,巨晓棠,2013.不同土地利用方式土壤温室气体排放对碳氮添加的响应.土壤学报,1172-1182.
    张丽娟,巨晓棠,张福锁,彭正萍,2007.土壤剖面不同层次标记硝态氮的运移及其后效.中国农业科学,1964-1972.
    周虎,吕贻忠,杨志臣,李保国,2007.保护性耕作对华北平原土壤团聚体特征的影响.中国农业科学,1973-1979.
    Abid, M., Lal, R.,2008. Tillage and drainage impact on soil quality-1. Aggregate stability, carbon and nitrogen pools. Soil Till Res 100,89-98.
    Abid, M., Lal, R.,2009. Tillage and drainage impact on soil quality:Ⅱ. Tensile strength of aggregates, moisture retention and water infiltration. Soil Till Res 103,364-372.
    Addiscott, T.M.,1990. Measurement of nitrate leaching-a review of methods.
    Adviento-Borbe, M.A.A., Haddix, M.L., Binder, D.L., Walters, D.T., Dobermann, A.,2007. Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Global Change Biol 13,1972-1988.
    Ahmed, M., Oades, J.M.,1984. Distribution of organic-matter and adenosine-triphosphate after fraction of soils by physical procedures. Soil Biol Biochem 16,465-470.
    Alagoez, Z., Yilmaz, E.,2009. Effects of different sources of organic matter on soil aggregate formation and stability:A laboratory study on a Lithic Rhodoxeralf from Turkey. Soil Till Res 103,419-424.
    Angers, DA., Recous, S., Aita, C.,1997. Fate of carbon and nitrogen in water-stable aggregates during decomposition of (CN)-C-13-N-15-labelled wheat straw in situ. Eur J Soil Sci 48,295-300.
    Baggs, E.M.,2011. Soil microbial sources of nitrous oxide:recent advances in knowledge, emerging challenges and future direction. Curr Opin Sust 3,321-327.
    Baggs, E.M., Morley, N.,2010. Carbon and oxygen controls on N2O and N2 production during nitrate reduction. Soil Biol Biochem 42,1864-1871.
    Baggs, E.M., Philippot, L.,2011. Nitrous Oxide Production in the Terrestrial Environment.
    Bakhsh, A., Kanwar, R.S., Karlen, D.L.,2005. Effects of liquid swine manure applications on N03-N leaching losses to subsurface drainage water from loamy soils in Iowa. Agr Ecosyst Environ 109, 118-128.
    Bao, Q., Ju, X., Gao, B., Qu, Z., Christie, P., Lu, Y.,2012. Response of nitrous oxide and corresponding bacteria to managements in an agricultural soil. Soil Sci Soc Am J 76,130-141.
    Barraclough, D.,1995. N-15 isotope dilution techniques to study soil nitrogen transformations and plant uptake. Fert Res 42,185-192.
    Barraclough, D., Jarvis, S.C., Davies, G.P., Williams, J.,1992. The relation between fertilizer nitrogen applications and nitrate leaching from grazed grassland. Soil Use Manage 8,51-56.
    Barton, L., Kiese, R., Gatter, D., Butterbach-Bahl, K., Buck, R., Hinz, C., Murphy, D.V.,2008. Nitrous oxide emissions from a cropped soil in a semi-arid climate. Global Change Biol 14,177-192.
    Basso, B., Ritchie, J.T.,2005. Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize-alfalfa rotation in Michigan. Agr Ecosyst Environ 108,329-341.
    Beare, M.H., Bruce, R.R.,1993. A comparison of methods for measuring water-stable aggregates-implications for determining environmental-effects on soil structure. Geoderma 56, 87-104.
    Beare, M.H., Cabrera, M.L., Hendrix, P.F., Coleman, D.C.,1994. Aggregate-protected and unprotected organic-matter pools in conventional-tillage and no-tillage soils. Soil Sci Soc Am J 58,787-795.
    Berzsenyi, Z., Gyorffy, B., Lap, D.,2000. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment. Eur J Agron 13,225-244.
    Bhattacharyya, R., Prakash, V., Kundu, S., Srivastva, A.K., Gupta, H.S., Mitra, S.,2010. Long term effects of fertilization on carbon and nitrogen sequestration and aggregate associated carbon and nitrogen in the Indian sub-Himalayas. Nutr Cycl Agroecosys 86,1-16.
    Bilsborrow, P., Cooper, J., Tetard-Jones, C., Srednicka-Tober, D., Baraniski, M., Eyre, M., Schmidt, C., Shotton, P., Volakakis, N., Cakmak, I., Ozturk, L., Leifert, C., Wilcockson, S.,2013. The effect of organic and conventional management on the yield and quality of wheat grown in a long-term field trial. Eur J Agron 51,71-80.
    Blanco-Canqui, H., Lal, R.,2007. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till. Soil Till Res 95,240-254.
    Bouwman, A.F.,1996. Direct emission of nitrous oxide from agricultural soils. Nutr Cycl Agroecosys 46,53-70.
    Bouwman, A.F., Boumans, L.J.M., Batjes, N.H.,2002. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochem Cy 16.
    Braker, G., Conrad, R.,2011. Diversity, Structure, and Size of N2O-Producing Microbial Communities in Soils-What Matters for Their Functioning? In:Laskin, A.I., Sariaslani, S., Gadd, G.M. (Eds.), Advances in Applied Microbiology, Vol 75, pp.33-70.
    Butterbach-Bahl, K., Baggs, E.M., Dannenmann, M., Kiese, R., Zechmeister-Boltenstern, S.,2013. Nitrous oxide emissions from soils:how well do we understand the processes and their controls? Philos T R Soc B 368.
    Butterbach-Bahl, K., Dannenmann, M.,2011. Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Curr Opin Sust 3,389-395.
    Cai, Y., Ding, W., Zhang, X., Yu, H., Wang, L.,2010. Contribution of Heterotrophic Nitrification to Nitrous Oxide Production in a Long-Term N-Fertilized Arable Black Soil. Commun Soil Sci Plan 41,2264-2278.
    Cai, Z.C., Qin, S.W.,2006. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China. Geoderma 136,708-715.
    Cambardella, C.A., Elliott, E.T.,1994. Carbon and nitrogen dynamics of soil organic-matter fractions from cultivated grassland soils. Soil Sci Soc Am J 58,123-130.
    Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., Smith, V.H.,1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8,559-568.
    Carrera, L.M., Buyer, J.S., Vinyard, B., Abdul-Baki, A.A., Sikora, L.J., Teasdale, J.R.,2007. Effects of cover crops, compost, and manure amendments on soil microbial community structure in tomato production systems. Appl Soil Ecol 37,247-255.
    Chapuis-Lardy, L., Wrage, N., Metay, A., Chotte, J.-L., Bernoux, M.,2007. Soils, a sink for N2O? A review. Global Change Biol 13,1-17.
    Chen, W., McCaughey, W.P., Grant, C.A., Bailey, L.D.,2001. Pasture type and fertilization effects on soil chemical properties and nutrient redistribution. Can J Soil Sci 81,395-404.
    Chen, X. P., Cui, Z. L., Vitousek, P.M., Cassman, K.G., Matson, P.A., Bai, J. S., Meng, Q. F., Hou, P., Yue, S. C, Roemheld, V., Zhang, F. S.,2011. Integrated soil-crop system management for food security. P Natl Acad Sci USA 108,6399-6404.
    Chen, X.P., Zhang, F.S., Romheld, V., Horlacher, D., Schulz, R., Boning-Zilkens, M., Wang, P., Claupein, W.,2006. Synchronizing N supply from soil and fertilizer and N demand of winter wheat by an improved N-min method. Nutr Cycl Agroecosys 74,91-98.
    Choudhary, M., Bailey, L.D., Grant, C.A.,1996. Review of the use of swine manure in crop production: Effects on yield and composition and on soil and water quality. Waste Manage Res 14,581-595.
    Christensen, S., Ambus, P., Arah, J.R.M., Clayton, H., Galle, B., Griffith, D.W.T., Hargreaves, K.J., Klemedtsson, L., Lind, A.M., Maag, M., Scott, A., Skiba, U., Smith, K.A., Welling, M., Wienhold, F.G.,1996. Nitrous oxide emission from an agricultural field:Comparison between measurements by flux chamber and micrometerological techniques. Atmos Environ 30,4183-4190.
    Cole, C.V., Duxbury, J., Freney, J., Heinemeyer, O., Minami, K., Mosier, A., Paustian, K., Rosenberg, N., Sampson, N., Sauerbeck, D., Zhao, Q.,1997. Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutr Cycl Agroecosys 49,221-228.
    Conrad, R.,1996. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev.60,609-+.
    Cookson, W.R., Mueller, C., O'Brien, PA., Murphy, D.V., Grierson, P.F.,2006. Nitrogen dynamics in an Australian semiarid grassland soil. Ecology 87,2047-2057.
    Cui, F., Yan, G., Zhou, Z., Zheng, X., Deng, J.,2012. Annual emissions of nitrous oxide and nitric oxide from a wheat-maize cropping system on a silt loam calcareous soil in the North China Plain. Soil Biol Biochem 48,10-19.
    Cui, Z.L., Chen, X., Miao, Y., Zhang, F., Sun, Q., Schroder, J., Zhang, H., Li, J., Shi, L., Xu, J., Ye, Y., Liu, C., Yang, Z., Zhang, Q., Huang, S., Bao, D.,2008. On-farm evaluation of the improved soil N(min)-based nitrogen management for summer maize in North China Plain. Agron J 100,517-525.
    Cui, Z. L., Zhang, F., Dou, Z., Miao, Y., Sun, Q., Chen, X., Li, J., Ye, Y., Yang, Z., Zhang, Q., Liu, C., Huang, S.,2009. Regional evaluation of critical nitrogen concentrations in winter wheat production of the North China Plain. Agron J 101,159-166.
    Cui, Z. L., Zhang, F., Chen, X., Dou, Z., Li, J.,2010. In-season nitrogen management strategy for winter wheat:Maximizing yields, minimizing environmental impact in an over-fertilization context. Field Crop Res 116,140-146.
    Cui, Z. L., Yue, S., Wang, G., Zhang, F., Chen, X.,2013. In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in Intensive wheat production. Environ Sci Technol 47,6015-6022.
    Dauden, A., Quilez, D.,2004. Pig slurry versus mineral fertilization on corn yield and nitrate leaching in a Mediterranean irrigated environment. Eur J Agron 21,7-19.
    Davidson, EA.,2009. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat Geosci 2,659-662.
    Davidson, EA., Chorover, J., Dail, D.B.,2003. A mechanism of abiotic immobilization of nitrate in forest ecosystems:the ferrous wheel hypothesis. Global Change Biol 9,228-236.
    Davies, D.M., Williams, P.J.,1995. The effect of the nitrification inhibitor dicyandiamide on nitrate leaching and ammonia volatilization-a UK nitrate sensitive areas perspective. J Environ Manage 45,263-272.
    de Vries, F.T., Hoffland, E., van Eekeren, N., Brussaard, L., Bloem, J.,2006. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol Biochem 38,2092-2103.
    Del Galdo, I., Six, J., Peressotti, A., Cotrufo, M.F.,2003. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Global Change Biol 9,1204-1213.
    Del Grosso, S.J., Parton, W.J., Mosier, A.R., Walsh, M.K., Ojima, D.S., Thornton, P.E.,2006. DAYCENT national-scale simulations of nitrous oxide emissions from cropped soils in the United States. J Environ Qual 35,1451-1460.
    Dersch, G., Bohm, K.,2001. Effects of agronomic practices on the soil carbon storage potential in arable farming in Austria. Nutr Cycl Agroecosys 60,49-55.
    Di, H.J., Cameron, K.C.,2000. Calculating nitrogen leaching losses and critical nitrogen application rates in dairy pasture systems using a semi-empirical model. New Zeal J Agr Res 43,139-147.
    Di, H.J., Cameron, K.C.,2002a. Nitrate leaching in temperate agroecosystems:sources, factors and mitigating strategies. Nutr Cycl Agroecosys 64,237-256.
    Di, H.J., Cameron, K.C.,2002b. The use of a nitrification inhibitor, dicyandiamide (DCD), to decrease nitrate leaching and nitrous oxide emissions in a simulated grazed and irrigated grassland. Soil Use Manage 18,395-403.
    Diaz-Zorita, M., Buschiazzo, D.E., Peinemann, N.,1999. Soil organic matter and wheat productivity in the semiarid argentine pampas. Agron J 91,276-279.
    Ding, W.X., Yu, H.Y., Cai, Z.C.,2011. Impact of urease and nitrification inhibitors on nitrous oxide emissions from fluvo-aquic soil in the North China Plain. Biol Fert Soils 47,91-99.
    Dinnes, D.L., Karlen, D.L., Jaynes, D.B., Kaspar, T.C., Hatfield, J.L., Colvin, T.S., Cambardella, CA., 2002. Nitrogen management strategies to reduce nitrate leaching in tile-drained midwestern soils. Agron J 94,153-171.
    Dobbie, K.E., Smith, K.A.,2001. The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol. Eur J Soil Sci 52,667-673.
    Dobbie, K.E., Smith, K.A.,2003. Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables. Global Change Biol 9, 204-218.
    Du, Z.L., Liu, S., F., Li, K.J., Ren, T.S.,2009. Soil organic carbon and physical quality as influenced by long-term application of residue and mineral fertiliser in the North China Plain. Aust J Soil Res 47, 585-591.
    Du, Z.L., Ren, T.S., Hu, C.S., Zhang, Q.Z., Blanco-Canqui, H.,2013. Soil aggregate stability and aggregate-associated carbon under different tillage systems in the North China Plain. J. Integr. Agric.12,2114-2123.
    Eagle, A.J., Bird, JA., Horwath, W.R., Linquist, B.A., Brouder, S.M., Hill, J.E., van Kessel, C,2000. Rice yield and nitrogen utilization efficiency under alternative straw management practices. Agron J 92,1096-1103.
    Edmeades, D.C.,2003. The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosys 66,165-180.
    Edwards, R.D., Smith, K.R., Zhang, J.F., Ma, Y.Q.,2004. Implications of changes in household stoves and fuel use in China. Energ Policy 32,395-411.
    Elliott, E.T.,1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci Soc Am J 50,627-633.
    Erisman, J.W., Sutton, M.A., Galloway, J., Klimont, Z., Winiwarter, W.,2008. How a century of ammonia synthesis changed the world. Nat Geosci 1,636-639.
    Fan, T.L., Stewart, B.A., Yong, W., Luo, J.J., Zhou, G.Y.,2005. Long-term fertilization effects on grain yield, water-use efficiency and soil fertility in the dryland of Loess Plateau in China. Agr Ecosyst Environ 106,313-329.
    Fang, Q., Yu, Q., Wang, E., Chen, Y., Zhang, G., Wang, J., Li, L.,2006. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain. Plant Soil 284,335-350.
    Fang, Y., Yoh, M., Koba, K., Zhu, W., Takebayashi, Y., Xiao, Y., Lei, C., Mo, J., Zhang, W., Lu, X., 2011. Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China. Global Change Biol 17,872-885.
    FAO,2013. FAO statistical databases, agriculture date.
    Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N., Snyder, P.K.,2005. Global consequences of land use. Science 309,570-574.
    Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., O'Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., Monfreda, C., Polasky, S., Rockstrom, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D.P.M.,2011. Solutions for a cultivated planet. Nature 478,337-342.
    Fu, G.B., Chen, S.L., Liu, C.M., Shepard, D.,2004. Hydro-climatic trends of the Yellow River basin for the last 50 years. Climatic Change 65,149-178.
    Galloway, J.N., Cowling, E.B.,2002. Reactive nitrogen and the world:200 years of change. Ambio 31, 64-71.
    Galloway, J.N., Aber, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B., Cosby, B.J., 2003. The nitrogen cascade. Bioscience 53,341-356.
    Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P., Asner, G.P., Cleveland, C.C., Green, P.A., Holland, E.A., Karl, D.M., Michaels, A.F., Porter, J.H., Townsend, A.R., Vorosmarty, C.J.,2004. Nitrogen cycles:past, present, and future. Biogeochemistry 70,153-226.
    Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., Sutton, M.A.,2008. Transformation of the nitrogen cycle:Recent trends, questions, and potential solutions. Science 320,889-892.
    Gheysari, M., Mirlatifi, S.M., Homaee, M., Asadi, M.E., Hoogenboom, G.,2009. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agr Water Manage 96, 946-954.
    Giola, P., Basso, B., Pruneddu, G., Giunta, F., Jones, J.W.,2012. Impact of manure and slurry applications on soil nitrate in a maize-triticale rotation:Field study and long term simulation analysis. Eur J Agron 38,43-53.
    Goldberg, S.D., Gebauer, G.,2009. N2O and NO fluxes between a Norway spruce forest soil and atmosphere as affected by prolonged summer drought. Soil Biol Biochem 41,1986-1995.
    Grassini, P., Cassman, K.G.,2012. High-yield maize with large net energy yield and small global warming intensity. P Natl Acad Sci USA 109,1074-1079.
    Grenon, F., Bradley, R.L., Titus, B.D.,2004. Temperature sensitivity of mineral N transformation rates, and heterotrophic nitrification:possible factors controlling the post-disturbance mineral N flush in forest floors. Soil Biol Biochem 36,1465-1474.
    Groffman, P.M., Butterbach-Bahl, K., Fulweiler, R.W., Gold, A.J., Morse, J.L., Stander, E.K., Tague, C., Tonitto, C., Vidon, P.,2009. Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93,49-77.
    Gu, B., Ge, Y., Chang, S.X., Luo, W., Chang, J.,2013. Nitrate in groundwater of China:Sources and driving forces. Global Environ Chang 23,1112-1121.
    Guo, J.H., Liu, X.J., Zhang, Y., Shen, J.L., Han, W.X., Zhang, W.F., Christie, P., Goulding, K.W.T., Vitousek, P.M., Zhang, F.S.,2010. Significant Acidification in Major Chinese Croplands. Science 327,1008-1010.
    Hai, L., Li, X.G., Li, F.M., Suo, D.R., Guggenberger, G.,2010. Long-term fertilization and manuring effects on physically-separated soil organic matter pools under a wheat-wheat-maize cropping system in an arid region of China. Soil Biol Biochem 42,253-259.
    Halvorson, A.D., Wienhold, B.J., Black, A.L.,2002. Tillage, nitrogen, and cropping system effects on soil carbon sequestration. Soil Sci Soc Am J 66,906-912.
    Hao, M. D., Fan, J., Wang, Q. J., Dang, T. H., Guo, S. L., Wang, J. J.,2007. Wheat grain yield and yield stability in a long-term fertilization experiment on the Loess Plateau. Pedosphere 17,257-264.
    Hao, X., Chang, C., Carefoot, J.M., Janzen, H.H., Ellert, B.H.,2001. Nitrous oxide emissions from an irrigated soil as affected by fertilizer and straw management. Nutr Cycl Agroecosys 60,1-8.
    Hart, S.C., Stark, J. M., Davidson, E. A., Firestone, M. K,1994. Nitrogen mineralization, immobilization, and nitrification. Soil Science Society of America, Madison.
    Hayatsu, M., Tago, K., Saito, M.,2008. Various players in the nitrogen cycle:Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutr 54,33-45.
    Hou, X.Q., Li, R., Jia, Z.K., Han, Q.F.,2013. Effect of rotational tillage on soil aggregates, organic carbon and nitrogen in the Loess Plateau Area of China. Pedosphere 23,542-548.
    Houghton, R.A., Hackler, J.L., Lawrence, K.T.,1999. The US carbon budget:Contributions from land-use change. Science 285,574-578.
    Hu, X.K., Su, F., Ju, X.T., Gao, B., Oenema, O., Christie, P., Huang, B.X., Jiang, R.F., Zhang, F.S., 2013. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes. Environmental pollution (Barking, Essex:1987) 176,198-207.
    Huang, J.X., Chen, Y.Q., Liu, W.R., Zheng, H.B., Sui, P., Li, Y.Y., Shi, X.P., Nie, S.W., Gao, W.S., 2011. Effect on net greenhouse gases emission under different conservation tillages in Jilin Province. Scientia agricultura Sinica 44,2935-2942.
    Huang, J., Chen, Y., Sui, P., Gao, W.,2013. Estimation of net greenhouse gas balance using crop-and soil-based approaches:Two case studies. The Science of the total environment 456-457,299-306.
    Huang, M.X., Liang, T., Ou-Yang, Z., Wang, L.Q., Zhang, C.S., Zhou, C.H.,2011. Leaching losses of nitrate nitrogen and dissolved organic nitrogen from a yearly two crops system, wheat-maize, under monsoon situations. Nutr Cycl Agroecosys 91,77-89.
    Huang, S., Rui, W., Peng, X., Huang, Q., Zhang, W.,2010a. Organic carbon fractions affected by long-term fertilization in a subtropical paddy soil. Nutr Cycl Agroecosys 86,153-160.
    Huang, S., Zhang, W., Yu, X., Huang, Q.,2010b. Effects of long-term fertilization on corn productivity and its sustainability in an Ultisol of southern China. Agr Ecosyst Environ 138,44-50.
    Huang, S., Sun, Y., Zhang, W.,2012. Changes in soil organic carbon stocks as affected by cropping systems and cropping duration in China's paddy fields:a meta-analysis. Climatic Change 112, 847-858.
    Huang, T., Qiu, S.J., Du, J., Shi, Z.X., Ju, X.T.,2013. Effect of different carbon and nitrogen managements on yield, straw decomposition, soil CO2 flux of the winter wheat/summer maize. Scientia agricultura Sinica 46,756-768.
    Huang, T., Gao, B., Hu, X. K., Lu, X., Well, R., Christie, P., Bakken, L.R., Ju, X. T.,2014. Ammonia-oxidation as an engine to generate nitrous oxide in an intensively managed calcareous Fluvo-aquic soil. Scientific Reports 4.
    Huang, Y., Zou, J.W., Zheng, X.H., Wang, Y.S., Xu, X.K.,2004. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biol Biochem 36,973-981.
    Huang, Y., Sun, W.J.,2006. Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chinese Sci Bull 51,1785-1803.
    IPCC,2007a. Climate Change 2007:Agriculture. Cambridge University Press, Cambridge, United Kingdom and New York, USA.
    IPCC,2007b. Climate Change 2007:Changes in atmospheric constituents and in radiative forcing. Cambridge University Press, Cambridge, United Kingdom and New York, USA.
    Izaurralde, R.C., Rosenberg, N.J., Lal, R.,2001. Mitigation of climatic change by soil carbon sequestration:Issues of science, monitoring, and degraded lands. Advances in Agronomy, Vol 70 70,1-75.
    Jacinthe, P.A., Lal, R.,2003. Nitrogen fertilization of wheat residue affecting nitrous oxide and methane emission from a central Ohio Luvisol. Biol Fert Soils 37,338-347.
    Jia, J.X., Ma, Y.C., Xiong, Z.Q.,2012. Net ecosystem carbon budget, net global warming potential and greenhouse gas intensity in intensive vegetable ecosystems in China. Agr Ecosyst Environ 150, 27-37.
    John, B., Yamashita, T., Ludwig, B., Flessa, H.,2005. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 128,63-79.
    Ju, X.T., Kou, C.L., Zhang, F.S., Christie, P.,2006. Nitrogen balance and groundwater nitrate contamination:Comparison among three intensive cropping systems on the North China Plain. Environ Pollut 143,117-125.
    Ju, X.T., Gao, Q., Christie, P., Zhang, F.S.,2007a. Interception of residual nitrate from a calcareous alluvial soil profile on the North China Plain by deep-rooted crops:A N-15 tracer study. Environ Pollut 146,534-542.
    Ju, X.T., Kou, C.L., Christie, P., Dou, Z.X., Zhang, F.S.,2007b. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environ Pollut 145,497-506.
    Ju, X.T., Xing, GX., Chen, X.P., Zhang, S.L., Zhang, L.J., Liu, X.J., Cui, Z.L., Yin, B., Christie, P., Zhu, Z.L., Zhang, F.S.,2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. P Natl Acad Sci USA 106,3041-3046.
    Ju, X.T., Lu, X., Gao, Z.L., Chen, X.P., Su, F., Kogge, M., Roemheld, V., Christie, P., Zhang, F.S., 2011. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions. Environ Pollut 159,1007-1016.
    Ju, X.T., Christie, P.,2012. Calculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems:A case study on the North China Plain. Field Crop Res 124,450-458.
    Kanwar, R.S., Bjorneberg, D., Baker, D.,1999. An automated system for monitoring the quality and quantity of subsurface drain flow. Journal of Agricultural Engineering Research 73,123-129.
    Kato, Y., Yamagishi, J.,2011. Long-term effects of organic manure application on the productivity of winter wheat grown in a crop rotation with maize in Japan. Field Crop Res 120,387-395.
    Khan, S.A., Mulvaney, R.L., Ellsworth, T.R., Boast, C.W.,2007. The myth of nitrogen fertilization for soil carbon sequestration. J Environ Qual 36,1821-1832.
    Klausner, S.D., Guest, R.W.,1981. Influence of NH3 conservation from dairy manure on the yield of corn. Agron J 73,720-723.
    Kong, A.Y.Y., Fonte, S.J., van Kessel, C., Six, J.,2007. Soil aggregates control N cycling efficiency in long-term conventional and alternative cropping systems. Nutr Cycl Agroecosys 79,45-58.
    Kool, D.M., Wrage, N., Zechmeister-Boltenstern, S., Pfeffer, M., Brus, D., Oenema, O., Van Groenigen, J.W.,2010. Nitrifier denitrification can be a source of N2O from soil:a revised approach to the dual-isotope labelling method. Eur J Soil Sci 61,759-772.
    Kool, D.M., Wrage, N., Oenema, O., Van Kessel, C., Van Groenigen, J.W.,2011. Oxygen exchange with water alters the oxygen isotopic signature of nitrate in soil ecosystems. Soil Biol Biochem 43, 1180-1185.
    Kramer, S.B., Reganold, J.P., Glover, J.D., Bohannan, B.J.M., Mooney, H.A.,2006. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. P Natl Acad Sci USA 103,4522-4527.
    Kroon, P.S., Hensen, A., van den Bulk, W.C.M., Jongejan, P.A.C., Vermeulen, A.T.,2008. The importance of reducing the systematic error due to non-linearity in N2O flux measurements by static chambers. Nutr Cycl Agroecosys 82,175-186.
    Kumar, K., Goh, K.M.,2002. Management practices of antecedent leguminous and non-leguminous crop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization and simple nitrogen balance. Eur J Agron 16,295-308.
    Kunzova, E., Hejcman, M.,2009. Yield development of winter wheat over 50 years of FYM, N, P and K fertilizer application on black earth soil in the Czech Republic. Field Crop Res 111,226-234.
    Lal, R.,2001. World cropland soils as a source or sink for atmospheric carbon. Advances in Agronomy, Vol 7171,145-191.
    Lal, R.,2004a. Soil carbon sequestration impacts on global climate change and food security. Science 304,1623-1627.
    Lal, R.,2004b. Soil carbon sequestration to mitigate climate change. Geoderma 123,1-22.
    Li, C.S., Frolking, S., Butterbach-Bahl, E.,2005. Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Climatic Change 72,321-338.
    Li, J. T., Zhang, B.,2007. Paddy soil stability and mechanical properties as affected by long-term application of chemical fertilizer and animal manure in subtropical china. Pedosphere 17,568-579.
    Li, X., Hu, C., Delgado, J.A., Zhang, Y., Ouyang, Z.,2007. Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north China plain. Agr Water Manage 89, 137-147.
    Lin, B.L., Sakoda, A., Shibasaki, R., Suzuki, M.,2001. A modelling approach to global nitrate leaching caused by anthropogenic fertilisation. Water Res 35,1961-1968.
    Linquist, B.A., Brouder, S.M., Hill, J.E.,2006. Winter straw and water management effects on soil nitrogen dynamics in California rice systems. Agron J 98,1050-1059.
    Liu, C.Y., Wang, K., Meng, S.X., Zheng, X.H., Zhou, Z.X., Han, S.H., Chen, D.L., Yang, Z.P.,2011. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China. Agr Ecosyst Environ 140,226-233.
    Liu, C.Y., Wang, K., Zheng, X.H.,2012. Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in northern China. Biogeosciences 9, 839-850.
    Liu, J.G., Diamond, J.,2005. China's environment in a globalizing world. Nature 435,1179-1186.
    Liu, X.J., Ju, X.T., Zhang, F.S., Pan, J.R., Christie, P.,2003. Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain. Field Crop Res 83,111-124.
    Liu, X.J., Ju, X.T., Zhang, Y., He, C., Kopsch, J., Fusuo, Z.,2006. Nitrogen deposition in agroecosystems in the Beijing area. Agr Ecosyst Environ 113,370-377.
    Liu, X.J., Zhang, Y., Han, W.X., Tang, A.H., Shen, J.L., Cui, Z.L., Vitousek, P., Erisman, J.W., Goulding, K., Christie, P., Fangmeier, A., Zhang, F.S.,2013. Enhanced nitrogen deposition over China. Nature 494,459-462.
    Livingston, G.P., Hutchinson, G.L., Spartalian, K.,2005. Diffusion theory improves chamber-based measurements of trace gas emissions. Geophys Res Lett 32.
    Long, G.-Q., Sun, B.,2012. Nitrogen leaching under corn cultivation stabilized after four years application of pig manure to red soil in subtropical China. Agr Ecosyst Environ 146,73-80.
    Lopez-Bellido, R.J., Fontan, J.M., Lopez-Bellido, F.J., Lopez-Bellido, L.,2010. Carbon Sequestration by Tillage, Rotation, and Nitrogen Fertilization in a Mediterranean Vertisol. Agron J 102,310-318.
    Ma, W.K., Schautz, A., Fishback, L.-A.E., Bedard-Haughn, A., Farrell, R.E., Siciliano, S.D.,2007. Assessing the potential of ammonia oxidizing bacteria to produce nitrous oxide in soils of a high arctic lowland ecosystem on Devon Island, Canada. Soil Biol Biochem 39,2001-2013.
    Ma, Y.C., Kong, X.W., Yang, B., Zhang, X.L., Yan, X.Y., Yang, J.C., Xiong, Z.Q.,2013. Net global warming potential and greenhouse gas intensity of annual rice-wheat rotations with integrated soil-crop system management. Agr Ecosyst Environ 164,209-219.
    Mack, U.D., Feger, K.H., Gong, Y.S., Stahr, K.,2005. Soil water balance and nitrate leaching in winter wheat-summer maize double-cropping systems with different irrigation and N fertilization in the North China Plain. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 168,454-460.
    Malhi, S.S., Lemke, R., Wang, Z.H., Chhabra, B.S.,2006. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Till Res 90,171-183.
    Malhi, S.S., Nyborg, M., Solberg, E.D., Dyck, M.F., Puurveen, D.,2011. Improving crop yield and N uptake with long-term straw retention in two contrasting soil types. Field Crop Res 124,378-391.
    Manna, M.C., Swarup, A., Wanjari, R.H., Ravankar, H.N., Mishra, B., Saha, M.N., Singh, Y.V., Sahi, D.K., Sarap, P.A.,2005. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. Field Crop Res 93,264-280.
    Mattila, P.K.,1998. Ammonia volatilization from cattle slurry applied to grassland as affected by slurry treatment and application technique-first year results. Nutr Cycl Agroecosys 51,47-50.
    Mead, R., Riley, J., Dear, K., Singh, S.P.,1986. Stability comparison of intercropping and monocropping systems. Biometrics 42,253-266.
    Meng, Q., Sun, Q., Chen, X., Cui, Z., Yue, S., Zhang, F., Roemheld, V.,2012. Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agr Ecosyst Environ 146, 93-102.
    Merbach, W., Herbst, F., Eissner, H., Schmidt, L., Deubel, A.,2013. Influence of different long-term mineral-organic fertilization on yield, nutrient balance and soil C and N contents of a sandy loess (Haplic Phaeozem) in middle Germany. Arch. Agron. Soil Sci.59,1059-1072.
    Min, D.H., Islam, K.R., Vough, L.R., Weil, R.R.,2003. Dairy manure effects on soil quality properties and carbon sequestration in alfalfa-orchardgrass systems. Commun Soil Sci Plan 34,781-799.
    Molstad, L., Dorsch, P., Bakken, L.R.,2007. Robotized incubation system for monitoring gases (O2, NO, N2O, N2) in denitrifying cultures. J Microbiol Meth 71,202-211.
    Morley, N., Baggs, E.M.,2010. Carbon and oxygen controls on N2O and N2 production during nitrate reduction. Soil Biol Biochem 42,1864-1871.
    Morris, J.T., Whiting, G.J., Chapelle, F.H.,1988. Potential denitrification rates in deep sediments from the southeastern coastal-plain. Environ Sci Technol 22,832-836.
    Mosier, A.R., Halvorson, A.D., Peterson, G.A., Robertson, G.P., Sherrod, L.,2005. Measurement of net global warming potential in three agroecosystems. Nutr Cycl Agroecosys 72,67-76.
    Mosier, A.R., Halvorson, A.D., Reule, C.A., Liu, X.J.,2006. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J Environ Qual 35, 1584-1598.
    Muhammad, W., Vaughan, S.M., Dalal, R.C., Menzies, N.W.,2011. Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a Vertisol; Biol Fert Soils 47,15-23.
    Muller, C., Sherlock, R.R.,2004. Nitrous oxide emissions from temperate grassland ecosystems in the Northern and Southern Hemispheres. Global Biogeochem Cy 18.
    Nasholm, T., Kielland, K., Ganeteg, U.,2009. Uptake of organic nitrogen by plants. New Phytol 182, 31-48.
    Neff, J.C., Townsend, A.R., Gleixner, G., Lehman, S.J., Turnbull, J., Bowman, W.D.,2002. Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419,915-917.
    Norse, D.,2005. Non-point pollution from crop production:Global, regional and national issues. Pedosphere 15,499-508.
    Oenema, O., Boers, P.C.M., van Eerdt, M.M., Fraters, B., van der Meer, H.G., Roest, C.W.J., Schroder, J.J., Willems, W.J.,1998. Leaching of nitrate from agriculture to groundwater:the effect of policies and measures in the Netherlands. Environ Pollut 102,471-478.
    Oenema, O., Witzke, H.P., Klimont, Z., Lesschen, J.P., Velthof, G.L.,2009. Integrated assessment of promising measures to decrease nitrogen losses from agriculture in EU-27. Agr Ecosyst Environ 133,280-288.
    Ortseifen, U., Scheffer, B.,1997. The nitrate leaching from cultivated top soils of typical regions in Lower Saxony. Zeitschrift fuer Kulturtechnik und Landentwicklung 38,178-183.
    Pan, G.X., Li, L.Q., Wu, L.S., Zhang, X.H.,2004. Storage and sequestration potential of topsoil organic carbon in China's paddy soils. Global Change Biol 10,79-92.
    Pan, GX., Zhou, P., Li, Z., Smith, P., Li, L., Qiu, D., Zhang, X., Xu, X., Shen, S., Chen, X.,2009. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agr Ecosyst Environ 131,274-280.
    Parkin, T.B.,1987. Soil microsites as a source of denitrification variability. Soil Sci Soc Am J 51, 1194-1199.
    Parkin, T.B.,1993. Spatial variability of microbial processes in soil-a review. J Environ Qual 22, 409-417.
    Parkin, T.B., Tiedje, J.M.,1984. Application of a soil core method to investigate the effect of oxygen concentration on denitrification. Soil Biol Biochem 16,331-334.
    Pathak, H., Li, C., Wassmann, R.,2005. Greenhouse gas emissions from Indian rice fields:calibration and upscaling using the DNDC model. Biogeosciences 2,113-123.
    Petersen, C.T., Jensen, H.E., Hansen, S., Koch, C.B.,2001. Susceptibility of a sandy loam soil to preferential flow as affected by tillage. Soil Till Res 58,81-89.
    Philippot, L.,2002. Denitrifying genes in bacterial and Archaeal genomes. Bba-Gene Struct Expr 1577, 355-376.
    Philippot, L., Cuhel, J., Saby, N.P.A., Cheneby, D., Chronakova, A., Bru, D., Arrouays, D., Martin-Laurent, F., Simek, M.,2009. Mapping field-scale spatial patterns of size and activity of the denitrifier community. Environ Microbiol 11,1518-1526.
    Philippot, L., Andert, J., Jones, C.M., Bru, D., Hallin, S.,2011. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Global Change Biol 17, 1497-1504.
    Phongpan, S., Mosier, A.R.,2003. Effect of rice straw management on nitrogen balance and residual effect of urea-N in an annual lowland rice cropping sequence. Biol Fert Soils 37,102-107.
    Piepho, H.P.,1998. Methods for comparing the yield stability of cropping systems-A review. J Agron Crop Sci 180,193-213.
    Prendergast-Miller, M.T., Baggs, E.M., Johnson, D.,2011. Nitrous oxide production by the ectomycorrhizal fungi Paxillus involutus and Tylospora fibrillosa. Ferns Microbiol Lett 316,31-35.
    Puget, P., Chenu, C., Balesdent, J.,2000. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Eur J Soil Sci 51,595-605.
    Qin, S.P., Yuan, H., Dong, W., Hu, C., Oenema, O., Zhang, Y.,2013. Relationship between soil properties and the bias of N2O reduction by acetylene inhibition technique for analyzing soil denitrification potential. Soil Biol Biochem 66,182-187.
    Qiu, JJ., Li, C., Wang, L., Tang, H., Li, H., Van Ranst, E.,2009. Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China. Global Biogeochem Cy23.
    Qiu, S. J., Peng, P. Q., Li, L., He, P., Liu, Q., Wu, J. S., Christie, P., Ju, X. T.,2012. Effects of applied urea and straw on various nitrogen fractions in two Chinese paddy soils with differing clay mineralogy. Biol Fert Soils 48,161-172.
    Qiu, S. J., Ju, X. T., Ingwersen, J., Guo, Z. D., Stange, C.F., Bisharat, R., Streck, T., Christie, P., Zhang, F.-S.,2013. Role of Carbon Substrates Added in the Transformation of Surplus Nitrate to Organic Nitrogen in a Calcareous Soil. Pedosphere 23,205-212.
    Quemada, M., Baranski, M., Nobel-de Lange, M.N.J., Vallejo, A., Cooper, J.M.,2013. Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agr Ecosyst Environ 174,1-10.
    Raun, W.R., Barreto, H.J., Westerman, R.L.,1993. Use of stability analysis for long-term soil fertility experiments. Agron J 85,159-167.
    Ravishankara, A.R., Daniel, J.S., Portmann, R.W.,2009. Nitrous oxide (N2O):The dominant ozone-depleting substance emitted in the 21st century. Science 326,123-125.
    Regmi, A.P., Ladha, J.K., Pathak, H., Pasuquin, E., Bueno, C., Dawe, D., Hobbs, P.R., Joshy, D., Maskey, S.L., Pandey, S.P.,2002. Yield and soil fertility trends in a 20-year rice-rice-wheat experiment in Nepal. Soil Sci Soc Am J 66,857-867.
    Robertson, G.P., Grace, P.R.,2004. Greenhouse gas fluxes in tropical and temperate agriculture:The need for a full-cost accounting of global warming potentials. Environment Development and Sustainability 6,51-63.
    Robertson, G.P., Paul, E.A., Harwood, R.R.,2000. Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science 289, 1922-1925.
    Rolston, D.E., Hoffman, D.L., Toy, D.W.,1978. Field measurement of denitrification:flux of N2 and N2O. Soil Sci Soc Am J 42,863-869.
    Ross, S.M., Izaurralde, R.C., Janzen, H.H., Robertson, J.A., McGill, W.B.,2008. The nitrogen balance of three long-term agroecosystems on a boreal soil in western Canada. Agr Ecosyst Environ 127, 241-250.
    Rubasinghege, G., Spak, S.N., Stanier, C.O., Carmichael, G.R., Grassian, V.H.,2011. Abiotic Mechanism for the Formation of Atmospheric Nitrous Oxide from Ammonium Nitrate. Environ Sci Technol 45,2691-2697.
    Rudrappa, L., Purakayastha, T.J., Singh, D., Bhadraray, S.,2006. Long-term manuring and fertilization effects on soil organic carbon pools in a Typic Haplustept of semi-arid sub-tropical India. Soil Till Res 88,180-192.
    Rutting, T., Boeckx, P., Mueller, C., Klemedtsson, L.,2011. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8, 1779-1791.
    Salazar, F., Martinez-Lagos, J., Alfaro, M., Misselbrook, T.,2012. Low nitrogen leaching losses following a high rate of dairy slurry and urea application to pasture on a volcanic soil in Southern Chile. Agr Ecosyst Environ 160,23-28.
    Sarrantonio, M.,2003. Soil response to surface-applied residues of varying carbon-nitrogen ratios. Biol Fert Soils 37,175-183.
    Schinner, F.O., R. Kandeler, E.,1995. Methods in soil biology.
    Shang, Q.Y., Yang, X.X., Gao, C.M., Wu, P.P., Liu, J.J., Xu, Y.C., Shen, Q.R., Zou, J.W., Guo, S.W., 2011. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems:a 3-year field measurement in long-term fertilizer experiments. Global Change Biol 17,2196-2210.
    Shi, Z., Li, D., Jing, Q., Cai, J., Jiang, D., Cao, W., Dai, T.,2012. Effects of nitrogen applications on soil nitrogen balance and nitrogen utilization of winter wheat in a rice-wheat rotation. Field Crop Res 127,241-247.
    Sieling, K., Kage, H.,2006. N balance as an indicator of N leaching in an oilseed rape-winter wheat-winter barley rotation. Agr Ecosyst Environ 115,261-269.
    Silver, W.L., Herman, D.J., Firestone, M.K.,2001. Dissimilatory nitrate reduction to ammonium in upland tropical forest soils. Ecology 82,2410-2416.
    Six, J., Elliott, E.T., Paustian, K., Doran, J.W.,1998. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am J 62,1367-1377.
    Six, J., Elliott, E.T., Paustian, K.,1999. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci Soc Am J 63,1350-1358.
    Six, J., Elliott, E.T., Paustian, K.,2000. Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32,2099-2103.
    Six, J., Callewaert, P., Lenders, S., De Gryze, S., Morris, S.J., Gregorich, E.G., Paul, E.A., Paustian, K, 2002a. Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Sci Soc Am J 66,1981-1987.
    Six, J., Conant, R.T., Paul, E.A., Paustian, K.,2002b. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241,155-176.
    Sleutel, S., De Neve, S., Nemeth, T., Toth, T., Hofman, G.,2006. Effect of manure and fertilizer application on the distribution of organic carbon in different soil fractions in long-term field experiments. Eur J Agron 25,280-288.
    Smith, P.,2004. Soils as carbon sinks:the global context. Soil Use Manage 20,212-218.
    Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S.,2007. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agr Ecosyst Environ 118,6-28.
    Smith, P., Fang, C.M., Dawson, J.J.C., Moncrieff, J.B.,2008a. Impact of global warming on soil organic carbon. Advances in Agronomy, Vol 97,1-43.
    Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., Smith, J.,2008b. Greenhouse gas mitigation in agriculture. Philos T R Soc B 363,789-813.
    Snyder, C.S., Bruulsema, T.W., Jensen, T.L., Fixen, P.E.,2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agr Ecosyst Environ 133, 247-266.
    Sogbedji, J.M., van Es, H.M., Yang, C.L., Geohring, L.D., Magdoff, F.R.,2000. Nitrate leaching and nitrogen budget as affected by maize nitrogen rate and soil type. J Environ Qual 29,1813-1820.
    Song, L.N., Zhang, Y.M., Hu, C.S., Zhang, X.Y., Dong, W.X., Wang, Y.Y., Qin, S.P.,2013. Comprehensive analysis of emissions and global warming effects of greenhouse gases in winter-wheat fields in the high-yield agro-region of North China Plain. Chinese Journal of Eco-Agriculture 21,297-307.
    Song, Y., Lin, Z.,2010. Changes in community structures of ammonia-oxidizers and potential nitrification rates in red paddy soil at different growth stages of rice. Acta Pedologica Sinica 47, 987-994.
    Su, Y. Z., Wang, F., Suo, D.-R., Zhang, Z.-H., Du, M.-W.,2006. Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat-wheat-maize cropping system in northwest China. Nutr Cycl Agroecosys 75,285-295.
    Svoboda, N., Taube, F., Wienforth, B., Kluss, C., Kage, H., Herrmann, A.,2013. Nitrogen leaching losses after biogas residue application to maize. Soil Till Res 130,69-80.
    Ti, C.P., Pan, J., Xia, Y., Yan, X.,2012. A nitrogen budget of mainland China with spatial and temporal variation. Biogeochemistry 108,381-394.
    Tiedje, J.M., Sexstone, A.J., Parkin, T.B., Revsbech, N.P., Shelton, D.R.,1984. Anaerobic processes in soil. Plant Soil 76,197-212.
    Tilman, D., Balzer, C., Hill, J., Befort, B.L.,2011. Global food demand and the sustainable intensification of agriculture. P Natl Acad Sci USA 108,20260-20264.
    Tilman, D., Cassman, K.G., Matson, PA., Naylor, R., Polasky, S.,2002. Agricultural sustainability and intensive production practices. Nature 418,671-677.
    Tisdall, J.M., Oades, J.M.,1982. Organic-matter and water-stable aggregates in soils. J Soil Sci 33, 141-163.
    Toma, Y., Hatano, R.,2007. Effect of crop residue C:N ratio on N2O emissions from Gray Lowland soil in Mikasa, Hokkaido, Japan. Soil Sci Plant Nutr 53,198-205.
    van Cleemput, O.,1998. Subsoils:chemo-and biological denitrification, N2O and N2 emissions. Nutr Cycl Agroecosys 52,187-194.
    Van Groenigen, J.W., Velthof, G.L., Oenema, O., Van Groenigen, K.J., Van Kessel, C.,2010. Towards an agronomic assessment of N2O emissions:a case study for arable crops. Eur J Soil Sci 61, 903-913.
    VanCleemput, O., Samater, A.H.,1996. Nitrite in soils:Accumulation and role in the formation of gaseous N compounds. Fert Res 45,81-89.
    Vangenuchten, M.T.,1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44,892-898.
    Velthof, G.L., Kuikman, P.J., Oenema, O.,2002. Nitrous oxide emission from soils amended with crop residues. Nutr Cycl Agroecosys 62,249-261.
    Venterea, R.T.,2007. Nitrite-driven nitrous oxide production under aerobic soil conditions:kinetics and biochemical controls. Global Change Biol 13,1798-1809.
    Venterea, R.T., Halvorson, A.D., Kitchen, N., Liebig, M.A., Cavigelli, M.A., Del Grosso, S.J., Motavalli, P.P., Nelson, K.A., Spokas, K.A., Singh, B.P., Stewart, C.E., Ranaivoson, A., Strock, J., Collins, H.,2012. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Frontiers in Ecology and the Environment 10,562-570.
    Vigil, M.F., Kissel, D.E.,1991. Equations for estimating the amount of nitrogen mineralized from crop residues. Soil Sci Soc Am J 55,757-761.
    Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, D.,1997. Human alteration of the global nitrogen cycle:Sources and consequences. EcolAppl 7,737-750.
    von Luetzow, M., Koegel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., Flessa, H.,2006. Stabilization of organic matter in temperate soils:mechanisms and their relevance under different soil conditions-a review. Eur J Soil Sci 57,426-445.
    von Luetzow, M., Koegel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B.,2007. SOM fractionation methods:Relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39,2183-2207.
    Wan, Y.J., Ju, X.T., Ingwersen, J., Schwarz, U., Stange, C.F., Zhang, F.S., Streck, T.,2009. Gross Nitrogen Transformations and Related Nitrous Oxide Emissions in an Intensively Used Calcareous Soil. Soil Sci Soc Am J 73,102-112.
    Wang, H., Ju, X., Wei, Y., Li, B., Zhao, L., Hu, K,2010. Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain. Agr Water Manage 97, 1646-1654.
    Wang, H.X., Liu, C.M., Zhang, L.,2002. Water-saving agriculture in China:An overview. Advances in Agronomy, Vol 75,135-171.
    Wang, R., Willibald, G., Feng, Q., Zheng, X., Liao, T., Brueggemann, N., Butterbach-Bahl, K.,2011a. Measurement of N2, N2O, NO, and CO2 Emissions from Soil with the Gas-Row-Soil-Core Technique. Environ Sci Technol 45,6066-6072.
    Wang, X., Cai, D., Hoogmoed, W.B., Oenema, O.,2011b. Regional distribution of nitrogen fertilizer use and N-saving potential for improvement of food production and nitrogen use efficiency in China. J Sci Food Agr 91,2013-2023.
    West, T.O., Post, W.M.,2002. Soil organic carbon sequestration rates by tillage and crop rotation:A global data analysis. Soil Sci Soc Am J 66,1930-1946.
    West, T.O., Six, J.,2007. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Climatic Change 80,25-41.
    Whalen, J.K., Chang, C.,2002. Macroaggregate characteristics in cultivated soils after 25 annual manure applications. Soil Sci Soc Am J 66,1637-1647.
    Wheatley, R.E., Ritz, K., Crabb, D., Caul, S.,2001. Temporal variations in potential nitrification dynamics in soil related to differences in rates and types of carbon and nitrogen inputs. Soil Biol Biochem 33,2135-2144.
    Williams, W.A., Mikkelse.Ds, Mueller, K.E., Ruckman, J.E.,1968. Nitrogen immobilization by rice straw incorporated in lowland rice production. Plant Soil 28,49-&.
    Wilts, A.R., Reicosky, D.C., Allmaras, R.R., Clapp, C.E.,2004. Long-term corn residue effects:Harvest alternatives, soil carbon turnover, and root-derived carbon. Soil Sci Soc Am J 68,1342-1351.
    Wrage, N., Velthof, G.L., van Beusichem, M.L., Oenema, O.,2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33,1723-1732.
    Wrage, N., van Groenigen, J.W., Oenema, O., Baggs, E.M.,2005. A novel dual-isotope labelling method for distinguishing between soil sources of N2O. Rapid Commun Mass Sp 19,3298-3306.
    Xu, Y.B., Cai, Z.C.,2007. Denitrification characteristics of subtropical soils in China affected by soil parent material and land use. Eur J Soil Sci 58,1293-1303.
    Yadav, S.N.,1997. Formulation and estimation of nitrate-nitrogen leaching from corn cultivation. J Environ Qual 26,808-814.
    Yamashita, T., Flessa, H., John, B., Helfrich, M., Ludwig, B.,2006. Organic matter in density fractions of water-stable aggregates in silty soils:Effect of land use. Soil Biol Biochem 38,3222-3234.
    Yan, C.R., Liu, E.K., Mei, X.R., He, W.Q., Bing, S.H., Ding, L.P., Liu, Q., Liu, S.A., Fan, T.L.,2010. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 158,173-180.
    Yan, X.Y., Gong, W., Wang, J.Y., Hu, TX., Gong, Y.B.,2009. Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China. Geoderma 149,318-324.
    Yan, X.Y., Gong, W.,2010. The role of chemical and organic fertilizers on yield, yield variability and carbon sequestration-results of a 19-year experiment. Plant Soil 331,471-480.
    Yan, Y., He, H., Zhang, X., Chen, Y., Xie, H., Bai, Z., Zhu, P., Ren, J., Wang, L.,2012a. Long-term fertilization effects on carbon and nitrogen in particle-size fractions of a Chinese Mollisol. Can J Soil Sci 92,509-519.
    Yan, Y., Tian, J., Fan, M., Zhang, F., Li, X., Christie, P., Chen, H., Lee, J., Kuzyakov, Y., Six, J.,2012b. Soil organic carbon and total nitrogen in intensively managed arable soils. Agr Ecosyst Environ 150, 102-110.
    Yang, S.M., Li, F.M., Malhi, S.S., Wang, P., Suo, D.R., Wang, J.G.,2004. Long-term fertilization effects on crop yield and nitrate nitrogen accumulation in soil in northwestern China. Agron J 96, 1039-1049.
    Yu, H.R., Li, Z.Z., Gong, Y.S., Mack, U., Feger, K.H., Stahr, K.,2006. Water drainage and nitrate leaching under traditional and improved management of vegetable-cropping systems in the North China Plain. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 169,47-51.
    Yu, H.Y., Ding, W., Luo, J., Geng, R., Ghani, A., Cai, Z.,2012a. Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil. Biol Fert Soils 48,325-336.
    Yu, H.Y., Ding, W.X., Luo, J.F., Geng, R.L., Cai, Z.C.,2012b. Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil Till Res 124,170-177.
    Yu, Y., Guo, Z., Wu, H., Kahmann, J.A., Oldfield, F.,2009. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000. Global Biogeochem Cy 23.
    Zaman, M., Di, H.J., Cameron, K.C., Frampton, C.M.,1999. Gross nitrogen mineralization and nitrification rates and their relationships to enzyme activities and the soil microbial biomass in soils treated with dairy shed effluent and ammonium fertilizer at different water potentials. Biol Fert Soils 29,178-186.
    Zhang, F., Cui, Z., Chen, X., Ju, X., Shen, J., Chen, Q., Liu, X., Zhang, W., Mi, G., Fan, M., Jiang, R., 2012. Integrated nutrient management for food security and quality in China. In:Sparks, D.L. (Ed.), Advances in Agronomy, Vol 116, pp.1-40.
    Zhang, H., Xu, M., Zhang, F.,2009. Long-term effects of manure application on grain yield under different cropping systems and ecological conditions in China. J Agr Sci 147,31-42.
    Zhang, W.F., Dou, Z.X., He, P., Ju, X.T., Powlson, D., Chadwick, D., Norse, D., Lu, Y.L., Zhang, Y., Wu, L., Chen, X.P., Cassman, K.G., Zhang, F.S.,2013. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. P Natl Acad Sci USA.
    Zhang, W.J., Wang, X.J., Xu, M.G., Huang, S.M., Liu, H., Peng, C.,2010. Soil organic carbon dynamics under long-term fertilizations in arable land of northern China. Biogeosciences 7, 409-425.
    Zhang, Y.M., Hu, C.S., Zhang, J.B., Chen, D.L., Li, X.X.,2005. Nitrate leaching in an irrigated wheat-maize rotation field in the North China Plain. Pedosphere 15,196-203.
    Zhang, Y.Y., Liu, J.F., Mu, Y.J., Pei, S.W., Lun, X.X., Chai, F.H.,2011. Emissions of nitrous oxide, nitrogen oxides and ammonia from a maize field in the North China Plain. Atmos Environ 45, 2956-2961.
    Zhao, R.F., Chen, X.P., Zhang, F.S., Zhang, H.L., Schroder, J., Roemheld, V.,2006. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agron J 98,938-945.
    Zhao, X., Xie, Y.X., Xiong, Z.Q., Yan, X.Y, Xing, G.X, Zhu, Z.L.,2009. Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the Taihu lake region, China. Plant Soil 319,225-234.
    Zhao, X., Zhou, Y., Min, J., Wang, S., Shi, W., Xing, G.,2012. Nitrogen runoff dominates water nitrogen pollution from rice-wheat rotation in the Taihu Lake region of China. Agr Ecosyst Environ 156,1-11.
    Zheng, X.H., Han, S.H., Huang, Y., Wang, Y.S., Wang, M.X.,2004. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochem Cy 18,245-255.
    Zheng, X.H., Mei, B.L., Wang, Y.H., Xie, B.H., Wang, Y.S., Dong, H.B., Xu, H., Chen, G.X., Cai, Z.C., Yue, J., Gu, J.X., Su, F., Zou, J.W., Zhu, J.G.,2008. Quantification of N2O fluxes from soil-plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 311,211-234.
    Zheng, X.H., Liu, C.Y., Wang, K., Meng, S.X., Zhou, Z.X., Han, S.H., Chen, D.L., Yang, Z.P.,2011. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China. Agr Ecosyst Environ 140,226-233.
    Zhou, M., Zhu, B., Butterbach-Bahl, K., Wang, T., Bergmann, J., Brueggemann, N., Wang, Z., Li, T., Kuang, F.,2012. Nitrate leaching, direct and indirect nitrous oxide fluxes from sloping cropland in the purple soil area, southwestern China. Environ Pollut 162,361-368.
    Zhu, Z.L., Chen, D.L.,2002. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosys 63,117-127.
    Zumft, W.G.,1997. Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews 61,533-611.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700