用户名: 密码: 验证码:
优化施氮下稻麦轮作农田氮素循环特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江中下游稻麦轮作制中过量施氮较为普遍,这不仅导致氮肥利用率降低,而且引起环境风险。因此,田间尺度下原位定量化研究化肥氮的去向和氮素循环过程,以及区域尺度下评估氮肥管理的农学和环境效应是优化氮肥管理,提高氮肥利用率的关键。为研究优化施氮下长江中下游稻麦轮作农田氮素循环特征,于2007年至2008年在湖北省开展田间试验和15N示踪的微区试验,监测不同氮肥运筹下氨挥发、N_2O排放、无机氮动态分布和15N的去向。田间试验和15N示踪的微区试验均设置4个处理,(1)习惯施氮(小麦和水稻氮肥用量分别为225kgN/hm~2和210kgN/hm~2),(2)氮肥减量(小麦和水稻氮肥用量分别为157.5kgN/hm~2和147kgN/hm~2),(3)优化施氮(基于作物不同生长阶段氮素需求增加施肥比例和次数,氮肥用量同处理2),和(4)对照(不施氮肥)。习惯施氮和氮肥减量处理小麦季基肥和拔节肥各占1/2,水稻季基肥和分蘖肥各1/2。优化施氮处理,小麦季基肥,拔节肥和孕穗肥各占1/3;水稻季基肥,分蘖肥和孕穗肥各占1/3。采用密闭室连续抽气法测定氨挥发,密闭箱技术原位监测N_2O排放,连续流动注射分析仪测定土壤NO_3~--N和NH_4+~-N含量。基于观测值,检验脱氮-分解模型(DNDC)田间尺度模拟预测氮素循环的可靠性和灵敏度。同时,以湖北潜江市为例,采用DNDC模型结合地理信息系统(GIS)技术对区域尺度优化施氮下氮素循环与平衡进行估算。研究取得以下主要进展:
     1.田间试验结果表明,三个施氮处理间小麦、水稻的籽粒产量和植株吸氮量差异不显著,优化施氮处理略高于习惯施氮处理。与习惯施氮处理相比,优化施氮小麦和水稻季作物表观回收率分别提高了12.5和7.96个百分点。整个小麦和水稻生长季,习惯施氮、氮肥减量和优化施氮处理氮素表观损失量分别为180、115和80.8kgN/hm~2,占氮素总输入量的41.3%、37.8%和26.5%。
     2.小麦季施肥后氨挥发大约持续7-10天,水稻季大约持续5-7天。在整个稻麦轮作周期肥料氮氨挥发损失主要发生在水稻季,占整个轮作周期氨挥发总量的74.1%-78.6%。与传统施氮相比,优化施氮氨挥发量减少了N 26.3kg/hm~2,氨挥发降低了32.9%,可见优化施氮是降低氨挥发较理想的施肥方式。
     3.稻麦轮作体系中土壤N_2O排放具有明显的季节性变化规律,小麦季和水稻季N_2O通量分别与土壤和田间水中无机氮含量呈正相关。N_2O排放排放量随施氮量增加而增加。小麦生育期土壤N_2O排放量范围为N_2O 2.43-4.84kg/hm~2,肥料氮通过N_2O排放的损失率为0.54%-0.74%。水稻季土壤N_2O排放量为N_2O 0.89-2.45kg/hm~2,肥料氮通过N_2O排放的损失率为0.39%-0.47%。与习惯施氮相比,优化施氮土壤N_2O排放减少了N_2O 1.74kg/hm~2,减少了23.9%。
     4. 15N示踪试验结果表明,与习惯施氮相比,小麦季和水稻季优化施氮分别增加氮回收率6.19和3.07个百分点。土壤残留率小麦季增加4.76个百分点,水稻季增加2.49个百分点。肥料氮损失率小麦季和水稻季分别减少11.0和5.57个百分点。与习惯施氮相比,优化施氮处理小麦季和水稻季累积氨挥发量分别降低41.3%和54.0%,N_2O排放损失总量减少35.2%和35.3%。
     5.田间尺度上,采用DNDC模型模拟的土壤氨挥发速率和N_2O排放通量与田间实测结果较为吻合,氨挥发通量模拟值与实测值相关系数为0.688,N_2O排放通量模拟值与实测值相关系数为0.528,均达极显著水平,显示DNDC模型预测农田土壤氮素具有较高可信度。模拟结果显示,气温和氮肥用量是影响作物产量和吸氮量的关键因素;土壤氨挥发主要受氮肥品种影响,并随氮肥用量增加而增加;土壤N_2O排放主要受温度、土壤pH值、土壤有机碳含量影响。
     6.区域尺度上,通过DNDC模型与潜江市空间地理信息数据相连接,设置了习惯施氮和优化施氮两种氮肥管理情形,发现潜江市习惯施氮和优化施氮条件下氮素盈余量为897和620t。习惯施氮条件下,氮氨挥发损失量为91.2t,氮淋失量达497t,硝化反硝化损失量为485.88t;优化施氮可降低氨挥发80.7%,氮淋失38.8%,硝化反硝化62.5%。土壤养分和环境因子的空间异质性导致了区域氮输出的空间变异。
Excessive nitrogen fertilization generally exists in rice-wheat rotation system in middle and lower reaches of Yangtze river, which cause not only the decrease of nitrogen use efficiency but also the increasing of the risk of environmental pollution. Therefore, identifying the N cycling processes in field scale as well as in regional scale has become an essential need for optimizing N application and improving the N use efficiency in agricultural soils in middle and lower reaches of Yangtze river. To gain better insight into the nitrogen cycling in rice-wheat rotation system under optimized nitrogen management in middle and lower reaches of Yangtze river, field plot trials combined with micro-plot experiment with 15N tracing were established in Hubei province from 2007 to 2008 to monitor ammonia volatilization (AV), denitrification and N_2O emission, NO_3--N accumulation and 15N fate under different nitrogen application strategies. For both field trail and micro-plot experiment with 15N tracing, four N treatments included: (1) conventional N application (225 and 210kgN·ha~(-1) for winter wheat and rice, respectively), (2) reduced N application (157.5 and 147kgN·ha-1 for winter wheat and rice, respectively), (3) optimized N application (increase ratios of dress N to base N fertilizer and split application based on crop N uptake at different growth stage, same to N rate in reduced N application), and(4) control with no nitrogen applied. For the treatments of conventional and reduced N application, 1/2 of nitrogen fertilizer applied as basal and 1/2 as topdressing at elongating stage for winter wheat, and 1/2 as basal and 1/2 as topdressing at tillering stage for rice. For optimized N application, 1/3 nitrogen fertilizer applied as basal, and 1/3 as topdressing at elongating stage and 1/3 at ear bearing stage for winter wheat, and 1/3 as basal, and 1/3 as topdressing at tillering stage and 1/3 at ear bearing stage for rice. A continuous airflow enclosure method was adopted to determine the ammonia volatilization (AV) loss, N_2O emission was analyzed using the static chamber-gas chromatograph method, and soil NO_3~--N and NH_4~+-N was determined by flow injection analysis. Based on above observation, the reliability and sensitivity of Denitrification-Decomposition simulation model (DNDC) for forecasting nitrogen cycling and balance were tested in field scale, and influencing factors of various N cycling pathways were identified. Meanwhile, Qianjiang city of Hubei province was taken as the study area, DNDC coupled with geographic information system (GIS) was used to estimate the nitrogen cycling and balance in rice-wheat rotation system in regional scale. The main findings obtained are summed up as follows:
     1. Field plot trials showed that grain yield and N uptake for wheat and rice in the treatment of optimized N application were slightly higher than those under conventional N application, there is no significant difference within three N fertilizer application treatments, except no N fertilizer application. Compared to conventional N fertilization, the apparent N recovery under optimized N fertilization improved by 12.46% and 7.96% for wheat and rice, respectively. During whole growing season of wheat and rice, the apparent loss of N in the treatments of conventional, reduced and optimized N application were 179.7, 115.2 and 80.8kgN/ha respectively, accounting for 41.3%, 37.8% and 26.5% of the total N fertilizer input.
     2. The AV loss generally increased with the urea application rate, and affected by the temperature and soil water condition. In wheat growing season, the AV from fertilizer N lasted for 7-10 days after fertilization; while lasted for 5-7 days in rice growing season. Majority of the AV loss occurred in the rice season, occupied by 74.08%-78.65% of total AV loss in the entire rotation system. Compared to conventional N fertilization, the AV loss reduced N 26.28kg/ha, the loss rate reduced 32.90% under optimizing N application, showing that optimized N application is a rational and practicable N fertilization mode for reducing AV in rice-wheat rotation system.
     3. There were significant seasonal variations of N_2O emission flux during rice-wheat growing season. Total N_2O emission generally increased with the N application rate, and majority of N_2O emission occurred during the wheat season. In wheat growing season, N_2O emission varied from 2.43 to 4.84 kgN_2O/ha which accounted for 0.54% to 0.74% of applied N; While in rice growing season, N_2O emission varied from 0.89 to 2.45 kgN_2O/ha which ranged from 0.39% to 0.47% of applied N. Compared to conventional N application, N_2O emission loss rate reduced 23.87%, under the optimizing N application, indicating that optimizing N application associated with increasing ratios of dress N to base N fertilizer and times of split application based on plant N requirement at different growth stage could obviously reduce the N_2O emission under the rice-wheat rotation system.
     4. Micro-plot experiment with 15N tracing showed that N recovery for wheat and rice under optimizing N application was improved by 6.19% and 3.07%, respectively, the residual rate in soil increased by 4.76% and 2.49% in wheat and rice season respectively, the loss rate of fertilizer 15N decreased by 10.95% and 5.57%, respectively, in comparison with conventional N application. Cumulative AV amounts from fertilizer 15N under optimizing N application reduced by 41.27% and 54.04%, and denitrification losses reduced by 35.18% and 35.29% during wheat and rice growing seasons, respectively, compared to conventional N application.
     5. In field scale, a higher reliability was found between soil ammonia volatilization and N_2O emission simulated by DNDC model and field measured results, suggesting that the DNDC model could be used for describing N loss in soils under different nitrogen fertilizer management measures. According to sensitivity test on the DNDC model, both grain yield and crop N uptake were significantly affected by temperature and N application rate, AV was significantly influenced by fertilizer N type and the nitrogen application rate, N_2O emission significantly affected by temperature, soil pH and soil organic carbon.
     6. In regional scale, the regional N surpluses were 896.84 and 620.08t under the conventional N application and optimizing N application respectively. Compared to the conventional N application, AV, the nitrate leaching, and nitrification and denitrification loss reduced by 80.7%, 38.80% and 62.51% under optimizing N application respectively. The spatial heterogeneity in soil nutrients and environmental parameters result in the spatial variance of regional N outputs.
引文
1.白由路,金继运,杨丽萍,梁鸣早.基于GIS的土壤养分分区管理模型研究[J].中国农业科学. 2001, 34(1): 1-4.
    2.蔡贵信,朱兆良.稻田中化肥氮的气态损失[J].土壤学报, 1995, 32(增刊):128-135
    3.曹兵,李新慧,张琳,等.冬小麦不同基肥施用方式对土壤氨挥发的影响[J].华北农学报, 2001, 16(2): 83-86.
    4.曹金留,田光明,任立涛,等.江苏南部地区稻麦两熟土壤中尿素的氨挥发损失[J].南京农业大学学报. 2000, 23(4): 51-54.
    5.曹宁,曲东,陈新平,等.东北地区农田土壤氮、磷平衡及其对面源污染的贡献分析[J].西北农林科技大学学报. 2006, 34(7): 127-133
    6.曹志洪,林先贵,杨林章,等.论“稻田圈"在保护城乡生态环境中的功能Ⅱ.稻田土壤氮素养分的累积、迁移及其生态环境意义[J].土壤学报, 2006, 43(2):256-260.
    7.曹志洪,中国史前灌溉稻田和古水稻土研究进展术[J].土壤学报, 2008, 45(5): 784-791.
    8.陈冠雄,黄国宏,黄斌,等.稻田CH_4和N_2O的排放及养萍和施氮的影响[J].应用生态学报. 1995, 6(4): 378-382.
    9.陈明昌,张强,程滨,等.山西省主要农田施肥状况及典型县域农田养分平衡研究[J].水土保持学报, 2005, 19(4): 1-5,26
    10.陈书涛,黄耀,郑循华,陈玉泉.轮作制度对农田氧化亚氮排放的影响及驱动因子[J].中国农业科学. 2005, 38(10): 2053-2060.
    11.陈新平,张福锁.可持续农业中的推荐施肥[J].化肥工业, 1998, 3(2): 7-10
    12.陈新平,张福锁.小麦-玉米轮作体系养分资源综合管理理论与实践[M].北京:中国农业大学出版社. 2006.
    13.陈义,唐旭,杨生茂,吴春艳,王家玉.稻麦轮作稻田中N_2O排放规律的研究[J].土壤通报,2011,42(2):342-350
    14.崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻经济生态适宜施氮量研究[J].生态学报, 2000, 4: 659-662
    15.邓美华,谢迎新,熊正琴,等.长江三角洲氮收支的估算及其环境影响[J].环境科学学报. 2007, 27(10): 1709-1716.
    16.邓美华,尹斌,张绍林,等.不同施氮量和施氮方式对稻田氨挥发损失的影响[J].土壤. 2006, 38(3): 263-269.
    17.杜伟,遆超普,姜小三,陈国岩.长三角地区典型稻作农业小流域氮素平衡及其污染潜势[J].生态与农村环境学报. 2010, 26(1): 9-14
    18.范明生,刘学军,江荣风,等.覆盖旱作方式和施氮水平对稻-麦轮作体系生产力和氮素利用的影响[J].生态学报. 2004, 24(11): 2591-2596.
    19.范明生,水旱轮作系统养分资源综合管理研究[博士论文].北京:中国农业大学. 2005
    20.方福平,程式华.论中国水稻生产能力[J].中国水稻科学. 2009, 23(6): 559~566
    21.方玉东,封志明,胡业翠,等.基于GIS技术的中国农田氮素养分收支平衡研究[J ].农业工程学报, 2007, 23 (7) : 35-41.
    22.国家统计局.中国统计年鉴2010[M].北京:中国统计出版社, 2010.
    23.黄国勤,熊云明,钱海燕,等.稻田轮作系统的生态学分析[J].土壤学报. 2006, 43(1): 69-78.
    24.黄进宝,范晓晖,张绍林.太湖地区铁渗水耕人为土稻季上氮肥的氨挥发[J].土壤学报. 2006, 43(5): 786-792.
    25.黄进宝,葛高飞,范晓晖.太湖地区麦季氨挥发与氮素利用的研究[J].安徽农业大学学报. 2009, 36(4):677-682.
    26.黄树辉,吕军.农田土壤N_2O排放研究进展[J].土壤通报, 2004, 35(4): 26-29.
    27.黄耀,焦燕,宗良纲,周权锁,等,土壤理化特性对麦田N_2O排放影响的研究[J].环境科学学报. 2002, 22(5):598-602.
    28.纪锐琳,朱义年,佟小薇,等.竹炭包膜尿素在土壤中的氨挥发损失及其影响因素[J].桂林工学院学报, 2008, 28(1): 11-118.
    29.姜军,黄耀,杨兆芳.一个稻麦作物氮肥利用率的统计模型[J].南京农业大学学报, 2005,28(1):57-60.
    30.金继运,李家康,李书田.化肥与粮食安全[J].植物营养与肥料学报. 2006, 12(5): 601-609.
    31.巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作体系中土壤氮素矿化及预测[J].应用生态学报. 2003,14(12): 2241-2245.
    32.李长生,肖向明, Frolking S,等.中国农田的温室气体排放[J].第四纪研究. 2003, 23(5): 493-453.
    33.李长生.生物地球化学的概念与方法——DNDC模型的发展[J].第四纪研究. 2001, 21(2): 89-99.
    34.李长生.土壤碳储量减少:中国农业之隐患——中美农业生态系统碳循环对比研究[J].第四纪研究. 2000, 20(4): 345-350.
    35.李虎,王立刚,邱建军. DNDC模型在农田氮素渗漏淋失估算中的应用[J].应用生态学报. 2009, 20(7): 1591-1596
    36.李虎,王立刚,邱建军.黄淮海平原河北省范围内农田土壤二氧化碳和氧化亚氮排放量的估算[J].应用生态学报. 2007, 18(9): 1994-2000
    37.李虎.小清河流域农田非点源氮污染定量评价研究[博士学位论文].北京:中国农业科学院. 2009.
    38.李俊,于强,同小娟.植物——大气N_2O一个重要的源[J].地学前缘. 2002, 9 (1): 112-112
    39.李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题[M].江西:江西农业科学技术出版社, 1998.
    40.李伟波,吴留松,廖海秋.太湖地区高产稻田氮肥施用与作物吸收利用的研究[J].土壤学报. 1997, 34(1): 67-73.
    41.李香兰,徐华,曹金留,等.水分管理对水稻生长期N_2O排放的影响[J].土壤. 2006, 38(6): 703-707.
    42.李晓鹏,张佳宝,朱安宁.基于WNMM模型的潮土地区农田水氮优化管理[J].生态与农村环境学报, 2009, 25(1): 62-68.
    43.梁国庆,周卫,夏文建,等.优化施氮下稻-麦轮作体系土壤N_2O排放研究[J].植物营养与肥料学报. 2010, 16(2): 304-311
    44.林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化[J].植物营养与肥料学报. 1994, (1): 6-18.
    45.刘广深,徐文彬,洪业汤,陈旭晖.土壤N_2O释放通量季节变化的主要环境驱动因素研究[J].矿物学报. 2002, 22(3): 229-234.
    46.刘顺飞,中国水稻布局变化研究——1978年至2004年[博士学位论文].南京:南京农业大学.2007.
    47.鲁如坤,时正元,施建平.我国南方6省农田养分平衡现状评价和动态变化研究[J].中国农业科学. 2000, 33 (2): 63-67.
    48.马静,徐华,蔡祖聪,八木一行.稻季施氮管理措施对后续麦季N_2O排放的影响[J].土壤, 2006, 38(6): 672-691.
    49.马力,杨林章,颜廷梅,等.长期施肥水稻土氮素剖面分布及温度对土壤氮素矿化特性的影响[J].土壤学报, 2010, 47(2):286-294.
    50.彭奎,朱波, Abe K,游翔.紫色土集水区氮素收支状况与平衡分析[J].山地学报. 2001, 19(增): 30-35.
    51.彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学, 2002, 35(9): 1095-1103.
    52.邱建军,李虎,王立刚.中国农田施氮水平与土壤氮平衡的模拟研究[J].农业工程学报, 2008, 24(8): 40-44.
    53.苏成国,尹斌,杨林章,等.太湖地区稻季氮肥的氨挥发损失及其防止措施[J].西南农业学报. 2004, 17(增): 250-255.
    54.王德建,林静慧,孙瑞娟等,太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响[J].土壤学报. 2003, 40(3): 426-432.
    55.王家玉,王胜佳,陈义,等.稻田土壤中氮素淋失的研究[J].土壤学报. 1996, 33(1): 28-36.
    56.王立刚,邱建军,李维炯.黄淮海平原地区夏玉米农田土壤呼吸的动态研究[J].土壤肥料, 2002, 6: 13-17.
    57.王小治,高人,朱建国,等.稻季施用不同尿素品种的氮素径流和淋溶损失[J].中国环境科学. 2004, 24(5): 600-604.
    58.王效科,李长生.中国农业土壤N_2O排放量估算[J].环境科学学报. 2000, 20(4):483-488.
    59.王效科,欧阳志云,苗鸿, DNDC模型在长江三角洲农田生态系统的CH4和N_2O排放量估算中的应用[J].环境科学. 2001, 22(3): 15-19.
    60.王秀斌,周卫,梁国庆,等.优化施肥下华北冬小麦/夏玉米轮作体系农田氨挥发特征[J].植物营养与肥料学报, 2009, 15(2): 262-268.
    61.王秀斌.优化施氮下冬小麦/夏玉米轮作农田氮素循环与平衡研究[博士学位论文].北京:中国农业科学院. 2009.
    62.王振忠.吴敬民,陈留根,朱普平.稻麦两熟地区秸秆全量直接还田施肥技术的增产培肥效果[J].江苏农业学报, 2003, 19(3), 151-156.
    63.夏文建,周卫,梁国庆,等.优化施氮下稻-麦轮作体系氮肥氨挥发损失研究[J].植物营养与肥料学报. 2010, 16(1): 6-13.
    64.谢军飞,李玉娥. DNDC模型对北京旱地农田N_2O排放的模拟对比分析[J].农业环境科学学报, 2004, 23(4): 691-695
    65.谢军飞,李玉娥.土壤温度对北京旱地农田N_2O排放的影响[J].中国农业气象. 2005, 26(1): 7-10
    66.谢迎新,人为影响下稻田生态系统环境来源氮解析[博士学位论文].南京:中国科学院南京土壤研究所. 2006.
    67.熊正琴,刑光熹,施书莲,杜丽娟.轮作制度对水稻生长季节稻田氧化亚氮排放的影响[J].应用生态学报. 2003, 14(10): 1761-1764.
    68.徐华,邢光熹,蔡祖聪,鹤田治雄.丘陵区稻田N_2O排放的特点[J].土壤与环境, 1999, 8(4):266-270.
    69.徐文彬,洪业汤,陈旭晖, Li C S,等.应用DNDC模型估算区域农业土壤N_2O释放通量和释放量——以贵州省为例[J].环境科学. 2000, 21(2): 11-15.
    70.徐文彬,刘广深,洪业汤, Li C S,等. DNDC模型对我国旱地N_2O释放的拟合对比分析[J].矿物学报. 2002, 22(3): 222-228.
    71.徐文彬.箱技术测量土壤痕量气体释放通量中的误差因素——以N_2O为例[J].地质地球化学. 1999, 27(3): 111-117.
    72.晏娟,沈其荣,尹斌,张绍林,朱兆良.太湖地区稻麦轮作系统下施氮量对作物产量及氮肥利用率影响的研究[J].土壤, 2009, 41 (3): 372-376.
    73.杨建昌,杜永,刘辉.长江下游稻麦周年超高产栽培途径与技术[J].中国农业科学.2008, 41(6): 1611-1621
    74.叶优良,韩燕来,谭金芳,崔振岭.中国小麦生产与化肥施用状况研究[J].麦类作物学报, 2007 ,27 (1) :127 - 133
    75.易琼,张秀芝,何萍,杨利,熊桂云.氮肥减施对稻-麦轮作体系作物氮素吸收、利用和土壤氮素平衡的影响[J].植物营养与肥料学报, 2010, 16 (5) : 1069 - 1077.
    76.张福锁,马文奇.肥料投入水平与养分资源高效利用的关系[J].土壤与环境, 2000. 9(2): 154-157
    77.张刚,王德建,陈效民.稻田化肥减量施用的环境效应[J].中国生态农业学报, 2008, 16(2): 327-330
    78.张国梁,章申.农田氮素淋失研究进展[J].土壤, 1998, 6: 291-297.
    79.张琳,张凤荣,姜广辉,姚慧敏.我国中低产田改造的粮食增产潜力与食物安全保障[J].农业现代化研究. 2005, 26(1): 22-25.
    80.张玉铭,胡春胜,董文旭.华北太行山前平原农田氨挥发损失[J].植物营养与肥料学报. 2005, 11(3): 417-419.
    81.张玉铭,胡春胜,张佳宝,等.太行山前平原农田生态系统氮素循环与平衡研究[J].植物营养与肥料学报, 2006, 12(1): 5-11.
    82.甄兰.应用DNDC模型和GIS技术研究区域氮肥管理的环境效应[博士学位论文].北京:中国农业大学, 2007.
    83.郑循华,王明星,王跃思,等.稻麦轮作生态系统中土壤湿度对N_2O产生与排放的影响[J].应用生态学报. 1996, 7(3): 273-279.
    84.中国农业科学院土壤肥料研究所.中国化肥区划[M].北京:中国农业出版社. 1986.
    85.钟茜,巨晓棠,张福锁.华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析[J].植物营养与肥料学报, 2006, 12(3): 285-293.
    86.周伟,田玉华,尹斌.太湖地区水稻追肥的氨挥发损失和氮素平衡[J].中国生态农业学报. 2011, 19(1): 32-36.
    87.周再兴,郑循华,王明星, Klaus BB.华东稻麦轮作农田CH4、N_2O和NO排放特征[J].气候与环境研究. 2007, 12(6): 751-760.
    88.朱兆良,文启孝.中国土壤氮素[M].南京:江苏科技出版社, 1992. 171-185.
    89.朱兆良,张福锁.主要农田生态系统氮素行为与氮肥高效利用的基础研究[M].北京:科学出版社, 2010.
    90.朱兆良.农田中氮肥的损失与对策[J].土壤与环境, 2000, 9(1): 1-6.
    91.朱兆良.推荐氮肥适宜施用量的方法论刍议[J].植物营养与肥料学报, 2006,12(1):1-4.
    92.朱兆良.我国土壤供氮和化肥氮去向研究的进展[J].土壤, 1985, 17(1):2-9.
    93.邹邦基,赫荣臻,杨玉兰.提高稻田氮素生态效益的施肥技术[J].应用生态学报. 1991, 2(3): 238-243.
    94.邹建文,黄耀,宗良纲,等.稻田不同种类有机肥施用对后季麦田N2O排放的影响[J].环境科学. 2006, 27: 1264-1268.
    95. GB/T15265-94,环境空气降尘的测定重量法[S].1994.
    96. Abdalla M, Jones M, Yeluripati J, et al. Testing DayCent and DNDC model simulations of N2O fluxes and assessing the impacts of climate change on the gas flux and biomass production from a humid pasture[J]. Atmospheric Environment, 2010, 44: 2961-2970.
    97. Abdalla M, Wattenbach M, Smith P, et al. Williams. Application of the DNDC model to predict emissions of N2O from Irish agriculture[J]. Geoderma, 2009, 151: 327-337.
    98. Aulakhd M S, Doran J W, Mosier A R. Soil denitrification-significance, measurement, and effect of management[J]. Advanced Soil Science, 1992, 18: 1-57.
    99. Babu Y J, Li C S, Frolking S, et al. Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India[J]. Nutrient Cycling in Agroecosystems. 2006, 74: 157-174.
    100. Babu Y J, Li C S, Frolking S, Nayak D R, et al., Modelling of methane emissions from rice-based production systems in India with the denitrification and decomposition model: field validation and sensitivity analysis[J]. Current Science, 2005, 89:1904-1912.
    101. Bacon P E, Hoult E H, McGarity J W. Ammonia volatilization from fertilizers applied to irrigated wheat soils[J]. Fertilizer Research, 1986, 10: 27-42.
    102. Bechmann M, Eggestad H O, Vagstad N. Nitrogen balances and leaching in four agricultural catchments in southeastern Norway[J]. Environmental Pollution, 1998, 102(S1): 493-499.
    103. Beheydt D, Boeckx P, Ahmed H P, Van Cleemput O. N2O emission from conventional and minimum-tilled soils[J]. Biology Fertility Soils, 2008, 44: 863-873.
    104. Beheydt D, Boeckx P, Sleutel S, et al. Validation of DNDC for 22 Long-term N2O field emission measurements[J]. Atmospheric Environment, 2007, 41: 6196-6211.
    105. Bouwman A F. Direct emission of nitrous oxide from agricultural soils [J]. Nutrient Cycling in Agroecosystems, 1996, 46(1): 53-70
    106. Bouwmeester R J B, Vlek P L G, Stumpe JM. Effect of environmental factors on ammonia volatilization from a urea-fertilized soil[J]. Soil Science Society of America Journal. 1985, 49: 376-381
    107. Bremner J M. Sources of nitrous oxide in soils[J]. Nutrient Cycling in Agroecosystems, 1997, 49: 7-16.
    108. Britz W, Leip A. Development of marginal emission factors for N losses from agricultural soils with the DNDC-CAPRI meta-model[J]. Agriculture, Ecosystems and Environment. 2009, 133: 267-279.
    109. Brown L, Syed B, Jarvis S C, et al., Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture[J]. Atmospheric Environment, 2002, 36: 917-928
    110. Butterbach-Bahl K, Stange F, Papen H, and Li C S, Regional inventory of nitric oxide and nitrous oxide emissions from forest soils of southeast Germany using the biogeochemical modelPnET-N-DNDC[J]. Journal of Geophysical Research. 2001, 106(D24): 34,155-34,166.
    111. Cai Z C, Sawamoto T, Li C S, et al. Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems[J]. Global Biogeochemical cycles. 2003, 17 (4): 18.1-18.10.
    112. Cassman K G, Dobermann A, Walters D T. Agroecosystems, Nitrogen-use Efficiency, and Nitrogen Management[J]. AMBIO: A Journal of the Human Environment, 2002. 31(2): 132-140.
    113. Chen X P, Zhang F S, R?mheld V, et al. Synchronizing N supply from soil and fertilizer and N demand of winter wheat by an improved Nmin method[J]. Nutrient Cycling in Agroecosystem, 2006, 74 (2), 91-98.
    114. Chichester F W, Smith S J. Disposition of 15N-labeled fertilizer nitrate applied during corn culture in field lysimeters[J]. Journal of Environmental Quality, 1978, 7 (2): 227-233.
    115. Clay D E, Clapp C E, Molina J A E, et al. Nitrogen-tillage-residue management. I. Simulating soil and plant behavior by the model NCSWAP[J]. Plant and Soil. 1985, 84: 67-77.
    116. Clothier L, Soil Nutrient Balances: 2010 update. Defra Agricultural Change and Environment. Observatory Research Report No. 23, 2011
    117. Cui J B, Li C S, Sun G, Trettin C. Linkage of MIKE SHE to Wetland-DNDC for carbon budgeting and anaerobic biogeochemistry simulation[J]. Biogeochemistry, 2005, 72: 147–167
    118. Cui Z L, Zhang F S, Chen X P et al. In season nitrogen management strategy for winter wheat: Maximizing yields minimizing environmental impact in an over fertilization context[J]. Field Crops Research, 2010, 116: 140-146.
    119. Cui Z L, Zhang F S, Chen X P, et al. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test[J]. Field Crops Research. 2008, 105: 48-55.
    120. Dambreville C, Morvan T, Germon J C. N2O emission in maize-crops fertilized with pig slurry, matured pig manure or ammonium nitrate in Brittany[J]. Agriculture, Ecosystems and Environment, 2008, 123: 201-210.
    121. de Paz MJ, Ramos C. Linkage of a geographical information system with the gleams model to assess nitrate leaching in agricultural areas[J]. Environmental Pollution. 2002, 118: 249-258.
    122. Delgado J A, Gross C M, Lal H, et al. A new GIS nitrogen trading tool concept for conservation and reduction of reactive nitrogen losses to the environment[J]. Advances in Agronomy. 2010, 105: 117-171.
    123. Diekmann K H, Datta S K D, Ottow J C G. Nitrogen uptake and recovery from urea and green manure in lowland rice measured by 15N and non isotope techniques[J]. Plant and Soil. 1993, 148: 91-99.
    124. Dobbie K E and Smith K A. Impact of different forms of N fertilizer on N2O emission from intensive grassland [J]. Nutrient cycling in Agro-ecosystems. 2003, 67: 37-46.
    125. Dutt R G, Shaffer M J, Moore WJ. Computer simulation model of dynamic bio-physicochemical processes in soils[J]. Arizona Agricultural Experiment Station Technical Bulletin, 1972, 196: 128.
    126. Duxbury J M, Bouldin D R, Terry R E, Tate R L. Emissions of nitrous oxide from soils[J]. Nature. 1982, 298(29): 462-464.
    127. Dykinga J. Global Nitrogen Cycling out of control[J]. Environmental Health Perspectives, 2004, 112(10): A556-A563.
    128. Eichner M J. Nitrous oxide emissions from fertilized soils: summary of available data[J]. Journalof environmental quality, 1990, 19: 272-280.
    129. FAO. Statistical Database. Food and Agriculture Organization (FAO) of the United Nations. http://www.fao.org.
    130. Fhjfry R P, Dedatta S K. Ammonia volatilization from nitro-geo volatilization as a N loss mechanism in flooded rice fields[J]. Fertilizer Research, 1986, 9: 78-98.
    131. Frolking S E, Moise A R., Ojima D S, et al., Comparison of N2O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models[J]. Nutrient Cycling in Agroecosystems, 1998,52: 77-105
    132. Frolking S, Qiu J J, Boles S, Xiao X M, et al. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China[J]. Global Biogeochemical Cycles. 2002, 16(4): 38. 1-38. 10.
    133. Gao J F, Pan G X, Jiang X S, et al. Land-use induced changes in topsoil organic carbon stock of paddy fields using MODIS and TM/ETM analysis: A case study of Wujiang County, China[J]. Journal of Environmental Sciences. 2008, 20: 852-858.
    134. Gheysari M, Mirlatifi S M, Homaee M, et al. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates[J]. Agricultural Water Management, 2009, 96: 946-954.
    135. Giltrap D, Saggar S, Li CS, Wilde H. Using the NZ-DNDC model to estimate agricultural N2O emissions in the Manawatu-Wanganui region[J]. Plant Soil. 2008, 309: 191-209.
    136. Gou J, Zheng X H, Wang M X, Li C S. Modeling N2O emission from agricultural fields in southeast China[J]. Advances in Atmospheric Sciences, 1999, 16(4): 581-592.
    137. Grant B B, Smith W N, Desjardins R, et al. Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada[J]. Climatic Change, 2004, 65: 315-332.
    138. Grosso S J, Halvorson A D. Testing DAYCENT model simulations of corn yields and nitrous oxide emissions in irrigated tillage systems in Colorado[J]. Journal of Environmental Quality , 2008, 37: 1383-1389.
    139. Grosso S J, Ojima D S, Parton W J, et al. Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils[J]. Global and Planetary Change, 2009, 67: 44-50.
    140. Grosso S J, Ojima D S, Parton W J., et al. Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model[J]. Environmental Pollution, 2002, 116, S75-S83.
    141. Grosso S J, Parton W J, Mosier A R, et al. Simulated effects of land use, soil texture, and precipitation on N gas emissions using DAYCENT. In: Follett R F, Hatfield J L (Eds.), Nitrogen in the Environment: Sources, Problems, and Management[M]. Elsevier Science Publishers, The Netherlands, 2001b. 413-431.
    142. Grosso S J., Mosier A R., Parton W J, Ojima D S, DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA[J]. Soil Tillage and Research 2005. 83, 9-24.
    143. Grosso S J., Parton W J, Mosier A R, et al. Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model. In: Schaffer M, Ma L, Hansen L S, (Eds.), ModelingCarbon and Nitrogen Dynamics for Soil Management[M]. CRC Press, Boca Raton, Florida, 2001a. 303-332.
    144. Hansen S, Jensen H E, Nielsen N E, Svendsen H. DAISY——soil plant atmosphere system model. NPo-forskning fra Miljostyrelsenm, Miljoministeriet, Copenhagen, 1990, A10.
    145. Hansen S, Jensen HE, Nielsen NE, et al. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY[J]. Fertilizer Research, 1991, 27 : 245-259
    146. Hastings A F, Wattenbach M, Eugster W, Li C S, Buchmann N, Smith P. Uncertainty propagation in soil greenhouse gas emission models: An experiment using the DNDC model and at the Oensingen cropland site[J]. Agriculture, Ecosystems & Environment, 2010, 136: 97-110
    147. Hsieh C, Leahy P, Kiely C, Li C S. The effect of future climate perturbations on N2O emissions from a fertilized humid grassland, Nutrient Cycling in Agroecosystems[J]. 2005, 73:15–23.
    148. Iqbal T, Tian G M, Liang X Q et al. Measurement of ammonia emission following surface application of urea fertilizer from irrigated paddy rice fields[J]. Agricultural sciences in China. 2005, 4(4): 288-293.
    149. Jenkinson D S. The turnover of organic carbon and nitrogen in soil[J]. Philosophical Transactions: Biological Sciences, 1990, 329: 361-368.
    150. Jensen LS, Mueller T, Nielsen NE, et al., Simulating trends in soil organic carbon in long-term experiments using the soil-plant-atmosphere model DAISY[J]. Geoderma, 1997, 81: 5-28.
    151. Ju X T, Lu X, Gao Z L, et al. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions[J]. Environmental Pollution. 2011, 159: 1007-1016.
    152. Kiese R, Li CS, Hilbert DW, et al. Regional application of PnET-N-DNDC for estimating the N2O source strength of tropical rainforests in the Wet Tropics of Australia[J]. Global Change Biology. 2005, 11: 128-144.
    153. Lamers M, Ingwersen J, Streck T. Modelling nitrous oxide emission from water-logged soils of a spruce forest ecosystem using the biogeochemical model Wetland-DNDC[J]. Biogeochemistry. 2007, 86: 287-299.
    154. Laura S M, Antonio V, Jan D, et al. The influence of soluble carbon and fertilizer nitrogen on nitric oxide and nitrous oxide emissions from two contrasting agricultural soils[J]. Soil Biology and Biochemistry, 2007, 1-10.
    155. Lee J, Hopmans J W, Kessel C, et al. Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean climate[J]. Agriculture, Ecosystems and Environment. 2009, 129(4): 378-390.
    156. Leip A, Marchi G, Koeble R, et al., Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe[J]. Biogeosciences, 2008, 5: 73-94.
    157. Lewis D R, McGechan M B, McTaggart IP. Simulating field-scale nitrogen management scenarios involving fertilizer and slurry applications[J]. Agricultural Systems. 2003, 76: 159-180.
    158. Li C S, Aber J, Stage F et al. A process-oriented model of N2O and NO emissions from forest soils: I. Model development[J]. Journal of Geophysical Research, 2000, 105: 4369-4384.
    159. Li C S, Farahbakhshazad N, Jaynes DB; et al. Modeling nitrate leaching with a biogeochemicalmodel modified based on observations in arrow-crop field in Iowa[J]. Ecological Modelling. 2006, 196: 116-130.
    160. Li C S, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall event: I. Model structure and sensitivity[J]. Journal of Geophysical Research, 1992a, 97: 9759-9776.
    161. Li C S, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall events: II. Model applications[J]. Journal of Geophysical Research, 1992b, 97: 9777-9783.
    162. Li C S, Frolking S, Harriss R C. Modeling carbon biogeochemistry in agricultural soils[J]. Global Biogeochemical Cycles, 1994, 8: 237-254.
    163. Li C S, Frolking S, Xiao X. Modeling impacts of farming management alternatives on CO2, CH4 and N2O emissions: A case study for water management of rice agriculture of China[J]. Global Biogeochemical Cycles, 2005, 19: 1-10.
    164. Li C S, Mosier A, Wassmann R, et al. Modeling greenhouse gas emissions from rice-based production systems: Sensitivity and upscaling[J]. Global Biogeochemical Cycle, 2004, 18: 1-19.
    165. Li C S, Qiu J J, Frolking S, et al., Reduced methane emissions from large-scale changes in water management of China’s rice paddies during 1980–2000[J]. Geophysical research letters, 2002, 29(20):33.1-33.4.
    166. Li H, Liang X L, Chen Y X, et al. Ammonia volatilization from urea in rice fields with zero-drainage water management [J]. Agricultural Water Management. 2008, 95: 887-894.
    167. Li H, Qiu J J, Wang L G, et al. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat-maize rotation system in China[J]. Agriculture, Ecosystems & Environment, 2010, 135: 24-33.
    168. Li H, Qiu J J, Wang L G, Yang L. Advance in terrestrial biogeochemical model——DNDC model[J]. Acta Ecologica Sinica. 2011, 31: 91-96.
    169. Li X X, Hua C S, Delgado J A, et al. Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain[J]. Agricultural Water Management, 2007, 89(1): 137-147.
    170. Li Y, Chen D, Richard Eckard, et al. Simulation of N2O emissions from rain-fed wheat and the impact of climate variation in southeastern Australia[J]. Plant Soil, 2008, 309: 239-251.
    171. Li Y, Chen D, Zhang Y, et al. Comparison of three modeing approaches for simulating denitrification and nitrous oxide emissions from loam textured arable soils[J]. Global Biogeochem Cycles, 2005, 19(3): 1-15.
    172. Li Y, White R, Chen D, et al. A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain[J]. Ecological Modelling, 2007, 203: 395-423.
    173. Liu C Y, Wang K, Meng S X, et al. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China[J]. Agriculture, Ecosystems & Environment, 2011, 140: 226-233.
    174. Liu G D, Wu W L, Zhang J. Regional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in groundwater in northern China[J]. Agriculture, Ecosystem and Environment, 2005, 107: 211-220.
    175. Liu J, Liu M, Zhuang Z, Deng X. Study on spatial patterns of land use change in China during1995-2000[J]. Science in China. 2003, 46: 373-384.
    176. Liu S W, Qin Y M, Zou J W, Liu Q H. Effects of water regime during rice-growing season on annual direct N2O emission in a paddy rice-winter wheat rotation system in southeast China[J]. Science of the Total Environment. 2010, 408: 906-913.
    177. Liu X J, Mosier A R, Halvorson A D, et al. Dinitrogen and N2O emissions in arable soils: Effect of tillage, N source and soil moisture[J]. Soil Biology and Biochemistry. 2007, 39: 2362-2370.
    178. Liu Y H, Yu Z R, Chen J, et al. Changes of soil organic carbon in an intensively cultivated agricultural region: A denitrification-decomposition(DNDC) modeling approach[J]. Science of the Total Environment. 2006, 372: 203-214.
    179. Lobell D B. The cost of uncertainty for nitrogen fertilizer management: A sensitivity analysis[J]. Field Crop Research. 2007, 100: 210-217.
    180. Lu Y Y, Huang Y, Zou J W, and Zheng X H. An inventory of N2O emissions from agriculture in China using precipitation rectified emission factor and background emission [J]. Chemosphere. 2006, 65: 1915-1924.
    181. Mack U D, Feger K H, Gong Y S, et al. Soil water balance and nitrate leaching in winter wheat-summer maize double-cropping systems with different irrigation and N fertilization in the North China Plain[J]. Journal of plant nutrition and soil science, 2005, 168(4): 28-40
    182. Mahmood T, Tahir G R, Malik K A. Denitrification losses from an irrigated sand-clay loam under a wheat-maize cropping system receiving different fertilizer treatments[J]. Biology and Fertility of Soils, 1998, 26: 35-42.
    183. Meisinger J J, Delgado J A, Alva A. Nitrate leaching management. In Encyclopedia of Soil Science Second Edition[M]. 2006, 1: 1122-1124.
    184. Meisinger J J, Delgado J A. Principles for managing nitrogen leaching[J]. Journal of Soil and Water Conservation, 2002, 57 (6), 485-498.
    185. Meng L, Ding W X, Cai Z C. Long-term application of organic manure and nitrogen fertilizer on N2O emission, soil quality and crop production in a sandy loam soil [J]. Soil Biology and Biochemistry. 2005, 37: 2037-2045.
    186. Miehle P, Battagelia M, Sands P J, et al. A comparison of four process-based models and a statistical regression model to predict growth of Eucalyptus globulus plantations[J]. Ecological Modelling, 2009, 220: 734-746
    187. Mitchell R A C, Mitchell, V J, Driscoll S P, et al., Effects of increased CO2 concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application[J]. Plant Cell and Environment, 1993, 16: 521-529.
    188. M?rkved P T, D?rsch P, Bakken LR. The N2O product ratio of nitrification and its dependence on long-term changes in soil pH[J]. Soil Biology and Biochemistry. 2007, 39: 2048-2057.
    189. Mosier A R, Chapman S L, Freney J R. Determination of dinitrogen emission and retention in floodwater and porewater of a lowland rice field fertilized with 15N-urea[J]. Fertilizer Research, 1989. 19: 127-136.
    190. Mosier A R, Kroeze C, Nevison C, et al. Closing the global N2O budget: Nitrous oxide emissions through the agricultural nitrogen cycle [J]. Nutrient Cycling in Agro-ecosystems, 1998, 52: 225-248.
    191. Mosier A R, Mohanty S K, Bhadrachalam A, Chakravorti S P. Evolution of dinitrogen and nitrousoxide from the soil to the atmosphere through rice plants[J]. Biology and fertility of soils, 1990, 9: 61-67
    192. Mosier A R, Nitrous oxide emissions from agricultural soils[J]. Fertilizer Research. 1994, 37: 191-200.
    193. Neufeldt M, Schafer M, Angenendt E, et al., Disaggregated greenhouse gas emission inventories from agriculture via a coupled economic ecosystem model[J]. Agriculture, Ecosystems & Environment, 2006, 112: 233-240.
    194. O’Hara G W, Daniel R M. Rhizobial denitrification: a review[J]. Soil Biology & Biochemistry. 1985, 17: 1-9.
    195. OECD, Developing a set of OECD agri-environmental indicators[M]. Paris, France. 1995. pp 24.
    196. Pancras H and Khanif Y M. Effect of air-flow rates on laboratory measurement of NH3 volatilization[J]. Pertanika. 1988, 11(2): 323-325
    197. Parris K, Agricultural nutrient balances as agri-environmental indicators: an OECD perspective[J]. Environmental pollution, 1998, 102(S1): 219-225.
    198. Parton W J, Mosier A R, Ojima D S, et al. Gereralized model for N2 and N2O production from nitrification and denitrification[J]. Global Biogeochemical Cycles, 1996, 10: 401-412
    199. Parton W J, Ojima D S, Cole C V, Schimel D S, A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. In: Bryant R B, Arnoldm R W (Eds.), Quantitative Modeling of Soil Forming Processes[M]. Soil Science Society of America in Minneapolis, Minnesota, USA, 1994. p147-167.
    200. Parton W J, Stewart J W B, Cole C V, Dynamics of C, N, S, and P in grassland soils: a model[J]. Biogeochemistry, 1987, 5: 109-131.
    201. Parton W J., Hartman M D, Ojima D S, Schimel D S. DAYCENT: Its land surface submodel: description and testing[J]. Global and Planetary Change. 1998, 19: 35-48.
    202. Parton W J., Holland E A., Del Grosso S J, et al. Generalized model for NOx and N2O emissions from soils[J]. Journal of Geophysical Research, 2001, 106(D15): 17403-17420.
    203. Pathak H, Li C S, Wassmann R, Ladha J K. Simulation of nitrogen balance in rice-wheat systems of the Indo-Gangetic Plains[J]. Soil Science Society of America Journal, 2006.70: 1612-1622
    204. Pathak H, Li C, Wassmann R, Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model[J]. Biogeosciences, 2005, 1: 1-11.
    205. Prado A, Merino P, Estavillo J M, et al. N2O and NO emissions from different N sources and under a range of soil water contents[J]. Nutrient Cycling in Agroecosystems, 2006, 74: 229-243.
    206. Qiu J J, Wang L G, Tang H J, et al. Studies on the situation of soil organic carbon storage in croplands in Northeast of China[J]. Agricultural Sciences in China, 2005, 4(8): 594-600.
    207. Radke J K., Shaffer M J., Krol K S. Saponara l J. Application of the nitrogen-tillage- residue- management (NTRM) model for corn grown in low-input and conventional agricultural systems[J]. Ecological Modelling, 1991, 55: 241-255
    208. Ramulu T S, Sahoo S K, Mohapatra R K, et al. Emission of N2O on pulse-rice crop rotation in upland[J]. Atmospheric Environment. 2009, 43: 2087-2090.
    209. Rochette P, Angers D A, Chantigny M H, et al. Ammonia volatilization following surface application of urea to tilled and no-till soils: A laboratory comparison[J]. Soil Tillage Research, 2009, 103 (2): 310-315.
    210. Saggar S, Andrew R M, Tate K R, et al., Modelling nitrous oxide emissions from dairy-grazed pastures[J]. Nutrient Cycling in Agroecosystems, 2004, 68: 243–255.
    211. Shaffer M J, Larson W E. NTRM, A soil-crop simulation model for nitrogen, tillage, and crop-residue management[J]. USDA conservation research report. 1987, 34(1): 103.
    212. Shaffer M J. Nitrogen modeling for soil management[J]. Journal of Soil and Water Conservation, 2002, 417-424
    213. Shenker M, Ben-Gal A, Shani U. Sweet corn response to combined nitrogen and salinity environmental stresses[J]. Plant and soil. 2003, 256: 139-147.
    214. Smart D R, Bloom AJ. Wheat leaves emit nitrous oxide during nitrate assimilation[J]. PNAS. 2001, 98(14): 7875-7878.
    215. Smith P, Smith J U, Powlson D S, et al. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments[J]. Geoderma, 1997, 81: 153-225
    216. Smith W N, Desjardins R, Grant B B, et al. Testing the DNDC model using N2O emissions at two experimental sites in Canada[J]. Canadian Journal of Soil Science. 2002, 82: 365-374.
    217. Smith W N, Grant B B, Desjardins R L, et al. A tool to link agricultural activity data with the DNDC model to estimate GHG emission factors in Canada[J]. Agriculture, Ecosystems & Environment, 2010, 136: 301-309.
    218. Smith W N, Grant B B, Desjardins R L, et al. Evaluation of two process-based models to estimate soil N2O emissions in Eastern Canada. Canadian Journal of Soil Science, 2008, 88: 251-260.
    219. Sogbedji J M, van Es H M, Yang C L, et al. Nitrate leaching and nitrogen budget as affected by maize nitrogen rate and soil type[J]. Journal of Environmental Quality. 1999, 29(6): 1813-1820.
    220. Stange F, Butterbach-Bah1 K, Papen H, A process-oriented model of N2O and NO emissions from forest soils 2. Sensitivity analysis and validation[J]. Journal of Geophysical Research. 2000, 105(D4): 4385-4398.
    221. Sun B, Shen R P, Bouwman A F. Surface N balances in agricultural crop production systems in China for the period 1980-2015[J]. Pedosphere. 2008. 18(3): 304-315.
    222. Svendsen H, Hansen S, Jensen H E, Simulation of crop production, water and nitrogen balances in two German agro-ecosystems using the DAISY model[J]. Ecological Modelling, 1995, 81, 197-212.
    223. Tamon K, Kazuhiko, Li C S, et al., Revising a process-based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes[J]. Global Change Biological, 2008, 14: 382-402.
    224. Tang H J, Qiu J J,Ranst E V,Li C S, Estimations of soil organic carbon storage in cropland of China based on DNDC model[J]. Geoderma, 2006, 134: 200-206.
    225. Thompson R B, Mart?nez-Gaitan C, Gallardo M, et al. Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey[J]. Agricultural Water Management, 2007, 89: 261-274.
    226. Tian G M, Gao J L, Cai Z C et al . Ammonia volatilization from winter wheat field top-dressed with urea[J] . Pedosphere, 1998, 4: 331-3361
    227. Tian Y H, Yin B., Yang L Z, Yin S X and Zhu Z L. Nitrogen runoff and leaching losses during rice-wheat rotations in Taihu Lake region, China[J]. Pedosphere. 2007.17(4): 445–456
    228. Tilman D, Cassman K G, Matson PA, et al., Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418:671-677.
    229. Tong C L, Hall C, Wang HQ. Land use change in rice, wheat and maize production in China (1961–1998) [J]. Agriculture, Ecosystems and Environment, 2003, 95: 523-536.
    230. Tonitto C, David M B, Li C S, Drinkwater L E. Application of the DNDC model to tile-drained Illinois agroecosystems: model calibration, validation, and uncertainty analysis[J]. Nutrient Cycling in Agroecosystems, 2007, 78(1): 65-81
    231. van Alphen B J. A case study on precision nitrogen management in Dutch arable farming[J]. Nutrient cycling in Agroecosystems. 2002, 62: 151-161.
    232. van Es H M, Schindelbeck R R, Jokela W E. Effect of manure application timing, crop, and soil type on nitrate leaching[J]. Journal of Environmental Quality, 2004, 35: 670-679.
    233. Varinderpal-Singh, Yadvinder-Singh, Bijay-Sing, et al. Performance of site-specific nitrogen management for irrigated transplanted rice in northwestern India[J]. Archives of Agronomy and Soil Science. 2007, 53(5): 567-579.
    234. Verhagen J and Bouma J. Defining threshold values for residual soil-N levels[J]. Geoderma, 1997, 85: 199-211.
    235. Wang L G, Qiu J J, Tang H J, et al., Modelling soil organic carbon dynamics in the major agricultural regions of China[J]. Geoderma, 2008, 147: 47-55.
    236. Wang Y P, Meyer C P, Galbally I E. Comparison of field measurements of carbon dioxide and nitrous oxide fluxes with model simulations for a legume pasture in southeast Australia[J]. Journal of Geophysical Research, 1997, 102 (D23): 28024–28913.
    237. Wang Y S, Wang Y H. Quick measurement of CH4, CO2 and N2O emissions from a short plant ecosystem [J]. Advances in Atmospheric Sciences, 2003, 20: 842-844.
    238. Wei H, Nearing M A, Stone J J. A comprehensive sensitivity analysis framework for model evaluation and improvement using a case study of the rangeland hydrology and erosion model[J]. Transactions of the ASAE, 2007, 50(3): 945-953
    239. Weier K L, Doran J W, Power J F, Walter D T. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate [J]. Soil Science Society of America Journal. 1993, 57: 66-72.
    240. Wu J X, Cheng X, Xiao H S, Yang L Z, et al. Agricultural landscape change in China’s Yangtze Delta, 1942-2002: A case study[J]. Agriculture, Ecosystems and Environment. 2009, 129: 523-533.
    241. Xiao X M, Boles S, Frolking S, et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images[J]. Remote Sensing of Environment, 2006, 100,1: 95-113.
    242. Xing G X, Zhao X, Xiong Z Q, et al. Nitous oxide emission from paddy fields in China[J]. Acta Ecologica Sinica. 2009, 29: 45-50.
    243. Xing G X, Zhu Z L. Preliminary studies on N2O emission fluxes from upland soils and paddy soils in China [J]. Nutrient Cycling in Agroecosystems. 1997, 49: 17-22.
    244. Xu R, Wang M, Wang Y. Using a modified DNDC model to estimate N2O fluxes from semi-arid grassland in China[J]. Soil Biology and Biochemistry. 2003, 35: 615-620.
    245. Xu W B , Hong Y T, Chen X H, et al. DNDC model estimates of N2O emission from regional agricultural soils——a Guizhou Province case study[J]. Environmental Science, 2000, 21(2): 11-15.
    246. Yao Z S, Zhou Z X, Zheng X H, et al. Effects of organic matter incorporation on nitrous oxide emissions from rice-wheat rotation ecosystems in China [J]. Plant Soil, 2009, 327:315-330.
    247. Zebarth B J, Paul J W, Van Kleeck R. The effect of nitrogen management in agricultural production on water and air quality: evaluation on a regional scale[J]. Agriculture, Ecosystems and Environment. 1999, 72: 35-52.
    248. Zhang J F, Han X G. N2O emission from the semi-arid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China[J]. Atmospheric Environment, 2008, 42: 291-302.
    249. Zhang J S, Zhang F P, Yang J H, et al. Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China[J]. Agriculture, Ecosystems and Environment. 2011, 140: 164-173.
    250. Zhang L, Yu D, Shi X, et al., Quantifying methane emissions from rice fields in the Taihu Lake region, China by coupling a detailed soil database with biogeochemical model[J]. Biogeosciences, 2009, 6: 739-749.
    251. Zhang W L, Tian Z X, Zhang N, Li X Q. Nitrate pollution of groundwater in northern China[J]. Agriculture, Ecosystems and Environment, 1996, 59: 223-231
    252. Zhang Y M, Chen D L, Zhang J B, Edis R, et al., Ammonia volatilization and denitrification losses from an irrigated maize-wheat rotation field in the North China Plain[J]. Pedosphere, 2004, 14(4):533-540.
    253. Zhang Y, Li C S, Trettin C, et al., An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems[J]. Global Biogeochemical Cycles. 2002a, 16(4):1-17.
    254. Zhang Y, Li C S, Zhou X J, Moore B III, A simulation model linking crop growth and soil biogeochemistry for sustainable agriculture[J]. Ecological Modelling. 2002b, 151: 75-108.
    255. Zheng J G, Rice-wheat cropping system in China. in Soil and crop management practices for enhanced productivity of the rice-wheat cropping system in the Sichuan province of China (Hobbs, P. R. and Gupta, R. K., eds.). Rice-Wheat Consortium Paper Series 9. New Delhi, India: Rice-Wheat Consortium for the Indo-Gangetic Plains[M]. 2000. P1-10
    256. Zhu D W, Huang Y, Jin Z Q, et al. Nitrogen management evaluated by model combined with GIS-A case study of Jiangsu croplands, China, in 2000[J]. Agricultural Sciences in China, 2008, 7(8): 999-1009.
    257. Zhu J H, Li X L, Christie P, Li J L. Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems[J]. Agriculture, Ecosystems and Environment. 2005, 111: 70-80.
    258. Zhu Z L, Chen D L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems, 2002, 63: 117-127.
    259. Zou J W, Huang Y, Lu Y Y, et al. Direct emission factor for N2O from rice-winter wheat rotation systems in southeast China[J]. Atmospheric Environment. 2005, 39: 4755-4765.
    260. Zou J W, Huang Y, Zheng X H, Wang Y S. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime[J]. Atmospheric Environment. 2007, 41: 8030-8042.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700