用户名: 密码: 验证码:
典型红壤农田区大气氮沉降通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气氮沉降作为营养源和酸源,沉降数量的急速增加,将严重影响生态系统的生产力和稳定性,对农田生态系统的影响日益显现。本文以典型红壤农田区大气氮化物为研究对象,通过5年连续定位监测,借助大叶阻力相似模型和自动气象观测场,计算不同形态含氮化合物的干沉降速率,进而估算大气氮沉降通量,探讨大气氮沉降的特征。主要研究结果如下:
     1.大气氮化物干沉降速率(Vd)呈现明显的日变化和月季变化,日峰值出现在11:00-13:00,昼>夜;Vd(NH3)、Vd(NO2)和Vd(NH4+/NO3-)以冬春季及花生季/早稻季较高而Vd(HNO3)则表现为春夏季高于秋冬季和早稻季>中稻季>花生季>晚稻季。Vd(NH3)、Vd(NO2)、Vd(HNO3)和Vd(NH4+/NO3-)年均值分别为0.25±0.01、0.12±0.01、0.78±0.04和0.15±0.01cm/s,年内波动较大,尤以NH3和NO2最明显;年际上,Vd(NH3)和Vd(HNO3)呈逐年递减,Vd(NO2)相对较稳定,Vd(NH4+/NO3-)则呈先降后增趋势。
     2.NH3、NO2、粒子NH4+-N、粒子NO3--N的浓度分别为164.64±93.16、67.67±44.66、1.9±1.26和3.21±2.17μgN/m3,降水NH4+-N、NO3--N、DON、TNI的浓度分别为1.05-1.49、0.54-0.72、0.56-3.71、2.63-5.72 mgN/L,而HNO3(g)的浓度较低,几乎为0。NH3的浓度以冬春季较高,降水DON浓度以夏秋季较高,而NO2、粒子态氮及降水NH4+-N、NO3--N和TN均表现为秋冬季高于春夏季。大气氮化物浓度以非生长季较高。作物生长季内,NH3以花生/早稻季较高,NO2、粒子态氮及降水NH4+-N浓度均以中/晚稻季较高,而降水NO3--N、DON和TN浓度则表现为早/晚稻季>花生/中稻季。
     3.大气氮湿沉降通量为59.18±29.93kgN/(ha-yr),其中DIN和DON沉降量基本相当。大气氮干沉降通量为73.09±12.87 kgN/(ha-yr),其与湿沉降(仅DIN)的比值为2.4。干沉降以气态氮为主,其占干沉降通量的98.09%。季节上,大气氮湿沉降表现为春夏季>秋冬季而干沉降表现为冬春季>夏秋季。作物生长季内,大气氮干、湿沉降通量分别为34.38±9.87和36.57±25.13 kgN/(ha-yr),均以花生季最高、晚稻季最低。
     4.研究区大气氮总沉降通量为94.50-185.99 kgN/(ha-yr),其中DIN总沉降通量为104.20±15.29 kgN/(ha-yr),沉降途径上以干沉降为主,沉降组分上以还原态氮沉降尤其是NH3为主。大气氮总沉降通量有冬春季>夏秋季的特征,作物生长季内总沉降通量为70.95±30.88 kgN/ha,略高于非生长季。
An important source of plant nutrient and soil acidification, increased N deposition from the atmosphere will greatly impact production and stability of global terrestrial and aquatic ecosystems. With the spread of air pollution and acid rain from city to suburb and country, special attention is paid to the atmospheric environment in vast rural areas and the effect of atmospheric nitrogen deposition on agricultural ecosystems is increasingly obvious. In this study, the characteristics of atmospheric nitrogen were discussed by rainfall, nitrogen concentration observation and nitrogen deposition velocity of atmospheric nitrogen compounds (Vd) with a big-leaf resistance analogy model and the Auto-Meteorological Experiment Station in a typical red soil agro-ecosystem in Southeastern China for five years (2005-2009). The detailed results were as follows:
     1. During 2005-2009, the Vd was much higher in the daytime than in the nighttime and had a peak value around noon (11:00-13:00). All of Vd(NH3), Vd(NO2) and Vd(NH4+/NO3-) were higher in winter and spring while Vd(HNO3) in spring and summer. There were also obvious characteristics which Vd(NH3), Vd(NO2) and Vd(NH4+/NO3-) higher during peanut and early-rice growing stage while Vd(HNO3) during early-rice and middle-rice growing stage. The Vd was fluctuations, especially for Vd(NH3) and Vd(NO2) inner one year. The annual Vd were O.25±0.01,0.12±0.01,0.78±0.04 and 0.15±0.01 cm/s for NH3, NO2, gaseous HNO3 and aerosol particles (aerosol NH4+or NO3-), respectively. What's more, both Vd(NH3) and Vd(HNO3) were on the decrease each year. Vd(NO2) remained steady while Vd(NH4+/NO3-) declined in 2005-2007 and then increased in 2007-2009.
     2. The atmospheric nitrogen concentrations of dry deposition (Ca) were respecially 164.64±93.16, 67.67±44.66,1.9±1.26 and 3.21±2.17μgN/m3 for Ca(NH3), Ca(NO2), Ca(NH4+) and Ca(NO3-) while the atmospheric nitrogen concentrations of wet deposition (Cw) were in the range of 0.05-1.49,0.54-0.72, 0.56-3.71,2.63-5.72 mgN/L for annual means of CW(NH4+-N), Cw(NO3--N), Cw(DON) and CW(TN) in rainwater, respectively. As for gaseous HNO3, its monthly and annual means all went to zero. Seasonally, there had higher vales for Ca(NH3) in spring and winter, for CW(DON) in summer and autumn, and for Ca(NO2), Ca(NH4+), Ca(NO3-), Cw(NH4+-N), Cw(NO3--N) and Cw(TN) in autumn and winter. Both Ca and Cw was higher in non-crop growing stage than that in crop growing stage. During the crop growing stage, there were higher for Ca(NH3) in peanut stage and early-rice stage, and for Ca(NO2), Ca(NH4+), Ca(NO3-) and Cw(NH4+-N) higher in middle-rice stage and late-rice stage, and for Cw(NO3--N), CW(DON) and Cw(TN) higher in early-rice stage and late-rice stage in 2005-2009.
     3. The nitrogen fluxes of dry deposition (Fd) and wet deposition (Fw) were 73.09±12.87 and 59.18±29.93 kgN/(ha-yr) in 2005-2009, separately. And the ratio of Fw(DIN) and Fw(DIN) was 2.4. In dry deposition, Fd(N, NH3+NO2) was the predominantly Fd, which accounted for 98.09% of Fd. And in wet deposition, Fw(DON) and Fw(DIN) had a similar size. Seasonally, there were higher for Fd in spring and winter, and for Fw in spring and autumn. During the crop growing stage, the Fd and Fw were respectively 34.38±9.87 and 36.57±25.13 kgN/(ha-yr), which highest in peanut stage and lowest in late-rice stage.
     4. Over the agricultural ecosystem, annual bulk deposition flux of atmospheric nitrogen (Ft) ranged from 94.50-185.99 kgN/(ha-yr), including Ft(DIN) which was 104.20±15.29 kgN/(ha-yr). Ft(DIN) was inputed maily by dry deposition, and Ft(NHx) was the major protein, especially for Ft(NH3). What's more, the Ft had higher value in spring and winter. And the Ft was 70.95±30.88 kgN/ha during the crop growing stage, litter higher than that during non crop growing stage. Inorganic nitrogen was the maily deposition method, which was in the range of 84.24-119.27 kgN/(ha-yr) and averaged 104.20 kgN/(ha-yr).
引文
[1]Aas W., Shao M., Jin L., et al. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China,2001-2003. Atmospheric Enivronment, 2007,41:1706-1716
    [2]Aber J.D., Mcdowell W., Nadelhoffer K.J., et al. Nitrogen saturation in Northern forest ecosystems, hypo theses revisited. Bioscience,1998,48:921-934
    [3]Anderson I.C., Levine J.S. Simultaneous field measurements of biogenic emissions of nitric oxide and nitrous oxide. Journal of Geophysical Research,1987,92:965-976
    [4]Arne S., Kjetil T. Atmospheric deposition of nitrogen, sulfur and chlorine in Bjerkreim and Auli basin planning of Southern Noway. Ambio,1997,26(5):254-260,282
    [5]Asman W.A.H. Modelling the atmospheric transport and deposition of ammonia and ammonium:An overview with special reference to Denmmark. Atmospheric Environment,2001,35:1969-1983
    [6]Asmna W.A.H. Van Jaarsveld J.A. A variable resolution transport model applied for NHx in Europe. Atmospheric Environment,1992,26(A),445-464
    [7]Asner G.P., Seastedt T.R., Townsend A.R. The decoupling of terrestrial carbon and nitrogen cycles. BioScience,1997,47:226-234
    [8]Asner G.P., Townsend A.R., Riley W.J., et al. Modeling tropical and semi-arid ecosystem responses to increased N deposition. Biogeochemistry,2001,54:1-39
    [9]Bouwman A.F., Boumans L.J.M., Batjes N.H. Emission of N2O and NO from fertilized fields:Summary of available measurement data. Global Biogeochemical Cycles,2002,16(4):1058
    [10]Bouwman A.F., Vander Hoek K.W. Scenarios of animal waste production and fertilizer use and associated ammonia emission for the developing countries. Atmospheric Environment,1997,31(24):4095-4102
    [11]Brimblecombe P., Stedman D.H. Historical evidence for a framatic increase in the nitrate component of acid rain. Nature,1982,198:460-462
    [12]Bytnerowicz A., Fenn M.E. Nitrogen deposition in California forests:a review. Environmental Pollution,1996,92:127-146
    [13]Cai Z.C., Sawamoto T., Li C.S., et al. Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems. Global Biogeochemical Cycles,2003,17(4):1107
    [14]Cape J.N., Anderson M., Rowland A.P., et al. Organic nitrogen in precipitation across the United Kingdom. Water, Air and Soil Pollution,2004,4:25-35
    [15]Chester R., Bradshaw G.F., Ottley C.J., et al. The atmospheric distributions of trace metals, trace organics and nitrogen species over the North Sea. In:Charnock H., Dyerm K.R., Huthnance J.M., et al. Understanding the North Sea System. London: Chapman and Hall,1994:165-178
    [16]Clarke J., Edgerton E., Martin B. Dry deposition calculations for the clean air status and trends network. Atmospheric Environment,1997,31:3667-3678
    [17]Comell S., Jickells T., Thomton C.A. Urea in rainwater and atmospheric aerosols. Atmospheric Environment,1998,32:1903-1910
    [18]Comell S., Mace K., Coeppicus S., et al. Organic nitrogen in Hawaiian rain and aerosols. Journal of Geophysical Research,2001,106:7973-7983
    [19]Comell S., Rendell A., Jickells T. Atmospheric inputs of dissolved organic nitrogen to the oceans. Nature,1995,376:243-246
    [20]Cornell S.E., Jickells T.D., Cape J.N., et al. Organic nitrogen deposition on land and coastal environments:A review of methods and data. Atmospheric Environment, 2003,37(16):2173-2191
    [21]Comeua S.E., Jickellsa T.D., Capeb J.N., et al. Organic nitrogen on land and coastal environments:A review of methods and data. Atmospheric Environment,2003, 37:2173-2191
    [22]Currie W.S., Nadelhoffer K. Dynamic redistribution of isotopically labeled cohorts of nitrogen inputs in two temperate forests. Ecosystems,1999,2:4-18
    [23]Davison A.W., Cape J.N. Atmospheric nitrogen compounds-issue related to agricultural systems. Environment International,2003,29(2-3):181-187
    [24]Davidson E.A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience,2009,2:659-662
    [25]Dentner F.J., Crutzen P.J. A global 3D model of the ammonia cycle. Journal of Atmospheric Chemistry,1994,19:331-369
    [26]Douglas A.B. The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado, southern Wyoming, USA:a critical review. Environmental Pollution, 2004,127:257-269
    [27]Dukes J.S., Mooney H.A. Does global change increase the success of biological invaders? Trends in Ecology & Evolution,1999,14(4):135-139
    [28]EANET. Acid Deposition Monitoring Network in East Date report 2004-2006. Network Center for EANET 2004-2006. http://www.eanet.cc/product.html
    [29]EANET. Acid Deposition Monitoring Network in East Date report 2006. Network Center for EANET 2007. http://www.eanet.cc/product.html
    [30]Emment B.A., Boxman D., Bredemeier M., et al. Predicting the effects of atmospheric nitrogen deposition in conifer stands:evidence from NTTREX ecosystem-scale experiments. Ecosystems,1998,1:352-360
    [31]Erismar J.W. Acid deposition to nature areas in the Netherlands:Part Ⅰ. methods and result. Water, Air and Soil Pollution,1993,71:51-80
    [32]Erisman J.W., Hensen A., Mosquera J., et al. Review of deposition monitoring methods. Tellus B,1994,46(2):79-93
    [33]Fan J.L., Hu Z.Y., Wang T.J., et al. Atmospheric inorganic nitrogen deposition to a typical red soil forestland in southeastern China. Environmental Monitoring and Assessment,2009,159(1-4):241-253
    [34]Fan Z.L., Liu Q., Zhang S.M., et al. A nitrogen budget of the Changjiang River catchment. Ambio,2003,32:65-69
    [35]Fenn M.E., Poth M.A., Aber J., et al. Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies. Ecological Applications,1998,8:706-733
    [36]Fernandez I.J., Rustad L.E. Soil response to S and N treatments in a northern New England low elevation coniferous forest. Water, Air and Soil Pollution,1990,52:23-39
    [37]Fischer R., Mues V., Ulrich E., et al. Mornitoring of atmospheric deposition in European forests and an overview on its implication on forest condition. Applied Geochemistry,2007,22(6):1129-1139
    [38]Galloway J.N. Acid deposition perspectives in time and space. Water, Air and Soil Pollution,1995,85:15-24
    [39]Galloway J.N. The global nitrogen cycle:Past, present and future. Science in China (Series C),2005,48(Special Issue):669-677
    [40]Galloway J.N., Aber J.D., Erisman J.W., et al. The nitrogen cascade. Bioscience, 2003,53:341-356
    [41]Galloway J.N., Cowling E.B. Reactive nitrogen and the world:200 years of change. Ambio,2002,31(2):64-71
    [42]Galloway J.N., Dentener F.J., Capone D.G., et al., Nitrogen cycle:Past, present and future. Biogeochemistry,2004,70:153-226
    [43]Galloway J.N., Levy Ⅱ H., Kasibhatla P.S. Year 2020:consequence of population growth and development on deposition of oxidized nitrogen. Ambio,1994,23:120-123
    [44]Gao W., Wesely M.L. Modeling gaseous dry deposition over regional scales with satellite observations—Ⅰ. Model development. Atmospheric Environment,1995,29(6): 727-737
    [45]Glasius M., Carlsen M.F., Hansen T.S., et al. Measurements of nitrogen dioxide on funen using diffusion tubes. Atmos. Environ.1999,33(8):1177-1185
    [46]Gonzalez Benitez J.M., Cape N.J., Heal M.R., et al. Atmospheric nitrogen deposition in south-east Scotland:Quantification of organic nitrogen fraction in wet, dry and bulk deposition. Atmospheric Environment,2009,43:4087-4094
    [47]Goulding K.W.T., Bailey N.J., Bradbury N.J., et al. Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes. New Phytologist,1998, 139:49-58
    [48]Grennfelt D., Hultberg H. Effect of nitrogen deposition on the acidification of terrestrial and aquatic ecosystems. Water, Air and Soil Pollution,1986,30:945-963
    [49]Gruber N., Galloway J.N. An earth-system perspective of the global nitrogen cycle. Nature,2008,451:293-296
    [50]Gupta A., Kumar R., Kumari K.M., et al. Measurement of NO2, HNO3 and SO2 and related particulate matter at a rural site in Rampur, India. Atmospheric Environment,2003,37:4837-4846
    [51]Guo J.H., Liu X.J., Zhang Y., et al. Significant acidification in major Chinese croplands. Science,2010,327:1008-1010
    [52]Hanson P.J., Lindbeg S.E. Deposition of reactive nitrogen compounds:a review of leaf, canopy and non-foliar measurements. Atmospheric Environment,1991,25A:1615-1634
    [53]Hayashi K., Komada M., Miyata A. Atmospheric deposition of reactive nitrogen on turf grassland in central Japan:comparison of the contribution of wet and dry deposition. Water, Air and Soil Pollution,2007,7:119-129
    [54]Hesterberg R., Blatter A., Fahmi M., et al. Deposition of nitrogen-containing compounds to an extensively managed grassland in central Switzerland, Environmental Pollution,1996,91 (1):21-34
    [55]Hick B.B., Baldocchi D.D., Meyers T.P., et al. Apreliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water, Air and Soil Pollution,1987,36:311-330
    [56]Hicks B.B., Hosker R.P., Meyers T.P., et al. Dry deposition inferential measurement techniques-I. Design and tests of a prototype meteorological and chemic system for determining dry deposition. Atmospheric Environment,1991,25:2345-2359
    [57]Hoeyaas T.R., Vagstad N., Bechmann M., et al. Nitrogen budget in the River Auli catchment:A catchment dominated by agriculture in southeastern Norway. AMBIO, 1997,28(5):283-289
    [58]Holland E.A., Braswell B.H., Lamarque J.F., et al. Variation in predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. Journal of Geophysical Research,1997,102:849-866
    [59]Holland E.A., Dentener F.J., Braswell B.H., et al. Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry,1999,46:7-43
    [60]Hu Z.Y., Xu C.K., Zhou L.N., et al. Contribution of atmospheric nitrogen compounds to N deposition in a broadleaf forest of Southern China. Pedosphere,2007,17(3): 360-365
    [61]Huang Y.L., Wang Y.L., Zhang L.P. Long-term trend of chemical composition of wet atmospheric precipitation during 1986-2006 at Shenzhen City, China. Atmospheric Environment,2008,42:3740-3750
    [62]Johnsson H., Hoffmann M. Nitrogen leaching from agricultural land in Sweden: Standard rates and gross loads in 1985 and 1994. Ambio,1998,27(6):481-488
    [63]Kaiser J. The other global pollutant nitrogen proves tough to curb. Science,2001, 294:1268-1269
    [64]Kim J.Y., Ghim Y.S., Lee S.B., et al. Atmospheric deposition of nitrogen and sulfur in the Yellow Sea region:Significance of long-range transport in east Asia. Water, Air, Soil Pollut,2009,205(1-4):259-272
    [65]Kloen H., Vereijken P. Testing and improving ecological nutrient management with pilot farmers. In:AB-DLO(Ed.).Process reports of research network on integrated and ecological arable farming system for EU and associated countries, Concerted Action AIR3-CT920755, Wageningen, The Netherlands, Progress Report 4:1997,70-84
    [66]Kochy M., Wison D.W. Nitrogen deposition and forest expansion in the northern Great Plains. Journal of Ecology,2001,89:807-817
    [67]Krupa S.V. Effects of atmospheric ammonia (NH3) on terrestrial vegetation:a review. Environmental Pollution,2003,124(2):179-221
    [68]Larssen T., Seip H.M., Semb A., et al. Acid deposition and its effects in China:an overview. Environmental Science and Policy,1999,2:9-24
    [69]Lee W., Westerhoff P. Dissolved organic nitrogen measurement using dialysis pretreatment. Environmental Science and Technology,2005,39:879-884
    [70]Li D.J., Mo J.M., Fang Y.T., et al. Effects of simulated nitrogen deposition on growth and photosynthesis of Schina superba, Castanopsis chinensis and Cryptocarya concinna seedings. Acta Ecological Sinica,2004,24(5):876-882
    [71]Li S.X., Cun D.G., Gao Y.J., et al. Mineral nitrogen introduced into soil by precipitation on Loess dryland. Agricultural Research in the Arid Areas,1993,11(Suppl.):83-91
    [72]Li Z.K., Wang T.J., Wang Q.G., et al. The investigation of regulatory atmospheric dispersion model used in China and its comparison with some other models, International Journal of Environment and Pollution,1997,8(3-6),796-805
    [73]Littmann T. Atmospheric input of dust and nitrogen in the Nizzana and sand dune ecosystem, north-western Negev, Isreal. Journal of Arid Environments,1997,36: 433-457
    [74]Liu X.J., Ju X.T., Zhang Y., et al. Nitrogen deposition in agroecosystems in Beijing area. Agriculture, Ecosystems & Environment,2006,113:370-377
    [75]Magill A.H., Aber J.D., Steudler P.A., et al. Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems,2000,3:238-253
    [76]Marner B.B., Harrison R.M. A spatially refined monitoring based study of atmospheric nitrogen deposition. Atmospheric Environment,2004,38:5045-5056
    [77]Matson P., Lohse K.A., Hall S.J. The globalization of nitrogen deposition: Consequences for terrestrial ecosystems. Ambio,2002,31(2):117
    [78]McCulloch R.B., Stephen Few G., Murray G.C., et al. Analysis of ammonia, ammonium aerosols and acid gases in the atmosphere at a commercial hog farm in eastern North Carolina, USA. Environmental Pollution,1998,102(Suppl.):263-268
    [79]NADP. Ten years after the Clean Air Act amendments:Adirondacks in the balance. NADP Technical Committee Meeting Proceedings. Saratoga Springs, New York,2001,35:1105-1109
    [80]Nakaji T., Fukami M., Dokiya Y, et al. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptan eria japonica and Pinus densiflora seedlings. Trees Structure and Function,2001,15(8):453-461
    [81]Neff J.C., Bowman W.D., Holland E.A., et al. Fluxes of nitrous oxide and methane from nitrogen-amended soils in Colorado alpine ecosystem. Biogeochemistry, 1994,27:23-33
    [82]Neff J.C., Holland E.A., Dentener F.J., et al. The origin, composition and rates of organic nitrogen deposition:A missing piece of the nitrogen cycle? Biogeochemistry, 2002,57/58:99-136
    [83]Neff J.C., Townsend A.R., Gleixner G., et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature,2002,419:915-917
    [84]Nesengo N. Fertilized to death. Nature,2003,425:894-895
    [85]Nordin A., Strengbom J., Witzell J., et al. Nitrogen deposition and the biodiversity of boreal forests:implications for the nitrogen critical load. Ambio,2005,34:20-24.
    [86]Pacheco M., Donoso L., Sanhueza E. Soluble organic nitrogen in Venezuelan rains. Tellus,2004,56B:393-395
    [87]Park S.U., Lee Y.H., Wu Q.L., et al. Estimation of nitrogen dry deposition in South Korea. Atmospheric Environement,2002,36:4951-4964
    [88]Power S.A., Ashmore M.R., Cousins D.A. Impacts and fate of experimentally enhanced nitrogen deposition on a British lowland heath. Environmental Pollution, 1998,102:27-34
    [89]Puxbaum H., Gregori M. Seasonal and annual deposition rates of sulphur, nitrogen and chloride species to an oak forest in north-eastern Austria (Wolkersdorf,240m ASL). Atmospheric Environment,1998,32(20):3557-3568
    [90]Ramsprger B., Peinemann N., Stahr K. Deposition rates and characteristics of aeolian dust in the semi-arid and sub-humid regions of the Argentinean Pampas. Jounal of Arid Environments,1998,39:467-476
    [91]Reay D.S., Dentener F., Smith P., et al. Global nitrogen deposition and carbon sinks. Nature,2008,1:430-437
    [92]Reich P.B., Hobbie S.E., Lee T. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature,2006,440:992-925
    [93]Rendell A.R., Ottley C.J., Jickells T.D., et al. The atmospheric input of nitrogen species to the North Sea. Tellus,1993,468(1):53-63
    [94]Roberts J.M. The atmospheric chemistry of organic nitrates. Atmospheric Environment,1990,24A:243-287
    [95]Rodhe H., Rood M.J. Temporal evolution of nitrogen compounds in Swedish precipitation sicne 1995, Nature,1986,321:762-764
    [96]Russow R., BOhme F. Determination of the total deposition by the 15N isotope dilution method and problems in extrapolating results to field scale. Geoderma, 2005,127:62-70
    [97]Russow R., BOhme F., Neue H.U. A new approach to determine the total airborne N input into the soil/plant system using 15N isoptope dilution (ITNI):Results for agricultural areas in central Germany. The Scientific World,2001,1(S2):255-260
    [98]Schade GW., Crutzen P.J. Emission of aliphatic amines from animal husbandry and their reactions:Potential source of N2O and HCN. Journal of Atmospheric Chemistry,1995,22:319-346
    [99]Schimel D.S., Alevs D., Enting I., et al. Radiative forcing of climate change. In: Houghton J.T., Meira F.L.G, Callender B.A., et al. Climate Change 1995:the Science of Climate Change. IPCC WG1 Report. Cambridge University Press, Cambridge, UK,1996,65-131
    [100]Schlesinger W.H., Reckhow K.H., Bernhardt E.S. Global change:The nitrogen cycle and rivers. Water Resources Research,2006,42(3):W03S06
    [101]Scudlark J.R., Russell K.M., Galloway J.N., et al. Organic nitrogen in precipitation at the Mid-Atlantic US Coast--Methods evaluation and preliminary measurement. Atmospheric Environment,1998,32:1719-1728
    [102]Shen J.L., Tang A.H., Liu X.J., et al. High concentrations and dry deposition of reactive nitrogen species at two sites in the North China Plain. Environmental Pollution,2009,157:3106-3113
    [103]Seip H.M., Zhao D., Xiong J., et al. Acidic deposition and its effects in southwestern China. Water Air Soil Pollution,1995,85:2301-2306
    [104]Shepherd M.F., Barzetti S., Hastie D.R. The production of atmospheric NOx and N2O from a fertilized agricultural soil. Atmospheric Environment,1991,25A(9): 1961-1969
    [105]Shen R.P., Sun B., Zhao Q.G. Spatial and temporal variability of N, P and K balances for agroesystems in China. Pedosphere,2005,15(3):347-355
    [106]Sickman J.O., Leydecker A., Melack J.M. Nitrogen mass balances and abiotic controls on N retention and yield in high-elevation catchments of the Sierra Nevada, California, United States. Water Resources Research,2001,37:1445-1461
    [107]Smith R.I, Fowler D., Sutton M.A., et al. Regional estimation of pollutant gas dry deposition in the UK:model description, sensitivity analyses and outputs. Atmospheric Environment,2000,34:3757-3777
    [108]Stevens C.S., Dupre C., Dorland E., et al. Nitrogen deposition threatens species richness of grasslands across Europe. Environmental Pollution,2010,158: 2940-2945
    [109]Streets D.G., Bond T.C., Carmichael G.R., et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research,2003,108(D21),GTE30.1-GTE30.23
    [110]Tang Y.S., Simmons I., Van Dijk N., et al. European scale application of atmospheric reactive nitrogen measurements in a low-cost approach to infer dry deposition fluxes. Agriculture, Ecosystems and Environment,2009,133:183-195
    [111]Throop H.L. Nitrogen deposition and herbivory affect biomass production and allocation in an annual plant. Oikos,2005,111(1):91-100
    [112]Tilman D.J., Fargione B., Wolff C.D., et al., Forecasting agriculturally driven global environmental change. Science,2001,292:281-284
    [113]Trebs I., Lara L.L., Zeri L.M.M., et al. Dry and wet deposition of inorganic nitrogen compounds to a tropical pasture site (RondOnia, Brazil). Atmospheric Chemistry and Physics,2006,6:447-469
    [114]Tremkel M.E. Improving fertilizer use efficiency-controlled-release and stabilized fertilizers in agriculture. Paris:International Fertilizer Industry Association (IFA), 1997:99-104
    [115]Twonsend A.R., Braswell B.H., Holland E.A., et al. Spatial and temporal patterns carbon storage due to deposition of fossil fuel nitrogen. Ecological Applications, 1996,6:804-814
    [116]Vandenbruwane J., Neve S.D., Qualls R.C., et al. Optimization of dissolved organic nitrogen (DON) measurements in aqueous samples with high inorganic nitrogen concentrations. Science of the Total Environment,2007,386:103-113
    [117]Viousek P., Aber J., Howarth R., et al. Human alteration of the global nitrogen cycle:Sources and consequences. Ecological Applications,1997,7:737-750
    [118]Walcek C.J. SO2, sulfate and HNO3 deposition velocities computed using regional landuse and meteorological data. Atmospheric Environment,1986,20(5),949-9641
    [119]Walker J.T., Whitall D.R., Robarge W., et al. Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density. Atmospheric Environment,2004,38:1235-1246
    [120]Walker M.D., Wahren C.H., Hollister R.D., et al. Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America,2006,103(5):1342-1346
    [121]Walmsley J.L., Wesely M.L. Modification of coded parameterizations of surface resistances to gaseous dry deposition. Atmospheric Environment,1996,30(7): 1181-11881
    [122]Weigel A., Russow R., Korschenschens M. Quantification of airborne N-input in long-term field experiments and its validation through measurements using 15N isotope dilution.J Plant Nutr Soil Sci,2000,163:261-265
    [123]Wesely M.L. Parameterization of surface resistance to gaseous dry deposition in regional-scale numerical models. Atmospheric Environment,1989,23(6), 1293-1304
    [124]Whitall D.R., Paerl H.W. Spatiotemporal variability of wet atmospheric nitrogen deposition to the Nese River Estuary. Journal of Environmental Quality, 2001,30:1508-1515
    [125]Willey J.D., Cahoon L.B. Enhancement of chlorophyll a production in Gulf Stream surface seawater by rainwater nitrate. Marine Chemistry,1991,34:63-75
    [126]Williams E.J., Hutchinson G.L., Tehsenfeld F.C. NOx and N2O emission from soil. Global Biogeochem Cycle,1992,6:351-388
    [127]Woodmansee R.G, Duncan D.A. Nitrogen and phosphorus dynamics and budgets in annual grasslands. Ecology,1980,61:893-904
    [128]Wright R., Rasmussen L. Introduction to the NITREX and EXMAN projects. Forest Ecology and Management,1998,101:1-7
    [129]Xing GX., Zhu Z.L. The environmental consequences of altered nitrogen cycling resulting from industrial activity, agricultural production and population growth in China. In Optimizing Nitrogen Management in Food and Energy Production and Environmental Protection:Proceedings of the 2nd International Nitrogen Conference on Science and Policy. The Scientific World,2001,1(S2):70-80
    [130]Yang R., Hayashi K., Zhu B., et al. Atmospheric NH3 and NO2 concentration and nitrogen deposition in an agricultural catchment of Eastern China. Science of the Total Environment,2010,408:4624-4632
    [131]Zapletal M. Atmospheric deposition of nitrogen compounds in the Czech Republic. Environmental Pollution,1998,102(Sl):305-311
    [132]Zhang L.M., Brook J.R., Vet R., et al. Estimation of contributions of NO2 and PAN to total atmospheric deposition of oxidized nitrogen across Eastern Canada. Atmospheric Environment,2005,39:7030-7043
    [133]Zhang S.Y., Liu Q.X., Huang Y.T. The main sources of nutrients nitrogen and phosphorus in Lake Donghu, Wuhan. Oceanologia Et Limnologia Sinica, 1984,15:203-212
    [134]Zhao X., Yang X.Y., Xiong Z.Q., et al. Spatial and temporal variation of inorganic nitrogen wet deposition to Yangtze River Delta Region, China. Water, Air and Soil Pollution,2009,203:277-289
    [135]Zheng X., Liu C., Han S. Description and application of a model for simulating regional nitrogen cycling and calculating nitrogen flux. Advance in Atmosphetic Sciences,2008,25(2):181-201
    [136]Zheng X.H., Fu C.B., Xu X.K., et al. The Asian nitrogen cycle case study. Ambio,2002,31(2):79-87
    [137]蔡贵信,朱兆良.稻田中化肥氮的气态损失.土壤学报,1995,32(增刊):128-135
    [138]蔡祖聪,徐华,马静.稻田生态系统CH4和N20排放.第1版.安徽合肥:中国科技大学出版社,2009,14,155-184
    [139]陈秀梅,张修峰.广州市酸雨演变规律及其生态学意义.生态科学,2007,26(3):246-249
    [140]陈能汪,洪华生,肖健,等.九龙江流域大气氮干沉降.生态学报,2006,26(8):2602-2607
    [141]陈能汪,洪华生,张珞平.九龙江流域大气氮湿沉降研究.环境科学,2008,29(1):38-46
    [142]程先福,陈梦春,郝李霞,等.红壤丘陵区农田土壤酸化的时空变化研究.中国生态农业学报,2008,16(6):1348-1351
    [143]崔键,周静,马友华,等.春季马唐-秋季冬萝卜红壤和黄壤中尿素氨挥发损失状况的研究.安徽农业大学学报,2007,34(2):265-269
    [144]崔键,周静,马友华,等.我国红壤旱地氮素平衡特征.土壤,2008,40(3):372-376
    [145]崔键,周静,杨浩.农田生态系统大气氮、硫湿沉降通量的观测研究.生态环境学报,2010,18(6):2243-2248
    [146]崔键,周静,杨浩,等.大气氮沉降向典型红壤区农田生态系统定量输入研究.环境科学,2009,30(8):2221-2226
    [147]邓君俊,王体健,李树,等.南京郊区大气氮化物浓度和氮沉降通量的研究.气象科学,2009,29(1):25-30
    [148]邓美华,尹斌,张绍林,等.不同施氮量和施氮方式对稻田氨挥发损失的影响.土壤,2006,38(3):263-269
    [149]邓学良,邓伟涛,何冬燕.近年来华东地区大气气溶胶的时空特征.大气科学学报,2010,33(3):347-354
    [150]段雷,郝吉明,叶雪梅,等.中国土壤风化速率的初步研究.环境科学学报,2000,20(增刊):1-7
    [151]樊后保.酸雨与森林衰退冠以研究综述.福建林学院学报,2002,23(1):88-92
    [152]樊后保,黄玉梓.陆地生态系统氮饱和对植物影响的生理生态机制.植物生理与分子生物学学报,2006,32(4):395-402
    [153]樊后保,刘文飞,李燕燕,等.亚热带杉木(Cunninghamia lanceolata)人工林生长与土壤养分对氮沉降的响应.生态学报,2007,27(11):4630-4642
    [154]樊建凌.中国南方典型地区大气氮硫沉降及硫对水稻吸收富集镉的影响:[博士论文].南京:中国科学院南京土壤研究所,2009
    [155]樊建凌,胡正义,王体健,等.阔叶林地大气氮化物干沉降速率动态变化研究.中国环境科学,2009,27(1):386-390
    [156]冯宗炜.中国酸雨的生态影响和防治对策.中国工程科学,2000,2(9):5-11
    [157]国家环境保护总局.中华人民共和国环境保护行业标准HJ/T 175-2005,2005.
    [158]郭照冰,陈天蕾,陈天,等.香河地区大气气溶胶中水溶性离子观测与分析.环境化学,2010,29(4):764-765
    [159]胡倩,张世秋,吴丹.美国和欧洲氮氧化物控制政策对中国的借鉴意义.环境保护,2007,5A:74-78
    [160]何园球.红壤质量演变与调控.第1版.北京:科学出版社,2008:9-20
    [161]黄国勤,王兴祥,钱海燕,等.施用化肥对农业生态环境的负面影响及对策.生态环境,2004,13(4):656-660
    [162]纪雄辉,郑圣先,鲁艳红,等.施用尿素和控释氮肥的双季稻田表层水氮素动态及其径流损失规律.中国农业科学,2006,39(12):2521-2530
    [163]贾钩彦,张颖,蔡晓布,等.藏东南大气氮湿沉降动态变化——以林芝观测点为例.生态学报,2009,29(4):1907-1913
    [164]金蕾,徐谦,林安国,等.北京近二十年(1987~2004)湿沉降特征变化趋势分析.环境科学学报,2006,26(7):1195-1202
    [165]江西省环境监测中心站.江西环境监测季报,2002-2005
    [166]李长生,肖向明,Frolkin S.,等.中国农田的温室气体排放.第四纪研究,2003,23(5):493-503
    [167]李德军,莫江明,方运霆,等.氮沉降对森林植物的影响.生态学报,2003,23(9):1891-1900
    [168]李方敏,樊小林,刘芳,等.控释肥对稻田氧化亚氮排放的影响.应用生态学报,2004,15(11):2170-2174
    [169]李菊梅,李冬初,徐明岗,等.红壤双季稻田不同施肥下的氨挥发损失及其影响因素.生态环境,2008,17(4):1610-1613
    [170]李世清,李生秀.陕西关中湿沉降输入农田生态系统中的氮素.农业环境保护,1999,18(3):97-101
    [171]李玉中,祝亭成,姜世成.羊草地生态系统干湿沉降氮输入量的动态变化.中国草地,2000,2:24-27
    [172]李柱国.浙江省降水酸度和化学特征分析.中国环境科学,1999,19(5):436-440
    [173]稂小洛,曹国良,黄学敏.中国区域氮氧化物排放清单.环境与可持续发展,2008,(6):19-21
    [174]刘学军.大气氮素沉降及其对我国农田生态系统养分输入的影响.西南农业学报,2004,17(增刊):185-186
    [175]罗明.低丘红壤区土壤特性时空变异及影响因素研究:[硕士论文].南京:南京农业大学,2007
    [176]吕超群,田汉勤,黄耀.陆地生态系统氮沉降增加的生态效应.植物生态学报,2007,31(2):205-218
    [177]欧阳克惠,王文君,周萍芳,等.江西省畜禽粪尿资源分布及其污染潜势估算.江西农业大学学报,2009,31(4):616-620
    [178]欧阳琰,王体健,张艳,等.一种大气污染物干沉积速率的计算方法及其应用.南京气象学院学报,2003,26(2):210-218
    [179]彭焕伟,沈亚欧.畜禽生产中氨的危害及防治措施.饲料工业,2005,26(13):55-59
    [180]彭应登,杨明珍,申立贤.北京氨源排放及其对二次粒子生成的影响.环境科学,2000,21(6):101-103
    [181]沈健林,刘学军,张福锁.北京近郊区农田大气NH3和N02干沉降研究.土壤学报,2008,45(1):165-169
    [182]沈善敏.中国土壤肥力.第1版.北京:中国农业出版社,1998:57-110
    [183]盛文萍,于贵瑞,方华军,等.大气氮沉降通量观测方法.生态学杂志,2010,29(8):1671-1678
    [184]石金辉,高会旺,张经.大气有机氮沉降及其对海洋生态系统的影响.地球科学进展,2006,21(7):721-729
    [185]水建国,柴锡周,卢庭高.红壤地区降水对林地养分输入与土壤侵蚀的作用.浙江农业学报,2001,13(1):19-23
    [186]宋付鹏,张民,史衍玺.控释氮肥的氮素释放特征及其对水稻的增长效应.土壤学报,2005,42(4):619-627
    [187]宋晓东,江洪,余树全,等.浙江省酸雨的空间分布格局及其未来变化趋势预测.环境污染与防治,2009,31(1):13-16
    [188]宋玉芝,秦伯强,杨元龙,等.大气是沉降向太湖水生生态系统输送氮的初步估算.湖泊科学,2005,17(3):226-230
    [189]苏成国,尹斌,朱兆良,等.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降.应用生态学报.2003,114(11):1884-1888
    [190]孙本华,胡正义,吕家珑,等.模拟氮沉降下南方针叶林红壤的养分淋溶和酸化.应 用生态学报,2006,17(10):1820-1826
    [191]孙本华,胡正义,吕家珑,等.江西鹰潭典型丘陵农业区氮湿沉降的动态变化[J],西北农林科技大学学报(自然科学版),2006,34(10):118-192.
    [192]孙崇基.酸雨.第1版.北京:中国环境科学出版社,2001
    [193]孙磊.控释氮肥在水稻上的应用效果研究.作物杂志,2009,2:76-78
    [194]孙志高,刘景双,王金华.三江平原典型湿地系统大气湿沉降中氮素动态及其生态效应.水科学进展,2007,18(3):182-192
    [195]孙志高,刘景双,王全达,等.湿地生态系统氮素输入过程的研究进展.地理与地理信息科学,2006,22(1):97-102
    [196]汤洁,徐晓斌,巴金,等.1992-2006年中国降水酸度的变化趋势.科学通报,2010,55(8):705-712
    [197]王波,黄光林.我国农村生态环境保护问题研究.生态经济,2006,12:138-141
    [198]王长会.我国氮氧化物的污染现状和治理技术的发展及标准介绍[J].机械工业标准化与质量,2008,3:20-21
    [199]王茜,王雪梅,林文实,等.鼎湖山无机氮湿沉降来源研究.环境科学研究,2008,21(6):156-160
    [200]王明星,张仁健,郑循华.温室气体的源与汇.气候与环境研究,2000,5(1):75-79
    [201]王明珠,陈学南.低丘红壤区花生持续高产的障碍及对策.花生学报,2005,34(2):17-22
    [202]王体健,李宗恺.一种污染物的区域干沉积速度分布的计算方法.南京大学学报(自然科学),1994,30(4):745-752
    [203]王体健,李宗恺.影响气体和粒子干沉积的敏感因子分析.南京气象学院学报,1994,17(3):385-390
    [204]王文兴,刘红杰,张婉华,等.我国东部沿海地区酸雨来源研究.中国环境科学,1997,17(5):387-392
    [205]王文兴,王纬,张婉华,等.我国SO2和NOx排放强度地理分布和历史趋势.中国环境科学,1996,16(3):161-167
    [206]王文兴,徐鹏举.中国大气降水化学研究进展.化学进展,2009,21:266-281
    [207]王小冶,朱建国,高人,等.太湖地区氮素湿沉降动态及生态学意义:以常熟生态站为例.应用生态学报,2004,15(9):1616-1620
    [208]王旭刚,郝明德,张春霞.降水输入旱地农田生态系统中的养分研究.西北农林科技大学(自然科学版),2005,33(7):115-120
    [209]王毅勇,杨青.三江平原大豆田氮循环模拟研究.地理科学,1999,19(6):555-558
    [210]王振刚,宋振东.湖北省人为源氨排放的历史分布.环境科学与技术,2005,28(1): 70-71
    [211]王志辉,张颖,刘学军,等.黄土区降水降尘输入农田土壤中的氮素评估.生态学报,2008,28(7):3295-3301
    [212]魏样,同延安,段敏,等.陕北典型农田大气干湿氮沉降季节变化.应用生态学报,2010,21(1):255-259
    [213]魏样,同延安,乔丽,等.陕西省不同生态区大气氮沉降量的初步估算.农业环境科学学报,2010,29(4):795-800
    [214]吴洪颜,濮梅娟,商兆堂,等.江苏省2006年酸雨分布特征及其与气象条件的关系分析.气象科学,2008,28(5):563-567
    [215]向仁军,柴立元,张龚,等.湖南蔡家塘森林小流域氮和硫的输入输出特征.环境科学学报,2006,26(8):1372-1378
    [216]肖健.漳州市氮湿沉降量异常的形成及危害.能源与环境,2005,1(2):59-61
    [217]谢迎新.人为影响下稻田生态系统环境来源氮解析:[博士论文].南京:中国科学院南京土壤研究所,2006
    [218]谢迎新,张淑利,赵旭,等.长江三角洲地区雨水中NH4+-N/NO3--N和δ15NH4+值的变化.应用生态学报,2008,19(9):2035-2041
    [219]徐宏辉,刘洁,王跃思,等.杭州地区大气气溶胶中水溶性离子特征的城郊对比分析.环境化学,2009,28(4):598-599
    [220]徐仁扣.我国降水中的NH4+及其在土壤酸化中的作用.农业环境保护,1996,15(3):139-140,142
    [221]许亚宣,段宁,柴发合,等.中国硫沉降数值模拟.环境科学研究,2006,19(5):1-10
    [222]许中坚,刘广深,刘维屏.人为因素诱导下的红壤酸化机制及其防治.农业环境保护,2002,21(2):175-178
    [223]晏维金,章申,王嘉慧.长江流域氮的生物地球化学循环及其对输送无机氮的影响:1968-1997年的时间变化分析.地理学报,2001,56(5):505-514
    [224]杨浩明,王体健,程炜,等.华东典型地区大气硫沉降通量的观测和模拟研究.气象科学,2005,25(6):560-568
    [225]姚青,孙玫玲,张长春,等.潮州沿海大气气溶胶无机离子浓度分布与气象要素的相关分析.气象与环境学报,2007,23(4):39-42
    [226]叶欣,李俊,王迎红.华北平原典型农田土壤氧化亚氮的排放特征.农业环境科学学报,2005,24(6):1186-1191
    [227]赵亚楠,王跃思,温天雪,等.贡嘎山大气气溶胶中水溶性无机离子观测与分析研究.环境科学,2009,30(1):9-13
    [228]张修峰.上海地区大气氮湿沉降及其对湿地水环境的影响.应用生态学 报,2006,17(6):1099-1102
    [229]张修峰,李传红.大气氮湿沉降及其对惠州西湖水体富营养化的影响.中国农业生态学报,2008,16(1):16-19
    [230]张艳,王体健,胡正义,等.典型大气污染物在不容下垫面上干沉积速率的动态变化及空间分布.气候与环境研究,2004,9(4):591-604
    [231]张耀民.酸雨对农业的影响.农业环境科学学报,1984,1:37-40
    [232]张颖,刘学军,张福锁,等.华北平原大气氮素沉降的时空变异.生态学报,2006,26(6):1633-1639
    [233]曾希柏.红壤酸化及其防治.土壤通报,2000,31(3):111-113
    [234]郑利霞,刘学军,张福锁.大气有机氮沉降研究进展.生态学报,2007,27(9):3828-3834
    [235]周国逸,闫俊华.鼎湖山区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响.生态学报,2001,21(12):2002-2012
    [236]周婕成,史贵涛,陈振楼,等.上海大气氮湿沉降的污染特征.环境污染与防治,2009,31(11):30-34
    [237]周静,崔键,王国强,等.我国南方牧草生态系统氮素平衡与循环特征研究.土壤,2008,40(3):386-391
    [238]周静,石晓日.中国生态系统研究网络(CERN)数据全集:江西鹰潭站(1998-2006).第1版.北京:中国农业出版社,2009:60-62
    [239]周晓兵,张元明.干旱半干旱区氮沉降生态效应研究进展.生态学报,2009,29(7):3835-3845

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700