用户名: 密码: 验证码:
自噬基因Beclin1在人肺腺癌A549细胞系SP及非SP细胞亚群中表达的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     肺癌正成为当今世界各国最常见的恶性肿瘤之一,并逐渐成为大多数国家人口中导致死亡的恶性肿瘤之首,对目前世界范围内的人类生命和健康造成巨大威胁,给患者及其家庭增加了沉重的负担和极大的痛苦,也占去了较多的医疗卫生资源和社会财富。各个国家的临床医院、科研单位和学者都投入了大量的物力、财力和精力,从临床的手术及放化疗、实验的不同层面和新思路新方法等方面进行探索研究。虽然运用于临床的新的治疗方法仍进展缓慢,但在分子生物学、人类基因组学、肿瘤干细胞学说等方向的研究取得了一定的成果,如:肺癌早期诊断的分子标记物的筛选;在非小细胞肺癌中发现抑癌基因TSLCl/CADMl;利用基因序列和表达谱的不同,区分人肺腺癌和鳞癌;通过基因检测,预测肺癌患者术后的复发率;实验室研究支持肿瘤干细胞学说;肿瘤干细胞的分离和提纯;SP细胞及非SP细胞的成功分选;肿瘤细胞自噬方向研究的不断深入;等等,虽然多数尚未被运用于临床,但深入研究,必定可以找到新的预防、诊断和治疗靶点。SP细胞成功被分离,并已被实验室研究证实具有干细胞特性。自噬作为肿瘤研究的新方向,也已有实验室研究表明常用自噬基因Beclinl和LC3在癌组织、癌旁组织和正常组织中的表达具有差异性,并推测可能与其干细胞特性有关。在此背景下,研究自噬基因在SP细胞和非SP细胞中的表达有无差异,绕过干细胞不易分离提纯的难题,通过研究SP细胞来研究人肺癌干细胞,从干细胞自噬方向找到治疗的新靶点成为该研究的最初出发点
     目的
     探讨自噬基因Beclinl在人肺腺癌A549细胞系SP及非SP细胞中的表达。寻找两者间是否存在差异,为进一步的肿瘤细胞自噬作用调节的药物实验找到实验基础和依据。
     材料和方法
     对肺癌A549细胞系细胞进行实验室培养,待细胞生长进入对数期后,收集细胞,用流式细胞学方法分选人肺腺癌A549细胞系中SP细胞及非SP细胞亚群;成功分选后,采用Western blot方法分别检测Beclinl基因在SP细胞和非SP细胞亚群中的表达情况。
     结果
     流式细胞学方法成功分选得到SP细胞及非SP细胞亚群,Western blot检测Beclinl基因在SP细胞亚群中的相对表达量为2.795±0.090,在非SP细胞亚群中的相对表达量为3.048±0.124。两相对表达量比较:t=5.220.,P<0.05,差异有统计学意义。
     结论
     自噬基因Beclinl在人肺腺癌A549细胞系SP细胞亚群中的表达较非SP细胞亚群下降,这可能与SP细胞亚群具有的肿瘤干细胞特性有关。使通过对SP细胞的自噬进行调节达到消灭肿瘤细胞成为一种新的研究方向。
Backround
     Lung cancer is one of the most common malignant tumors in the world.In many countries,lung cancer is on the top of the list about death causing by cancers. People's health is threatened by lung cancer, many patients are suffering it and lots of money is spent on it.Many hospitals and docors have paid much attention on this disease, so many new methods for treatment and diagnosis are under research.Although the step of progress for treatment in lung cancer is really slow, we still have some breakthrough in biochemistry,human genomics and cancer stem cell. For example:the screening of molecular markers about early diagnosis of lung cancer;found the suppressor genes TSLC1/CADM1in non-small cell lung cancer;use the difference between gene sequences and expression patterns,we can distinguish adenocarcinoma and squamous cell carcinoma;Through the genetic testing, predict the postoperative recurrence rate of lung cancer;the doctrine of cancer sten cells;separation and purification of tumor stem cells;SP cells and NSP cells were been separation successful;the progress in the research of cancer stem cell is improving, and so on. Although many research results are not used in clinic, they still have brilliant future in many ways. Some scientists have successfully separated SP cells from cancer cells, they also find that SP cells have traits of stem cells. Autophagy is becoming one of the most popular things in the cancer research. Some scientists have found differences in the expression of autophagy gene Beclinl and LC3between the tumor tissue and the normal tissue, they also believe the differences have some relationships with the stem cell traits. In this context,to explore the expression of Autophagy-related Genes Beclinl in SP cells and NSP cells of human lung adenocarcinoma cell line A549,around the difficult problem that the stem cells purification,though the SP cells, the purpose to the stem cells of lung cancer,stem cell autophagy is becoming one of the new methods for cancer treatment.
     Objective
     To explore the expression of Autophagy-related Genes Beclinl in SP cells and NSP cells of human lung adenocarcinoma cell line A549,to find the differences between SP and NSP cells,to provide some basis and foundation for the next drug experiments,about the adjustment of Autophagy-related Genes.
     Materials and Methods
     Human lung adrenocortical carcinoma cell line A549was cultured properly in vivo. SP and NSP cells in cell line A549were isolated by FACS respectively,the expression of autophagy-related genes Beclinl were detected by Western blot.
     Result
     SP and NSP cells were isolated by FACS,the expression of Autophagy-related Genes Beclinl in SP cells was2.795±0.090, and in NSP cells was3.048±0.124. t=5.220, P<0.05, there were significant diference.
     Conclusions
     The expression of Autophagy-related Genes Beclinl in SP cells was lower than in NSP cells.There may have some relationships with the trait of tumor stem cell in SP cells,the adjustment of Autophagy-related Genes will become a new methods to treatment tumors.
引文
[1]Jordan CT,Guzman ML,Noble M. Cancer stem cells.N Engl J Med,2006,355(12):1253-1261.
    [2]Goodell M A, Brose K, Paradis G, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating invivo[J]. J Exp Med,1996,183(4):1797-1805.
    [3]Xu Jing-Xian, Eiichi M, Liu Yalan, et al. High tolerance to apoptotic stimuli induced by serum-depletion and ceramide in side-population cells: high expression of CD55 as a novel character for side-population[J]. Exp Cell Res,2007,313(9):1877.
    [4]Mizushima N,Levine B,Cuervo AM,et al. Auto-phagy fights disease ttucough cellular self-dlgestion[J].Nature,2008,451(7182):1069-1075.
    [5]Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging [J]. Cell.2011; 146(5): 682-950.
    [6]Klionsky DJ.Autophagy revisited:a conversation with Christian de Duve[J]. Autophagy, 2008,4(6):740-743.
    [7]Li J,Ni M. Lee B, et al. The unfolded protein response regulator GBP78/BiP is required for endoplasmic reticulum integrity and sbess-induced autophagy in mammal Jan ceils [J] Cell Death Differ,2008,15(9):1460-1471.
    [8]刘全,王建军,潘永成,等,自噬相关基因Beclinl和MAPLC3在肺癌组织中的表达及其意义[J].癌症,2008,27(1):25-29.
    [9]Choi YL, Soda M, Yamashita Y, et al. Brief report:EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors[J]. N Engl J Med,2010,363(18):1734-1739.
    [10]Larderet G, Fortune 1 NO, Vaigot P, et al. Human side population keratinocytes exhibit long-term prolif-erative potential and a specific gene expression profile and can form a pluristratified epidermis[J]. Stem Cells.2006;24:965-974.
    [11]Yano S, Ito Y, Fujimoto M, et al. Characterization and localization of side population cells in mouse skin[J]. Stem Cells.2005;23:834-841.
    [12]Behbod F, Xian W, Shaw CA, et al. Transcriptional profiling of mammary gland side population cells[J]. Stem Cells.2006;24:1065-1074.
    [13]Meeson AP, Hawke TJ, Graham S, et al. Cellular and molecular regulation of skeletal muscle side population cells[J]. Stem Cells.2004;22:1305-1320.
    [14]Summer R, Kotton DN, Sun X, et al. Side population cells and Bcrpl expression in lung. Am[J]. Physiol. Lung Cell. Mol. Physiol.2003:285:L97-L104.
    [15]Majka SM, Beutz MA, Hagen M, et al. Identification of novel resident pulmonary stem cells:form and function of the lung side population[J]. Stem Cells.2005;23:1073-1081.
    [16]Kim M, Morshead CM. Distinct populations of forebrain neural stem progenitor cells can be isolated using side-population analysis[J]. Neurosci.2003;23:10703-10709.
    [17]Shimano K, Satake M, Okaya A, et al. Hepatic oval cells have the side population phenotype defined by expression of ATP-binding cassette transporter ABCG2/BCRP1. Am[J]. Pathol.2003;163:3-9.
    [18]Martin CM, Meeson AP, Robertson SM, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart[J]. Dev. Biol.2004;265:262-275.
    [19]Liadaki K, Kho AT, Sanoudou D, et al. Side population cells isolated from different tissues share transcriptome signatures and express tissue-specific markers[J]. Exp. Cell Res.2005;303:360-374.
    [20]Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line[J]. Proc. Natl. Acad. Sci. USA.2004;101:781-786.
    [21]Patrawala L, Calhoun T, Schneider-Broussard R, et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+and ABCG2-cancer cells are similarly tumorigenic[J]. Cancer Res.2005;65:6207-6219.
    [22]Meng X, Wang X, Wang Y. More than 45%of A549 and H446 cells are cancer initiating cells:evidence from cloning and tumorigenic analyses [J]. Oncol.2009; 21(4):995-1000.
    [23]Triel C, Vestergaard M E, Bolund L, et al. Side population cells in human and mouse epidermis lack stem cell characteristics [J].Exp Cell Res,2004,295(1):790.
    [24]Hirschmann-Jax C, Foster AE, Wulf GG, et al. A distinct "side population" of cells with high drug efflux capacity in human tumor cells[J]. Proc. Natl. Acad. Sci. USA.2004; 101:14228-14233.
    [25]Apel A,Herr I,Schwarz H,et al. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy[J]. Cancer Res,2008,68(5):1485-1494.
    [26]Arstila A U, Trump B F. Studies on cellular autophagocytosis. The formation of autophagic vacuoles in the liver after glucagon administration[J]. Am J Pathol.1968,53(5):687-733.
    [27]Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2)[J]. Oncogene.2003;22:7340-7358.
    [28]Wunder JS, Healey JH, Davis AM, et al. A comparison of staging systems for localized extremity soft tissue sarcoma[J]. Cancer.2000;88:2721-2730.
    [29]Lock R.Debnath J. Extracelular matrix regulation of autophagy [J]. Current Opinion in Cell Biol,2008,20(5):583-588.
    [30]Botti J, Dajaheri-Merqny M, Pilatte Y. Autophagy signaling and the cogwheels of cancer [J]. Autophagy,2006,2(2):67-73.
    [31]Yen WL, Klionsky D J. How to live long and prosper:autophagy,mitochondria, and aging physiology [J]. Physiology (Bethesda),2008,23:2482262.
    [32]Chen N,Karantza-Wadsworth V. Role and regulation of autophagy in cancer[J]. Biochim Biophys Acta,2009,1793(9):1516-1523.
    [33]Yokoyama T, Tam J, Kuroda S, et al.EGFR-Targeted Hybrid Plasmonic Magnetic Nanoparticles Synergistically Induce Autophagy and Apoptosis in Non-Small Cell Lung Cancer Cells [J]. PLoS One.2011;6(11):e25507.
    [34]Kimmelman AC.The dynamic nature of autophagy in cancer [J]. Genes Dev.2011; 25(19): 1999-2010.
    [35]Lee DG, Cho HJ, Yi H, et al. Functional expression and characterization in Xenopus laevis oocytes of the ABCG2 transporter derived from A549 human lung adenocarcinoma cells [J]. Oncol Rep.2011; 27(2):499-503.
    [36]Liu Y, Sun SY, Owonikoko TK,et al. Rapamycin Induces Bad Phosphorylation in Association with Its Resistance to Human Lung Cancer Cells [J]. Mol Cancer Ther.2011. [Epub ahead of print].
    [37]Rubinsztein D C,GestwickiJ E,Murphy L O,et al. Potential therapeutic applications of autophagy [J]. Nat Rev Drug Discov,2007,6(4):304-312.
    [38]Chen N,Karantza-Wadsworth V. Role and regulation of autophagy incancer[J]. Biochim Biophys Acta,2009,1793(9):1516-1523.
    [1]PJ Fialkow. Clonal origin of human tumors. Annu[J]. Rev.Med.1979;30:135-143.
    [2]Vogelstein B, Fearon ER, Hamilton SR, et al. Use of restriction fragment length polymorphisms to deter-mine the clonal origin of human tumors[J].Science.1985; 227:642-645.
    [3]Heppner GH. Tumor heterogeneity[J]. Cancer Res.1984;44:2259-2265.
    [4]Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells[J]. Science. 1977;197:461-463.
    [5]Bergsagel DE, Valeriote FA. Growth characteristics of a mouse plasma cell tumor[J], Cancer Res.1968;28:2187-2196.
    [6]Bruce WR, VanDerGaag H.A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo[J].Nature.1963; 199:79-80.
    [7]Fidler IJ, Hart IR. Biological diversity in metastatic neoplasms:origins and implications[J]. Science.1982;217:998-1003.
    [8]Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc. Natl. Acad. Sci. USA.2003;100:3983-3988.
    [9]Reya T, Morrison SJ, Clarke MF, et al. Stem cells cancer and cancer stem cells[J]. Nature.2001;414:105-111.
    [10]Lobo NA, Shimono Y, Qian D, et al. The biology of cancer stem cells[J]. Annu. Rev. Cell Dev. Biol.2007;23:675-699.
    [11]Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer[J]. Nat. Rev. Cancer.2003;3:895-902.
    [12]Hill RP.Identifying cancer stem cells in solid tumors:case not proven[J]. Cancer Res. 2006;66:1891-1895(discussion 1890).
    [13]Kern SE, Shibata D. The fuzzy math of solid tumor stem cells:a perspective[J]. Cancer Res.2007;67:8985-8988.
    [14]Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature.1994;367:645-648.
    [15]Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat. Med.1997;3:730-737.
    [16]O'Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature.2007;445:106-110.
    [17]Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells[J]. Nature.2007;445:111-115.
    [18]Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors[J]. Cancer Res.2003;63:5821-5828.
    [19]Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells[J]. Nature.2004;432:396-401.
    [20]Arndt-Jovin DJ, Jovin TM. Analysis sorting of living cells according to deoxyribonucleic acid content[J]. Histochem. Cytochem.1977;25:585-589.
    [21]Lalande ME, Miller RG. Fluorescence flow analysis of lymphocyte activation using Hoechst 33342 dye[J].Histochem. Cytochem.1979;27:394-397.
    [22]Challen GA, Little MH. A side order of stem cells:the SP phenotype[J]. Stem Cells. 2006;24:3-12.
    [23]Goodell MA, Brose K, Paradis G, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo[J]. Exp. Med.1996; 183:1797-1806.
    [24]Goodell MA, Rosenzweig M, Kim H, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species[J]. Nat. Med.1997;3:1337-1345.
    [25]Pearce DJ, Ridler CM, Simpson C, et al. Multiparameter analysis of murine bone marrow side population cells[J]. Blood.2004; 103:2541-2546.
    [26]Larderet G, Fortune 1 NO, Vaigot P, et al. Human side population keratinocytes exhibit long-term prolif-erative potential and a specific gene expression profile and can form a pluristratified epidermis[J]. Stem Cells.2006;24:965-974.
    [27]Yano S, Ito Y, Fujimoto M, et al. Characterization and localization of side population cells in mouse skin[J]. Stem Cells.2005;23:834-841.
    [28]Summer R, Kotton DN, Sun X, et al. Side population cells and Bcrpl expression in lung. Am[J]. Physiol. Lung Cell. Mol. Physiol.2003:285:L97-L104.
    [29]Majka SM, Beutz MA, Hagen M, et al. Identification of novel resident pulmonary stem cells:form and function of the lung side population [J]. Stem Cells.2005;23:1073-1081.
    [30]Shimano K, Satake M, Okaya A, et al. Hepatic oval cells have the side population phenotype defined by expression of ATP-binding cassette transporter ABCG2/BCRP1. Am[J]. Pathol.2003;163:3-9.
    [31]Martin CM, Meeson AP, Robertson SM, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart[J]. Dev. Biol.2004;265:262-275.
    [32]Kim M, Morshead CM. Distinct populations of forebrain neural stem progenitor cells can be isolated using side-population analysis[J]. Neurosci.2003;23:10703-10709.
    [33]Behbod F, Xian W, Shaw CA, et al. Transcriptional profiling of mammary gland side population cells[J]. Stem Cells.2006;24:1065-1074.
    [34]Meeson AP, Hawke TJ, Graham S, et al. Cellular and molecular regulation of skeletal muscle side population cells[J]. Stem Cells.2004;22:1305-1320.
    [35]Liadaki K, Kho AT, Sanoudou D, et al. Side population cells isolated from different tissues share transcriptome signatures and express tissue-specific markers[J]. Exp. Cell Res.2005;303:360-374.
    [36]Zhou S, Schuetz JD, BuntingKD, et al. The ABC transporter Bcrpl/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype[J]. Nat. Med.2001;7:1028-1034.
    [37]Bunting KD, Galipeau J, Topham D, et al. Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice[J]. Blood.1998;92:2269-2279.
    [38]Bunting KD, Zhou S, Lu T, et al. Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo[J]. Blood.2000; 96:902-909.
    [39]Jonker JW, Freeman J, Bolscher E, et al. Contribution of the ABC transporters Bcrpl and Mdrla/lb to the side population phenotype in mammary gland and bone marrow of mice[J]. Stem Cells.2005;23:1059-1065.
    [40]Patrawala L, Calhoun T, Schneider-Broussard R, et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+and ABCG2-cancer cells are similarly tumorigenic[J]. Cancer Res.2005;65:6207-6219.
    [41]Mitsutake N, Iwao A, Nagai K, et al. Characterization of side population in thyroid cancer cell lines:cancer stem-like cells are enriched partly but not exclusively [J].Endocrinology.2007.
    [42]Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line[J]. Proc. Natl. Acad. Sci. USA.2004;101:781-786.
    [43]Ho MM, Ng AV, Lam S, et al. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells[J]. Cancer Res.2007; 67:4827-4833.
    [44]Haraguchi N, Utsunomiya T, Inoue H,et al. Characterization of a side population of cancer cells from human gastrointestinal system[J]. Stem Cells.2006; 24:506-513.
    [45]Chiba T, Kita K, Zheng YW, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties[J]. Hepatology.2006; 44: 240-251.
    [46]Wang J, Guo LP, Chen LZ, et al. Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line[J], Cancer Res.2007;67:3716-3724.
    [47]Hirschmann-Jax C, Foster AE, Wulf GG, et al. A distinct "side population" of cells with high drug efflux capacity in human tumor cells[J]. Proc. Natl. Acad. Sci. USA.2004; 101:14228-14233.
    [48]Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness[J]. Proc. Natl. Acad. Sci. USA 2006; 103:11154-11159.
    [49]Wu C, Wei Q, Utomo V, et al. Side population cells isolated from mesenchymal neoplasms have tumor initiating potential[J]. Cancer Res.2007;67:8216-8222.
    [50]Hiddemann W, Roessner A, Wormann B, et al. Tumor heterogeneity in osteosarcoma as identified by flow cytometry[J]. Cancer.1987;59:324-328.
    [51]Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells[J]. Nature.2003;423:409-414.
    [52]Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors[J]. Nature.2004;423:448-452.
    [53]Zhou J, Wulfkuhle J, Zhang H, et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance[J]. Proc. Natl. Acad. Sci. USA.2007;104:16158-16163.
    [54]Wood LD, Parsons DW, Jones S, et al. The genomic landscapes of human breast and colorectal cancers[J]. Science.2007;318:1108-1113.
    [55]Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2)[J]. Oncogene.2003;22:7340-7358.
    [56]Wunder JS, Healey JH, Davis AM, et al. A comparison of staging systems for localized extremity soft tissue sarcoma[J]. Cancer.2000;88:2721-2730.
    [57]Montanaro F, Liadaki K, Schienda J, et al. Demystifying SP cell purification: viability, yield, and phenotype are defined by isolation parameters[J]. Exp. Cell Res.2004;298: 144-154.
    [58]Tjandra SS, Hsu C, Goh I, et al. IFN-{beta} signaling positively regulates tumorigenesis in aggressive fibromatosis potentially by modulating mesenchymal progenitors[J]. Cancer Res.2007;67:7124-7131.
    [59]Kelly PN, Dakic A, Adams JM, et al. Tumor growth need not be driven by rare cancer stem cells[J]. Science.2007;317:337.
    [60]Kennedy JA, Barabe F, Poeppl AG, et al. Comment on "'Tumor growth need not be driven by rare cancer stem cells [J]. Science.2007;318:1722 (author reply 1722).
    [1]Takeshige K, Baba M, Tsuboi S, et al. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction[J]. J Cell Biol.1992,119(2):301-311.
    [2]Arstila A U, Trump B F. Studies on cellular autophagocytosis. The formation of autophagic vacuoles in the liver after glucagon administration[J]. Am J Pathol.1968,53(5):687-733.
    [3]Ahlberg J, Marzella L, Glaumann H. Uptake and degradation of proteins by isolated rat liver lysosomes. Suggestion of a microautophagic pathway of proteolysis[J]. Lab Invest. 1982,47(6):523-532.
    [4]Cuervo A M, Dice J F. A receptor for the selective uptake and degradation of proteins by lysosomes[J]. Science.1996,273(5274):501-503.
    [5]Nakatogawa H, Suzuki K, Kamada Y, et al. Dynamics and diversity in autophagy mechanisms:lessons from yeast[J]. Nat Rev Mol Cell Biol.2009,10(7):458-467.
    [6]Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy[J]. Int J Biochem Cell Biol.2004,36(12):2503-2518.
    [7]Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae[J]. FEBS Lett.1993,333(1-2):169-174.
    [8]Eskelinen E L, Saftig P. Autophagy:a lysosomal degradation pathway with a central role in health and disease[J]. Biochim Biophys Acta.2009,1793(4):664-673.
    [9]Mizushima N. Physiological functions of autophagy[J]. Curr Top Microbiol Immunol.2009, 33571-84.
    [10]Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell.2008,132(1): 27-42.
    [11]Mizushima N, Levine B, Cuervo A M, et al. Autophagy fights disease through cellular self-digestion[J]. Nature.2008,451(7182):1069-1075.
    [12]Munz C. Enhancing immunity through autophagy[J]. Annu Rev Immunol.2009, 27423-449.
    [13]Mizushima N, Kuma A, Kobayashi Y, et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate[J]. J Cell Sci. 2003,116 (Pt 9):1679-1688.
    [14]Mizushima N, Yamamoto A, Hatano M, et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells[J]. J Cell Biol.2001,152(4):657-668.
    [15]Sou Y S, Waguri S, Iwata J, et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice[J]. Mol Biol Cell. 2008,19(11):4762-4775.
    [16]Eskelinen E L. Fine structure of the autophagosome[J]. Methods Mol Biol.2008,44511-28.
    [17]Hara T, Takamura A, Kishi C, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells[J]. J Cell Biol.2008,181(3):497-510.
    [18]Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORCl association with the ULKl-Atg13-FIP200 complex required for autophagy[J]. Mol Biol Cell.2009,20(7):1981-1991.
    [19]Hosokawa N, Sasaki T, lemura S, et al. Atg101, a novel mammalian autophagy protein interacting with Atg13[J]. Autophagy.2009,5(7):973-979.
    [20]Mercer C A, Kaliappan A, Dennis P B. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy[J]. Autophagy.2009,5(5):649-662.
    [21]Mizushima N. The role of the Atgl/ULKl complex in autophagy regulation[J]. Curr Opin Cell Biol.2010,22(2):132-139.
    [22]Itakura E, Kishi C, Inoue K, et al. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG[J]. Mol Biol Cell.2008,19(12): 5360-5372.
    [23]Obara K, Sekito T, Ohsumi Y. Assortment of phosphatidylinositol 3-kinase complexes--Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae[J]. Mol Biol Cell.2006,17(4):1527-1539.
    [24]Kawamata T, Kamada Y, Suzuki K, et al. Characterization of a novel autophagy-specific gene, ATG29[J]. Biochem Biophys Res Commun.2005,338(4):1884-1889.
    [25]Noda T, Kim J, Huang W P, et al. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways[J]. J Cell Biol. 2000,148(3):465-480.
    [26]Suzuki K, Kirisako T, Kamada Y, et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation[J]. EMBO J. 2001,20(21):5971-5981.
    [27]Yen W L, Legakis J E, Nair U, et al. Atg27 is required for autophagy-dependent cycling of Atg9[J]. Mol Biol Cell.2007,18(2):581-593.
    [28]Matsunaga K, Saitoh T, Tabata K, et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages[J]. Nat Cell Biol.2009,11(4): 385-396.
    [29]Zhong Y, Wang Q J, Li X, et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin l-phosphatidylinositol-3-kinase complex[J]. Nat Cell Biol. 2009,11(4):468-476.
    [30]Liang C, Feng P, Ku B, et al. Autophagic and tumour suppressor activity of a novel Beclinl-binding protein UVRAG[J]. Nat Cell Biol.2006,8(7):688-699.
    [31]Liang C, Lee J S, Inn K S, et al. Beclinl-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking[J]. Nat Cell Biol. 2008,10(7):776-787.
    [32]Takahashi Y, Coppola D, Matsushita N, et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis[J]. Nat Cell Biol.2007,9(10): 1142-1151.
    [33]Zhou X, Wang L, Hasegawa H, et al. Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway[J]. Proc Natl Acad Sci U S A.2010,107(20):9424-9429.
    [34]Eskelinen E L. New insights into the mechanisms of macroautophagy in mammalian cells[J]. Int Rev Cell Mol Biol.2008,266207-247.
    [35]Mizushima N, Noda T, Yoshimori T, et al. A protein conjugation system essential for autophagy[J]. Nature.1998,395(6700):395-398.
    [36]Tanida I, Mizushima N, Kiyooka M, et al. Apg7p/Cvt2p:A novel protein-activating enzyme essential for autophagy[J]. Mol Biol Cell.1999,10(5):1367-1379.
    [37]Kuma A, Mizushima N, Ishihara N, et al. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast[J]. J Biol Chem.2002,277(21):18619-18625.
    [38]Nemoto T, Tanida I, Tanida-Miyake E, et al. The mouse APG10 homologue, an E2-like enzyme for Apg12p conjugation, facilitates MAP-LC3 modification [J]. J Biol Chem. 2003,278(41):39517-39526.
    [39]Tanida I, Tanida-Miyake E, Ueno T, et al. The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3[J]. J Biol Chem.2001,276(3):1701-1706.
    [40]Ichimura Y, Kirisako T, Takao T, et al. A ubiquitin-like system mediates protein lipidation[J]. Nature.2000,408(6811):488-492.
    [41]Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion[J]. Cell. 2007,130(1):165-178.
    [42]Kabeya Y, Mizushima N, Yamamoto A, et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-Ⅱ formation[J]. J Cell Sci.2004,117(Pt 13): 2805-2812.
    [43]Mansuy-Schlick V, Tolle F, Delage-Mourroux R, et al. Specific distribution of gabarap, gecl/gabarap Like 1, gatel6/gabarap Like 2, lc3 messenger RNAs in rat brain areas by quantitative real-time PCR[J]. Brain Res.2006,1073-107483-87.
    [44]Tanida I, Sou Y S, Ezaki J, et al. HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3-and GABAA receptor-associated protein-phospholipid conjugates[J]. J Biol Chem.2004,279 (35):36268-36276.
    [45]Tanida I, Sou Y S, Minematsu-Ikeguchi N, et al. Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3[J]. FEBS J.2006,273(11):2553-2562.
    [46]Sagiv Y, Legesse-Miller A, Porat A, et al. GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28[J]. EMBO J.2000,19(7):1494-1504.
    [47]Mizushima N, Yoshimori T, Ohsumi Y. Role of the Apg12 conjugation system in mammalian autophagy[J]. Int J Biochem Cell Biol.2003,35(5):553-561.
    [48]Hanada T, Noda N N, Satomi Y, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy[J]. J Biol Chem.2007,282(52):37298-37302.
    [49]Fujita N, Itoh T, Omori H, et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy[J]. Mol Biol Cell.2008, 19(5):2092-2100.
    [50]Axe E L, Walker S A, Manifava M, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum[J]. J Cell Biol.2008,182(4):685-701.
    [51]Taguchi-Atarashi N, Hamasaki M, Matsunaga K, et al. Modulation of local PtdIns3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy[J]. Traffic.2010,11(4): 468-478.
    [52]Vergne I, Roberts E, Elmaoued R A, et al. Control of autophagy initiation by phosphoinositide 3-phosphatase Jumpy[J]. EMBO J.2009,28(15):2244-2258.
    [53]Hirota Y, Tanaka Y. A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions[J]. Cell Mol Life Sci.2009,66(17):2913-2932.
    [54]Itoh T, Fujita N, Kanno E, et al. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation[J]. Mol Biol Cell.2008,19(7):2916-2925.
    [55]Filimonenko M, Stuffers S, Raiborg C, et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease[J]. J Cell Biol.2007,179(3):485-500.
    [56]Jager S, Bucci C, Tanida I, et al. Role for Rab7 in maturation of late autophagic vacuoles[J]. J Cell Sci.2004,117(Pt 20):4837-4848.
    [57]Epple U D, Suriapranata I, Eskelinen E L, et al. Aut5/Cvt17p, a putative lipase essential for disintegration of autophagic bodies inside the vacuole[J]. J Bacteriol.2001,183(20):5942-5955.
    [58]Tanida I, Ueno T, Kominami E. LC3 and Autophagy[J]. Methods Mol Biol.2008, 44577-88.
    [59]Tanida I, Wakabayashi M, Kanematsu T, et al. Lysosomal turnover of GABARAP-phospholipid conjugate is activated during differentiation of C2C12 cells to myotubes without inactivation of the mTor kinase-signaling pathway [J]. Autophagy.2006,2(4): 264-271.
    [60]Bjorkoy G, Lamark T, Brech A, et al. p62/SQSTMl forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death[J]. J Cell Biol. 2005,171(4):603-614.
    [61]Komatsu M, Waguri S, Koike M, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice[J]. Cell.2007,131(6):1149-1163.
    [62]Dagda R K, Cherra S J,3rd, Kulich S M, et al. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission[J]. J Biol Chem. 2009,284(20):13843-13855.
    [63]Kissova I, Plamondon LT, Brisson L, et al. Evaluation of the roles of apoptosis, autophagy, and mitophagy in the loss of plating efficiency induced by Bax expression in yeast[J]. J Biol Chem.2006,281(47):36187-36197.
    [64]Ano Y, Hattori T, Oku M, et al. A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate[J]. Mol Biol Cell.2005,16(2):446-457.
    [65]Hara-Kuge S, Fujiki Y. The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes[J]. Exp Cell Res.2008,314(19):3531-3541.
    [66]Monastyrska I, Kiel J A, Krikken A M, et al. The Hansenula polymorpha ATG25 gene encodes a novel coiled-coil protein that is required for macropexophagy[J]. Autophagy. 2005,1(2):92-100.
    [67]Lynch-Day M A, Klionsky D J. The Cvt pathway as a model for selective autophagy[J]. FEBS Lett.2010,584(7):1359-1366.
    [68]Shintani T, Klionsky D J. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway[J]. J Biol Chem.2004,279(29):29889-29894.
    [69]Yorimitsu T, Klionsky D J. Atgll links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway[J]. Mol Biol Cell.2005,16(4):1593-1605.
    [70]Kincaid M M, Cooper A A. ERADicate ER stress or die trying[J]. Antioxid Redox Signal. 2007,9(12):2373-2387.
    [71]Kondratyev M, Avezov E, Shenkman M, et al. PERK-dependent compartmentalization of ERAD and unfolded protein response machineries during ER stress[J]. Exp Cell Res. 2007,313 (16):3395-3407.
    [72]Klionsky D J, Abeliovich H, Agostinis P, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes[J]. Autophagy.2008,4(2):151-175.
    [73]Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research[J]. Cell. 2010,140(3):313-326.
    [74]Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. EMBO J.2000,19(21):5720-5728.
    [75]Tanida 1, Minematsu-Ikeguchi N, Ueno T, et al. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy[J]. Autophagy.2005,1(2):84-91.
    [76]Gutierrez M G, Munafo D B, Beron W, et al. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells[J]. J Cell Sci.2004,117(Pt 13):2687-2697.
    [77]Ciechomska I A, Tolkovsky A M. Non-autophagic GFP-LC3 puncta induced by saponin and other detergents[J]. Autophagy.2007,3(6):586-590.
    [78]Katayama H, Yamamoto A, Mizushima N, et al. GFP-like proteins stably accumulate in lysosomes[J]. Cell Struct Funct.2008,33(1):1-12.
    [79]Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3[J]. Autophagy.2007,3(5):452-460.
    [80]Noda T, Matsuura A, Wada Y, et al. Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae[J]. Biochem Biophys Res Commun.1995,210(1):126-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700