用户名: 密码: 验证码:
免疫相关基因多态与扇贝抗病性的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水产养殖为世界提供了将近三分之一的食物,其中软体动物养殖产量在全球水产养殖中居第二位,80%-90%来自中国和日本。栉孔扇贝和海湾扇贝是中国重要的养殖品种,但是在过去的几十年间,由于频繁爆发的疾病使中国的扇贝养殖业遭受了巨大的经济损失,因此有必要通过分子手段加快抗病品种的培育步伐。标记辅助育种(marker assisted selection,MAS)是成功应用于动物育种中的分子手段之一,但由于缺乏与抗病性状相关的标记,MAS目前还无法在软体动物中得到应用。因此,寻找与抗病性状相关的分子标记是在软体动物中发展MAS的关键。
     本研究利用鳗弧菌(Listonella anguillarum)对栉孔扇贝和海湾扇贝进行攻毒感染实验,初步得到敏感群体和抗病群体后采用PCR、PCR-RFLP和Tetra ARMs PCR等方法研究了CfPGRP、CfLGBP、AiSPI和AiDef基因多态性及其与扇贝对鳗弧菌抗性/敏感性的关系。
     肽聚糖识别蛋白(PGRP)和脂多糖和β-1,3-葡聚糖结合蛋白(CfLGBP)作为模式识别受体,在固有免疫中发挥重要作用。本研究对栉孔扇贝CfPGRP和CfLGBP的基因多态性及其与扇贝对鳗弧菌的抗性进行了关联分析。在CfLGBP和CfPGRP基因中分别发现8个和12个多态性位点,其中CfLGBP的脂多糖和葡聚糖结合蛋白基序中有两个非同义突变(+4407位点和+4408位点),而在CfPGRP的肽聚糖识别蛋白结合基序中有一个非同义突变(+7679)。这三个位点在抗病群体和敏感群体中的分布存在显著性差异(P <0.05),CfPGRP基因的+4407CT基因型和+4408G/A基因型,CfLGBP基因的+7679G/G基因型与栉孔扇贝对鳗弧菌的抗性相关。为了验证这个结果,利用酶联免疫吸附实验分别检测了LPS, PGN和β-glucan与不同基因型的PGRP和LGBP蛋白间的结合活性。结果表明,两种基因型的蛋白与相应配体的结合活性具有显著性差异(P <0.05)。另外检测了不同基因型的PGRP的抗菌活性,尽管两种基因型的PGRP都能抑制大肠杆菌的生长,但两种之间无显著性差异(P>0.05)。总之,CfPGRP基因的+4407CT基因型和+4408G/A基因型,CfLGBP基因的+7679G/G基因型与栉孔扇贝对鳗弧菌的抗性相关。CfPGRP和CfLGBP基因多态影响了病原相关分子模式的结合活性,但并没有影响抗菌活性。这些结果表明这3个位点可以作为潜在的分子标记应用于扇贝抗病育种中。
     同时,我们检测了AiSPI和AiDef基因部分序列的多态性,并对其与抗病性的关系进行了探讨。在AiSPI基因中找到9处SNPs位点,其中5处为非同义突变;在获得的AiDef基因部分序列中没有发现多态性位点。选取AiSPI基因的两处多态性位点,+536和+1312进行抗病相关性分析。结果表明+536A-G多态性位点与扇贝对鳗弧菌的抗性/敏感性显著相关,+536A/A基因型在抗病群体中的分布显著高于敏感群体(P <0.05);而+1312C-T位点与与扇贝对鳗弧菌的抗性/敏感性不相关(P>0.05)。具有+536A/A基因型的AiSPI基因编码的蛋白,rAiSPI (N)具有较强的体外丝氨酸蛋白酶活性(P <0.05)。但这个结果仍需要进一步的体内实验来证实。这些结果将为贝类的标记辅助育种提供参考。此外,抗病相关分子标记的发现还有利于加深对扇贝发病机理的理解,并有助于发掘预防及治疗贝类疾病的新方法。
Aquaculture is becoming an important source for world food economy and supplies one-third ofworld food consumption. Mollusk takes second place in the global aqua production, and over80to90%of the production is from China and Japan. Both Zhikong scallop (Chlamys farreri) and Bay scallop(Argopecten irradians irradians) are important mollusk species cultivated in China and contribute a lotto aquaculture industry. However, a scallop aquaculture has been suffering a lot due to the frequentdisease occurrences in the recent decades. Therefore, the selection of disease resistant strain is essentialis mandatory. Marker assisted selection (MAS) is one of the molecular methods successfully applied inanimal breeding. However, MAS is currently far from practice in mollusks due to the lack of markersassociated with quantitative traits. Identification of markers associated with resistance to pathogens isnecessary for the development of MAS in mollusks.
     In this study, Zhikong scallops and Bay scallops were classified into susceptible and resistantstocks according to their survival time after L. anguillarum challenge. The nucleotide sequencepolymorphisms in CfPGRP, CfLGBP from Zhikong scallop and AiSPI, AiDef genes from Bay scallopwere investigated to explore their associations with susceptibility/resistance to L. anguillarum by PCR,PCR-RFLP and Tetra ARMs PCR methods.
     Peptidoglycan recognition protein (PGRP) and Lipopolysaccharide and β-1,3-glucan bindingprotein (LGBP) are pattern recognition receptors, and they play important roles in the innate immune response against invasive pathogens. The single nucleotide polymorphism (SNP) in PGRP, LGBP gene(CfPGRP,CfLGBP) were screened in PGRP, LGBP gene from scallop Chlamys farreri to investigatetheir association with disease resistance of scallop against the gram negative marine bacteria Listonellaanguillarum. Eight and twelve mutations were found in the potential LPS and glucanase motif ofCfLGBP and PGRP domain of CfPGRP, respectively. Among them, two mutations werenonsynonymous in LPS and glucanase motif region, and one mutation was nonsynonymous for PGRPdomain. The polymorphism of the locus+4407-4408for PGRP domain and at locus+7679for LPS andglucanase domain were screened, and the frequencies of their genotypes were significantly differentiated(P <0.05) between disease susceptible and resistant group. The genotype+4407-4408CG/TA forCfPGRP,+7679G/G for CfLGBP were more towards resistant phenotype against L. anguillarum. Thegenotype frequency of CG/CG in the resistant stock was significantly lower than that in susceptiblestock (0%VS32.4%), while that of CG/TA in the resistant stock was significantly higher than that insusceptible stock for CfPGRP (P <0.01). For CfLGBP, three genotypes; G/G, G/A and A/A, wererevealed at locus+7679, and their frequencies were89.7%,7.7%and2.6%in the resistant stock, while63.2%,34.2%and2.6%in the susceptible stock, respectively. The frequency of genotypes G/G and G/Awere significantly different (P <0.05) between the two stocks. The pathogen-associated molecularpatterns (PAMP) binding activity of recombinant proteins of CfPGRP and CfLGBP, rCfPGRP-S1(R)with CG variant in4407-4408site and rCfPGRP-S1(Y) with TA variant in4407-4408site, rCfLGBP (G)with G variant at locus+7679and rCfLGBP (S) with A variant at locus+7679, were elucidated byELISA assay. LPS, PGN were used as substrate for ELISA assay for PGRP and LPS, β-glucan wereused for LGBP because these substrates are conserved pathogen-associated molecular pattern (PAMP)molecules of bacteria and fungi. The results were further validated the significant differentiation (P <0.05) between the protein variants. Besides, PGRP is a multifunctional gene and also displays the antibacterial activity. Growth inhibition assay was conducted to find the antibacterial activities of PGRPprotein variants. Although, both the variants drastically reduced the growth rate of E. coli, no significantdifference (P>0.05) was found between the protein variants. In conclusion, the polymorphism at locus+4407-4408CG/TA of PGRP domain and at locus+7679G/G of LPS and β-glucanase motif weresignificantly associated with disease resistance in Zhikong scallop, and the effect of this polymorphismmight considerably affect the PAMP binding of CfPGRP and CfLGBP but not the antibacterial activityof CfPGRP. The findings clearly suggested that the polymorphic loci could be utilized as a potentialmarker for disease resistance against L. anguillarum.
     Serine protease inhibitor (SPIs) and Defensin are important genes associated with rapid defenseagainst pathogen. Serine protease inhibitors (AiSPI) play a crucial role in regulation of Serine proteaseactivity, and were classified into several protein families, where Kazal-type inhibitors are one of theproteinase inhibitor families with multi-domain proteins. Similarly, Defensin (AiDef) is one of the AntiMicrobial Protein (AMPs) which posses remarkable microbicidal activity against Gram-positive, Gram-negative bacteria and fungi. In the present study, the polymorphism of AiSPI and partial sequence ofAiDef domain from Bay scallop was revealed to find possible disease resistant association. Nine SNPswere identified in the exon region of AiSPI where5SNPs were nonsynonymous mutation, and therewere no mutation found in the obtained partial sequence of AiDef domain. Among the AiSPI mutation,two mutations were analyzed and found to be associated with disease resistant. The mutation from A-Gat locus+536was found to be significantly associated, to the genotype A/A which was much prevalentin resistant group than in susceptible group, there was a significant difference (P <0.05). The genotypefrequency of A/G in the resistant stock was significantly lower than that in susceptible stock (12.8%VS35.1%), while that of A/A in the resistant stock was significantly higher than that in susceptible stock forAiSPI (P <0.05). But the other mutation C-T at locus+1312was not associated with either group, and was found to be a rare mutation (P>0.05), and the genotypic frequencies of genotypes T/T, T/C, C/C atlocus+1312were94.6%,2.7%and2.7%in the susceptible stock, while100%,0%and0%in theresistant stock, respectively. In vitro SP-inhibition assay of the protein variants of AiSPI was conductedto elucidate the effect of SNP, and the assay demonstrated that rAiSPI (N) with A variant at locus+536significantly exhibited a higher inhibition (P <0.05) than rAiSPI (S) with G variant. In conclusion, themutation at locus+536A/A significantly associated with disease resistant in Bay scallop and its effectmight significantly affect the function of SPI. Nevertheless, the research needs further downstream andin vivo assay to establish further functional association. These evidences would hopefully give sometheoretical information for MAS in mollusks.
引文
1. Fisheries F.Aquaculture Department (2009) The state of world fisheries and aquaculture2008.Food and Agriculture Organization of the United Nations, Rome2010:
    2. Guo X, Ford SE, Zhang F.Molluscan aquaculture in China. Journal of Shellfish Research1999;18:19-40.
    3. Haibin Z, Xiao L, Guofan Z, Guizhen Z.Effects of effective population size on the F2growthand survival of bay scallop Argopecten irradians irradians (Lamarck).海洋学报2005;24:
    4. Wang L, Zhang H, Song L, Guo X.Loss of allele diversity in introduced populations of thehermaphroditic bay scallop Argopecten irradians. Aquaculture2007;271:252-259.
    5. Martinez V, Guimar es E, Ruane J, Scherf B, Sonnino A, Dargie J.Marker-assisted selectionin fish and shellfish breeding schemes. Marker-Assisted selection-Current status and futureperspectives in crops, livestock, forestry and fish2007:329-362.
    6. Kwon JM, Goate AM.The candidate gene approach. Alcohol Research and Health2000;24:164-168.
    7. Pant S, Verschoor C, Schenkel F, You Q, Kelton D, Karrow N.Bovine PGLYRP1polymorphisms and their association with resistance to Mycobacterium avium ssp.paratuberculosis. Animal Genetics2011:
    8. Uenishi H, Shinkai H, Morozumi T, Muneta Y, Jozaki K, Kojima-Shibata C, et al.Polymorphisms in pattern recognition receptors and their relationship to infectious diseasesusceptibility in pigs.2011: BMC Proceedings.
    9. Pant S, Schenkel F, Leyva-Baca I, Sharma B, Karrow N.Identification of single nucleotidepolymorphisms in bovine CARD15and their associations with health and production traits inCanadian Holsteins. BMC Genomics2007;8:421.
    10. Li GQ, Lu LZ, Wang DQ, Shen JD, Tao ZR, Zhao AZ, et al.Advance in association studies ofmajor histocompatibility complex (MHC) gene polymorphisms with traits of resistance againstinfectious disease in chickens]. Yi chuan=Hereditas/Zhongguo yi chuan xue hui bian ji2006;28:893.
    11. Meyer FP.Aquaculture disease and health management. Journal of Animal Science1991;69:4201.
    12. Kindt TJ, Goldsby RA, Osborne BA, Kuby J. Kuby immunology. WH Freeman;2007.
    13. Adams L, Templeton J.Genetic resistance to bacterial diseases of animals. Revue scientifique ettechnique (International Office of Epizootics)1998;17:200.
    14. Mirkena T, Duguma G, Haile A, Tibbo M, Okeyo A, Wurzinger M, et al.Genetics ofadaptation in domestic farm animals: A review. Livestock Science2010;132:1-12.
    15. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz R.Phylogenetic perspectives in innateimmunity. Science1999;284:1313.
    16. Janeway Jr CA, Medzhitov R.Innate immune recognition. Annual review of immunology2002;20:197-216.
    17. Hoffmann JA, Reichhart JM.Drosophila innate immunity: an evolutionary perspective. natureimmunology2002;3:121-126.
    18. Du M, Chen S, Liu Y, Yang J.MHC polymorphism and disease resistance to vibrioanguillarum in8families of half-smooth tongue sole (Cynoglossus semilaevis). BMC Genetics2011;12:78.
    19. Janeway CA, Travers P, Walport M, Shlomchik MJ.Appendix I. Immunologists' Toolbox.2001:
    20. Frank SA. Immunology and evolution of infectious disease. Princeton Univ Pr;2002.
    21. Getz GS.Bridging the innate and adaptive immune systems. Journal of Lipid Research2005;46:619-622.
    22. Raulet DH.Interplay of natural killer cells and their receptors with the adaptive immune response.nature immunology2004;5:996-1002.
    23. Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA.NK cell and DC interactions.Trends in immunology2004;25:47-52.
    24. Gjedrem T, Baranski M. Selective breeding in aquaculture: An introduction. Vol.10: SpringerVerlag;2009.
    25. Tave D. Selective breeding programmes for medium-sized fish farms. FAO;1996.
    26. Bateson W, Mendel G. Mendel's principles of heredity. University press;1913.
    27. Hutt FB. Genetics of the Fowl. Vol.274: McGraw-Hill New York;1949.
    28. Nicholas FW.Animal breeding and disease. Philosophical Transactions of the Royal Society B:Biological Sciences2005;360:1529-1536.
    29. Shuster DE, Kehrli ME, Ackermann MR, Gilbert RO.Identification and prevalence of a geneticdefect that causes leukocyte adhesion deficiency in Holstein cattle. Proceedings of the NationalAcademy of Sciences1992;89:9225.
    30. Medrano JF, Aguilar‐Cordova E.Polymerase chain reaction amplification of bovine β‐lactoglobulin genomic sequences and identification of genetic variants by RFLP analysis.Animal Biotechnology1990;1:73-77.
    31. Milan D, Jeon JT, Looft C, Amarger V, Robic A, Thelander M, et al.A mutation in PRKAG3associated with excess glycogen content in pig skeletal muscle. Science2000;288:1248.
    32. Reiner G, Melchinger E, Kramarova M, Pfaff E, Büttner M, Saalmüller A, et al.Detection ofquantitative trait loci for resistance/susceptibility to pseudorabies virus in swine. Journal ofGeneral Virology2002;83:167.
    33. Abasht B, Dekkers J, Lamont S.Review of quantitative trait loci identified in the chicken.Poultry Science2006;85:2079-2096.
    34. Snowder G, Van Vleck LD, Cundiff L, Bennett G.Influence of breed, heterozygosity, anddisease incidence on estimates of variance components of respiratory disease in preweaned beefcalves. Journal of Animal Science2005;83:1247.
    35. Berry DP, Bermingham ML, Good M, More SJ.Genetics of animal health and disease in cattle.Irish Veterinary Journal2011;64:5.
    36. Mrode R, Swanson G. Genetic and statistical properties of somatic cell count and its suitabilityas an indirect means of reducing the incidence of mastitis in dairy cattle.1996.
    37. Heringstad B, Chang Y, Gianola D, Klemetsdal G.Genetic analysis of clinical mastitis, milkfever, ketosis, and retained placenta in three lactations of Norwegian red cows. Journal of DairyScience2005;88:3273-3281.
    38. Heringstad B.Genetic analysis of fertility-related diseases and disorders in Norwegian red cows.Journal of Dairy Science2010;93:2751-2756.
    39. Shook G.Selection for disease resistance. Journal of Dairy Science1989;72:1349-1362.
    40. Müller M, Brem G.Disease resistance in farm animals. Cellular and Molecular Life Sciences1991;47:923-934.
    41. JIE H, LIU Y.Breeding for disease resistance in poultry: opportunities with challenges. World'sPoultry Science Journal2011;67:687-696.
    42. Cavero D, Schmutz M, Philipp H, Preisinger R.Breeding to reduce susceptibility to Escherichiacoli in layers. Poultry Science2009;88:2063-2068.
    43. Woolaston R, Elwin R, Barger I.No adaptation of Haemonchus contortus to geneticallyresistant sheep. International Journal for Parasitology1992;22:377-380.
    44. Dennis R, Zhang H, Cheng HW.Effect of selection for resistance and susceptibility to viraldiseases on concentrations of dopamine and immunological parameters in six-week-old chickens.Poultry Science2006;85:2135-2140.
    45. Ma H, Ning Z, Lu Y, Han H, Wang S, Mu J, et al.Monocytes-macrophages phagocytosis as apotential marker for disease resistance in generation1of dwarf chickens. Poultry Science2010;89:2022-2029.
    46. Al-Murrani W, Al-Rawi I, Raof N.Genetic resistance to Salmonella typhimurium in two linesof chickens selected as resistant and sensitive on the basis of heterophil/lymphocyte ratio. BritishPoultry Science2002;43:501-507.
    47. Shook G, Schutz M.Selection on somatic cell score to improve resistance to mastitis in theUnited States. Journal of Dairy Science1994;77:648-658.
    48. Harmon B, Adams L, Templeton J, Smith3rd R.Macrophage function in mammary glands ofBrucella abortus-infected cows and cows that resisted infection after inoculation of Brucellaabortus. American Journal of Veterinary Research1989;50:459.
    49. Qureshi T.Templeton, and LG Adams.1996. Intracellular survival of Brucella abortus,Mycobacterium bovis (BCG), Salmonnella dublin and Salmonella typhimurium in macrophagesfrom cattle genetically resistant to Brucella abortus. Vet. Immunol. Immunopathol50:55-66.
    50. Feng J, Li Y, Hashad M, Schurr E, Gros P, Adams LG, et al.Bovine natural resistanceassociated macrophage protein1(Nramp1) gene. Genome Research1996;6:956-964.
    51. Lamont S.The chicken major histocompatibility complex in disease resistance and poultrybreeding. Journal of Dairy Science1989;72:1328-1333.
    52. Lewin HA.Disease resistance and immune response genes in cattle: strategies for their detectionand evidence of their existence. Journal of Dairy Science1989;72:1334-1348.
    53. Batra T, Lee A, Gavora J, Stear M.Class I Alleles of the Bovine Major HistocompatibilitySystem and Their Association with Economic Traits1,2. Journal of Dairy Science1989;72:2115-2124.
    54. Janzen C, Kochs G, Haller O.A monomeric GTPase-negative MxA mutant with antiviralactivity. Journal of Virology2000;74:8202.
    55. BERNASCONI D, SCHULTZ U, STAEHELI P.The interferon-induced Mx protein of chickenslacks antiviral activity. Journal of Interferon&Cytokine Research1995;15:47-53.
    56. Ko JH, Jin HK, Asano A, Takada A, Ninomiya A, Kida H, et al.Polymorphisms and thedifferential antiviral activity of the chicken Mx gene. Genome Research2002;12:595-601.
    57. Moon HW, Hoffman LJ, Cornick NA, Booker SL, Bosworth BT.Prevalences of somevirulence genes among Escherichia coli isolates from swine presented to a diagnostic laboratoryin Iowa. Journal of Veterinary Diagnostic Investigation1999;11:557-560.
    58. Bossers A, Harders F, Smits M.PrP genotype frequencies of the most dominant sheep breed in acountry free from scrapie. Archives of Virology1999;144:829-834.
    59. Hu J, Bumstead N, Barrow P, Sebastiani G, Olien L, Morgan K, et al.Resistance tosalmonellosis in the chicken is linked to NRAMP1and TNC. Genome Research1997;7:693-704.
    60. Wigley P.Genetic resistance to Salmonella infection in domestic animals. Research in VeterinaryScience2004;76:165-169.
    61. Bosselman RA, Hsu RY, Boggs T, Hu S, Bruszewski J, Ou S, et al.Germline transmission ofexogenous genes in the chicken. Science1989;243:533.
    62. McGrew MJ, Sherman A, Ellard FM, Lillico SG, Gilhooley HJ, Kingsman AJ, et al.Efficientproduction of germline transgenic chickens using lentiviral vectors. EMBO Reports2004;5:728-733.
    63. Lyall J, Irvine RM, Sherman A, McKinley TJ, Nú ez A, Purdie A, et al.Suppression of avianinfluenza transmission in genetically modified chickens. Science2011;331:223.
    64. Cyranoski D.Koreans rustle up madness-resistant cows. Nature2003;426:743-743.
    65. Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, et al.Geneticallyenhanced cows resist intramammary Staphylococcus aureus infection. Nature Biotechnology2005;23:445-451.
    66. Donovan DM, Kerr DE, Wall RJ.Engineering disease resistant cattle. Transgenic Research2005;14:563-567.
    67. sterg ard H, Kristensen B, Andersen S.Investigations in farm animals of associations betweenthe MHC system and disease resistance and fertility. Livestock Production Science1989;22:49-
    67.
    68. Fife M, Howell J, Salmon N, Hocking P, Van Diemen P, Jones M, et al.Genome‐wide SNPanalysis identifies major QTL for Salmonella colonization in the chicken. Animal Genetics2010:
    69. Preisinger R.Genome-wide selection in poultry. Lohmann Information2010;45:18-21.
    70. Roberts E, Card LE.Inheritance of resistance to bacterial infection in animals: a genetic study ofpullorum disease.1935:
    71. Nicholas FW. Introduction to veterinary genetics. Wiley-Blackwell;2009.
    72. Edfors-Lilja I, Wattrang E, Magnusson U, Fossum C.Genetic variation in parameters reflectingimmune competence of swine. Veterinary Immunology and Immunopathology1994;40:1-16.
    73. Wilkie B, Mallard B.Genetic aspects of health and disease resistance in pigs. Breeding fordisease resistance in farm animals, second edition (ed. FE Axford, SC Bishop, FW Nichola s andJB Owen)2000:379-396.
    74. Rothschild MF.Selection for disease resistance in the pig. Proceedings of the National SwineImprovement Federation, Raleigh, North Carolina1998:
    75. Chappuis J, Duval-Iflah Y, Ollivier L, Legault C.Escherichia coli K88adhesion: A comparisonof Chinese and Large White piglets. Genet Sel Evol1984;16:385-390.
    76. V geli P, Meijerink E, Fries R, Neuenschwander S, Vorl nder N, Stranzinger G, et al.Amolecular test for the detection of E. coli F18receptors: a breakthrough in the struggle againstedema disease and post-weaning diarrhea in swine]. Schweiz Arch Tierheilkd1997;139:479.
    77. Bao W, Wu S, Musa H, Zhu G, Chen G.Genetic variation at the alpha‐1‐fucosyltransferase(FUT1) gene in Asian wild boar and Chinese and Western commercial pig breeds. Journal ofAnimal Breeding and Genetics2008;125:427-430.
    78. Sharif S, Mallard B, Sargeant J.Presence of glutamine at position74of pocket4in the BoLA-DR antigen binding groove is associated with occurrence of clinical mastitis caused byStaphylococcus species. Veterinary Immunology and Immunopathology2000;76:231-238.
    79. Bishop S, Jackson F, Coop R, Stear M.Genetic parameters for resistance to nematodeinfections in Texel lambs and their utility in breeding programmes. ANIMAL SCIENCE-GLASGOW THEN PENICUIK-2004;78:185-194.
    80. Morris C, Vlassoff A, Bisset S, Baker R, Watson T, West C, et al.Continued selection ofRomney sheep for resistance or susceptibility to nematode infection: estimates of direct andcorrelated responses. Animal Science2000;70:17-27.
    81. Janssen M, Weimann C, Gauly M, Erhardt G. Associations between infections withHaemonchus contortus and genetic markers on ovine chromosome20.2002: Institut National dela Recherche Agronomique (INRA).
    82. Escayg A, Hickford J, Bullock D.Association between alleles of the ovine majorhistocompatibility complex and resistance to footrot. Research in Veterinary Science1997;63:283-287.
    83. Litchfield A, Raadsma H, Hulme D, Brown S, Nicholas F, Egerton J.Disease resistance inMerino sheep. II. RFLPs in Class IIMHC and their association with resistance to footrot. Journalof Animal Breeding and Genetics1993;110:321-334.
    84. Hickford J.Development of a sustainable method of natural footrot control. Report to the NZMeat Research and Development Council. Lincoln University2000:
    85. Goldmann W, Hunter N, Benson G, Foster JD, Hope J.Different scrapie-associated fibrilproteins (PrP) are encoded by lines of sheep selected for different alleles of the Sip gene. TheJournal of general virology1991;72:2411.
    86. Hunter N.PrP genetics in sheep and the implications for scrapie and BSE. Trends inMicrobiology1997;5:331-334.
    87. Bloom SE, Bacon LD.Linkage of the major histocompatibility (B) complex and the nucleolarorganizer in the chicken. Journal of Heredity1985;76:147.
    88. Hu J, Bumstead N, Burke D, Ponce de Leon F, Skamene E, Gros P, et al.Genetic and physicalmapping of the natural resistance-associated macrophage protein1(NRAMP1) in chicken.Mammalian Genome1995;6:809-815.
    89. Wang YF, Sun YK, Tian ZC, Shi XM, Tong GZ, Liu SW, et al.Protection of chickens againstinfectious bronchitis by a recombinant fowlpox virus co-expressing IBV-S1and chicken IFN[gamma]. Vaccine2009;27:7046-7052.
    90. Yin C, Zhang C, Zhang A, Qin H, Wang X, Du L, et al.Expression analyses and antiviralproperties of the Beijing-You and White Leghorn myxovirus resistance gene with differentamino acids at position631. Poultry Science2010;89:2259-2264.
    91. Chevassus B, Dorson M.Genetics of resistance to disease in fishes. Aquaculture1990;85:83-107.
    92. Fjalestad KT, Gjedrem T, Gjerde B.Genetic improvement of disease resistance in fish: anoverview. Aquaculture1993;111:65-74.
    93. Wiegertjes GF, Stet RJM, Parmentier HK, van Muiswinkel WB.Immunogenetics of diseaseresistance in fish: a comparative approach. Developmental&Comparative Immunology1996;20:365-381.
    94. Palti Y, Parsons JE, Thorgaard GH.Identification of candidate DNA markers associated withIHN virus resistance in backcrosses of rainbow (Oncorhynchus mykiss) and cutthroat trout (O.clarki). Aquaculture1999;173:81-94.
    95. LaPatra S, Arsons J, Jones G, McRoberts W.Early life stage survival and susceptib ility ofbrook trout, coho salmon, rainbow trout, and their reciprocal hybrids to infectious hematopoieticnecrosis virus. Journal of Aquatic Animal Health1993;5:270-274.
    96. LaPatra S, Lauda K, Jones G, Shewmaker W, Groff J, Routledge D.Susceptibility andhumoral response of brown trout X lake trout hybrids to infectious hematopoietic necrosis virus:a model for examining disease resistance mechanisms. Aquaculture1996;146:179-188.
    97. Balfry S, Shariff M, Iwama GK.Strain differences in non-specific immunity of tilapiaOreochromis niloticus following challenge with Vibrio parahaemolyticus. Diseases of aquaticorganisms1997;30:77-80.
    98. Balfry SK, Maule AG, Iwama GK.Coho salmon Oncorhynchus kisutch strain differences indisease resistance and non-specific immunity, following immersion challenges with Vibrioanguillarum. Diseases of aquatic organisms2001;47:39-48.
    99. Palti Y, Tinman S, Cnaani A, Avidar Y, Ron M, Hulata G.Comparative study of biochemicaland nonspecific immunological parameters in two tilapia species (Oreochromis aureus and O.mossambicus). Israel Journal of Aquaculture1999;51:148-156.
    100. Cnaani A, Tinman S, Avidar Y, Ron M, Hulata G.Comparative study of biochemicalparameters in response to stress in Oreochromis aureus, O. mossambicus and two strains of O.niloticus. Aquaculture Research2004;35:1434-1440.
    101. Wiegertjes G, Voorthuis P, Groeneveld A, Muiswinkel W, Stet R, Bongers A, etal.Characterization of isogenic carp (Cyprinus carpio L.) lines with a genetically determined highor low antibody production. Animal Genetics1996;27:313-319.
    102. Palti Y, Nichols KM, Waller KI, Parsons JE, Thorgaard GH.Association between DNApolymorphisms tightly linked to MHC class II genes and IHN virus resistance in backcrosses ofrainbow and cutthroat trout. Aquaculture2001;194:283-289.
    103. Rodriguez MF, LaPatra S, Williams S, Famula T, May B.Genetic markers associated withresistance to infectious hematopoietic necrosis in rainbow and steelhead trout (Oncorhynchusmykiss) backcrosses. Aquaculture2004;241:93-115.
    104. Barroso RM, Wheeler PA, LaPatra SE, Drew RE, Thorgaard GH.QTL for IHNV resistanceand growth identified in a rainbow (Oncorhynchus mykiss)×Yellowstone cutthroat(Oncorhynchus clarki bouvieri) trout cross. Aquaculture2008;277:156-163.
    105. Nichols K, Young W, Danzmann R, Robison B, Rexroad C, Noakes M, et al.A consolidatedlinkage map for rainbow trout (Oncorhynchus mykiss). Animal Genetics2003;34:102-115.
    106. Ozaki A, Sakamoto T, Khoo S, Nakamura K, Coimbra M, Akutsu T, et al.Quantitative traitloci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus(IPNV) in rainbow trout (Oncorhynchus mykiss). Molecular Genetics and Genomics2001;265:23-31.
    107. Dunham RA, Warr GW, Nichols A, Duncan PL, Argue B, Middleton D, et al.Enhancedbacterial disease resistance of transgenic channel catfish Ictalurus punctatus possessing cecropingenes. Marine Biotechnology2002;4:338-344.
    108. Sarmasik A, Warr G, Chen TT.Production of transgenic medaka with increased resistance tobacterial pathogens. Marine Biotechnology2002;4:310-322.
    109. Zheng H, Xu F, Zhang G.Crosses between two subspecies of bay scallop Argopecten irradiansand heterosis for yield traits at harvest. Aquaculture Research2010:
    110. Zhan A, Bao Z, Yao B, Wang X, Hui M, Hu J.Polymorphic microsatellite markers in theZhikong scallop Chlamys farreri. Molecular Ecology Notes2006;6:127-129.
    111. Wang S, Bao Z, Pan J, Zhang L, Yao B, Zhan A, et al.AFLP linkage map of an intraspecificcross in Chlamys farreri. Journal of Shellfish Research2004;23:491-500.
    112. Wang L, Song L, Chang Y, Xu W, Ni D, Guo X.A preliminary genetic map of Zhikongscallop (Chlamys farreri Jones et Preston1904). Aquaculture research2005;36:643-653.
    113. Ford SE, Haskin HH.Infection and mortality patterns in strains of oysters Crassostrea virginicaselected for resistance to the parasite Haplosporidium nelsoni (MSX). The Journal ofparasitology1987:368-376.
    114. Ford SE, Figueras AJ, Haskin HH.Influence of selective breeding, geographic origin, anddisease on gametogenesis and sex ratios of oysters, Crassostrea virginica, exposed to the parasiteHaplosporidium nelsoni (MSX). Aquaculture1990;88:285-301.
    115. Bao Y, Li L, Zhang G.Polymorphism of the superoxide dismutase gene family in the bayscallop (Argopecten irradians) and its association with resistance/susceptibility to Vibrioanguillarum. Developmental&Comparative Immunology2010;34:553-561.
    116. Yu H, He Y, Wang X, Zhang Q, Bao Z, Guo X.Polymorphism in a serine protease inhibitorgene and its association with disease resistance in the eastern oyster (Crassostrea virginicaGmelin). Fish&Shellfish Immunology2011:
    117. Yang C, Zhang L, Wang L, Zhang H, Qiu L, Siva VS, et al.The Gln32Lys Polymorphism inHSP22of Zhikong Scallop Chlamys farreri Is Associated with Heat Tolerance. PLoS One2011;6: e28564.
    118. Li L, Zhao J, Wang L, Qiu L, Zhang H, Dong C, et al.The polymorphism of lysozyme gene inZhikong scallop (Chlamys farreri) and its association with susceptibility/resistance to Listonellaanguillarum. Fish&Shellfish Immunology2009;27:136-142.
    119. Li Z, Nestor K, Saif Y, Anderson J, Patterson R.Effect of selection for increased body weightin turkeys on lymphoid organ weights, phagocytosis, and antibody responses to fowl cholera andNewcastle disease-inactivated vaccines. Poultry Science2001;80:689-694.
    120. VAN DER MOST PJ, DE JONG B, PARMENTIER HK, VERHULST S.ECOLOGICALIMMUNOLIGY. Functional Ecology2011;25:74-80.
    121. van der Werf JHJ.Marker-assisted selection in sheep and goats. Marker-assisted selection:current status and future perspectives in crops, livestock, forestry and fish2007:229.
    122. MOEN T, Bishop S, Axford R, Nicholas F, Owen J.Breeding for resistance to viral diseases insalmonids. Breeding for Disease Resistance in Farm Animals2011:166.
    123. Langefors, Lohm J, Grahn M, Andersen, Schantz T.Association between majorhistocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in Atlanticsalmon. Proceedings of the Royal Society of London. Series B: Biological Sciences2001;268:479.
    124. Lohm J, Grahn M, Langefors, Andersen, Storset A, Schantz T.Experimental evidence formajor histocompatibility complex–allele–specific resistance to a bacterial infection. Proceedingsof the Royal Society of London. Series B: Biological Sciences2002;269:2029.
    125. Little TJ, Colbourne JK, Crease TJ.Molecular Evolution of Daphnia Immunity Genes:Polymorphism in a Gram-Negative Binding Protein Gene and an a-2-Macroglobulin Gene.Journal of molecular evolution2004;59:498-506.
    126. Schr der NWJ, Schumann RR.Single nucleotide polymorphisms of Toll-like receptors andsusceptibility to infectious disease. The Lancet infectious diseases2005;5:156-164.
    127. Lazzaro BP, Sceurman BK, Clark AG.Genetic basis of natural variation in D. melanogasterantibacterial immunity. Science2004;303:1873.
    128. Su J, Ni D, Song L, Zhao J, Qiu L.Molecular cloning and characterization of a short typepeptidoglycan recognition protein (CfPGRP-S1) cDNA from Zhikong scallop Chlamys farreri.Fish&Shellfish Immunology2007;23:646-656.
    129. Su J, Song L, Xu W, Wu L, Li H, Xiang J.cDNA cloning and mRNA expression of thelipopolysaccharide-and beta-1,3-glucan-binding protein gene from scallop Chlamys farreri.Aquaculture2004;239:69-80.
    130. Zhang H, Wang L, Song L, Zhao J, Qiu L, Gao Y, et al.The genomic structure, alternativesplicing and immune response of Chlamys farreri thioester-containing protein. Developmental&Comparative Immunology2009;33:1070-1076.
    131. Qiu L, Song L, Yu Y, Xu W, Ni D, Zhang Q.Identification and characterization of a myeloiddifferentiation factor88(MyD88) cDNA from Zhikong scallop Chlamys farreri. Fish&ShellfishImmunology2007;23:614-623.
    132. Li C, Ni D, Song L, Zhao J, Zhang H, Li L.Molecular cloning and characterization of acatalase gene from Zhikong scallop Chlamys farreri. Fish&Shellfish Immunology2008;24:26-34.
    133. Wang B, Zhao J, Song L, Zhang H, Wang L, Li C, et al.Molecular cloning and expression ofa novel Kazal-type serine proteinase inhibitor gene from Zhikong scallop C hlamys farreri, andthe inhibitory activity of its recombinant domain. Fish&Shellfish Immunology2008;24:629-637.
    134. Takehana A, Katsuyama T, Yano T, Oshima Y, Takada H, Aigaki T, et al.Overexpression ofa pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc NatlAcad Sci U S A2002;99:13705-10.
    135. Yoshida H, Kinoshita K, Ashida M.Purification of a peptidoglycan recognition protein fromhemolymph of the silkworm, Bombyx mori. J Biol Chem1996;271:13854-60.
    136. Maillet F, Bischoff V, Vignal C, Hoffmann J, Royet J.The Drosophila peptidoglycanrecognition protein PGRP-LF blocks PGRP-LC and IMD/JNK pathway activation. Cell HostMicrobe2008;3:293-303.
    137. Garver LS, Wu J, Wu LP.The peptidoglycan recognition protein PGRP-SC1a is essential forToll signaling and phagocytosis of Staphylococcus aureus in Drosophila. Proc Natl Acad Sci U SA2006;103:660-5.
    138. Ramet M, Manfruelli P, Pearson A, Mathey-Prevot B, Ezekowitz R.Functional genomicanalysis of phagocytosis and identification of a Drosophila receptor for E. coli. Jung2001;256:267.
    139. Mellroth P, Karlsson J, Steiner H.A scavenger function for a Drosophila peptidoglycanrecognition protein. J Biol Chem2003;278:7059-64.
    140. Mellroth P, Steiner H.PGRP-SB1: an N-acetylmuramoyl L-alanine amidase with antibacterialactivity. Biochem Biophys Res Commun2006;350:994-9.
    141. Oliver S.Genetic and biochemical analysis of human Peptidoglycan Recognition Protein-S.2009:
    142. Dziarski R.Peptidoglycan recognition proteins (PGRPs). Mol Immunol2004;40:877-86.
    143. Sackton TB, Lazzaro BP, Clark AG.Genotype and gene expression associations with immunefunction in Drosophila. PLoS Genet2010;6: e1000797.
    144. Yang J, Wang W, Wei X, Qiu L, Wang L, Zhang H, et al.Peptidoglycan recognition proteinof Chlamys farreri (CfPGRP-S1) mediates immune defenses against bacterial infection.Developmental&Comparative Immunology2010;34:1300-1307.
    145. Guan R, Malchiodi EL, Wang Q, Schuck P, Mariuzza RA.Crystal structure of the C-terminalpeptidoglycan-binding domain of human peptidoglycan recognition protein I. Journal ofBiological Chemistry2004;279:31873.
    146. Ye S, Dhillon S, Ke X, Collins AR, Day INM.An efficient procedure for genotyping singlenucleotide polymorphisms. Nucleic acids research2001;29: e88.
    147. Smith P, Krohn R, Hermanson G, Mallia A, Gartner F, Provenzano MD, et al.Measurement ofprotein using bicinchoninic acid. Analytical biochemistry1985;150:76-85.
    148. Yu Y, Huang H, Feng K, Pan M, Yuan S, Huang S, et al.A short-form C-type lectin fromamphioxus acts as a direct microbial killing protein via interaction with peptidoglycan andglucan. The Journal of Immunology2007;179:8425.
    149. Wang L, Song L, Zhao J, Qiu L, Zhang H, Xu W, et al.Expressed sequence tags from thezhikong scallop (Chlamys farreri): discovery and annotation of host-defense genes. Fish&Shellfish Immunology2009;26:744-750.
    150. Zhan A, Hu J, Hu X, Hui M, Wang M, Peng W, et al.Construction of microsatellite‐basedlinkage maps and identification of size‐related quantitative trait loci for Zhikong scallop(Chlamys farreri). Animal Genetics2009;40:821-831.
    151. Kirby RR, Berry R, Powers D.Variation in mitochondrial DNA in a cline of allele frequenciesand shell phenotype in the dog‐whelk Nucella lapillus (L.). Biological Journal of the LinneanSociety1997;62:299-312.
    152. Hawn TR, Scholes D, Li SS, Wang H, Yang Y, Roberts PL, et al.Toll-like receptorpolymorphisms and susceptibility to urinary tract infections in adult women. PLoS One2009;4:e5990.
    153. Császár A, ábel T.Receptor polymorphisms and diseases. European journal of pharmacology2001;414:9-22.
    154. Leung E, Hong J, Fraser AG, Merriman TR, Vishnu P, Abbott WGH, et al.Polymorphisms ofCARD15/NOD2and CD14genes in New Zealand Crohn s disease patients. Immunology andcell biology2005;83:498-503.
    155. Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA, et al.The Drosophilaimmune response against Gram-negative bacteria is mediated by a peptidoglycan recognitionprotein. Nature2002;416:640-4.
    156. Bischoff V, Vignal C, Boneca IG, Michel T, Hoffmann JA, Royet J.Function of thedrosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. NatImmunol2004;5:1175-80.
    157. Lazzaro BP, Sackton TB, Clark AG.Genetic variation in Drosophila melanogaster resistance toinfection: a comparison across bacteria. Genetics2006;174:1539.
    158. Savas S, Taylor IW, Wrana JL, Ozcelik H.Functional nonsynonymous single nucleotidepolymorphisms from the TGF-protein interaction network. Physiological genomics2007;29:109.
    159. Schulenburg H, Boehnisch C, Michiels NK.How do invertebrates generate a highly specificinnate immune response? Molecular immunology2007;44:3338-3344.
    160. Netea MG, van de Veerdonk FL, van Deuren M, van der Meer JWM.Defects of patternrecognition: primary immunodeficiencies of the innate immune system. Current Opinion inPharmacology2011:
    161. Sellis D, Callahan BJ, Petrov DA, Messer PW.Heterozygote advantage as a naturalconsequence of adaptation in diploids. Proceedings of the National Academy of Sciences2011:
    162. Hughes AL, Yeager M.Natural selection at major histocompatibility complex loci of vertebrates.Annual Review of Genetics1998;32:415-435.
    163. Yeaman MR, Yount NY.Mechanisms of antimicrobial peptide action and resistance.Pharmacological Reviews2003;55:27.
    164. Li C, Zhao J, Song L, Mu C, Zhang H, Gai Y, et al.Molecular cloning, genomic organizationand functional analysis of an anti-lipopolysaccharide factor from Chinese mitten crab Eriocheirsinensis. Developmental&Comparative Immunology2008;32:784-794.
    165. Iwanaga S, Lee BL.Recent advances in the innate immunity of invertebrate a nimals. Journal ofbiochemistry and molecular biology2005;38:128.
    166. Su JG, Song LS, Xu W, Wu LT, Li HL, Xiang JH.CDNA cloning and mRNA expression ofthe lipopolysaccharide-and beta-1,3-glucan-binding protein gene from scallop Chlamys farreri.Aquaculture2004;239:69-80.
    167. Dziarski R.Peptidoglycan recognition proteins (PGRPs). Molecular immunology2004;40:877-886.
    168. Duvic B, S derh ll K.β-1,3-glucan-binding proteins from plasma of the fresh-water crayfishesAstacus astacus and Procambarus clarkii. Journal of Crustacean Biology1993:403-408.
    169. Kim YS, Ryu JH, Han SJ, Choi KH, Nam KB, Jang IH, et al.Gram-negative bacteria-bindingprotein, a pattern recognition receptor for lipopolysaccharide and-1,3-glucan that mediates thesignaling for the induction of innate immune genes in Drosophila melanogaster cells. Journal ofBiological Chemistry2000;275:32721.
    170. Ashida M, Ishizaki Y, Iwahana H.Activation of pro-phenoloxidase by bacterial cell walls or[beta]-1,3-glucans in plasma of the silkworm. Biochemical and Biophysical ResearchCommunications1983;113:562-568.
    171. Yeh MS, Chang CC, Cheng W.Molecular cloning and characterization of lipopolysaccharide-and [beta]-1,3-glucan-binding protein from the giant freshwater prawn Macrobrachiumrosenbergii and its transcription in relation to foreign material injection and the molt stage. Fish&Shellfish Immunology2009;27:701-706.
    172. Cheng W, Liu CH, Tsai CH, Chen JC.Molecular cloning and characterisation of a patternrecognition molecule, lipopolysaccharide-and [beta]-1,3-glucan binding protein (LGBP) fromthe white shrimp Litopenaeus vannamei. Fish&Shellfish Immunology2005;18:297-310.
    173. Lee SY, S derh ll K.Characterization of a pattern recognition protein, a masquerade-like protein,in the freshwater crayfish Pacifastacus leniusculus. The Journal of Immunology2001;166:7319.
    174. Zhao D, Chen L, Qin C, Zhang H, Wu P, Li E, et al.Molecular cloning and characterization ofthe lipopolysaccharide and [beta]-1,3-glucan binding protein in Chinese mitten crab (Eriocheirsinensis). Comparative Biochemistry and Physiology Part B: Biochemistry and MolecularBiology2009;154:17-24.
    175. Zhang D, Ma J, Jiang J, Qiu L, Zhu C, Su T, et al.Molecular characterization and expressionanalysis of lipopolysaccharide and-1,3-glucan-binding protein (LGBP) from pearl oysterPinctada fucata. Molecular biology reports2010:1-9.
    176. Nikapitiya C, De Zoysa M, Lee J.Molecular characterization and gene expression analysis of apattern recognition protein from disk abalone, Haliotis discus discus. Fish&ShellfishImmunology2008;25:638-647.
    177. Roux MM, Pain A, Klimpel KR, Dhar AK.The lipopolysaccharide and {beta}-1,3-glucanbinding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris).Journal of virology2002;76:7140.
    178. Hoffmann JA, Reichhart JM, Hetru C.Innate immunity in higher insects. Current Opinion inImmunology1996;8:8-13.
    179. Lee SY, Wang R, Soderhall K.A lipopolysaccharide-and beta-1,3-glucan-binding protein fromhemocytes of the freshwater crayfish Pacifastacus leniusculus. Purification, characterization, andcDNA cloning. J Biol Chem2000;275:1337-43.
    180. Roux MM, Pain A, Klimpel KR, Dhar AK.The lipopolysaccharide and beta-1,3-glucan bindingprotein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris). J Virol2002;76:7140-9.
    181. Jomori T, Natori S.Function of the lipopolysaccharide-binding protein of Periplaneta americanaas an opsonin. FEBS letters1992;296:283-286.
    182. Cerenius L, Liang Z, Duvic B, Keyser P, Hellman U, Palva ET, et al.Structure and biologicalactivity of a1,3-beta-D-glucan-binding protein in crustacean blood. Journal of BiologicalChemistry1994;269:29462.
    183. Bilej M, Brys L, Beschin A, Lucas R, Vercauteren E, HanuováR, et al.Identification of acytolytic protein in the coelomic fluid of Eisenia foetida earthworms. Immunology letters1995;45:123-128.
    184. Yang J, Qiu L, Wang L, Wei X, Zhang H, Zhang Y, et al.CfLGBP, a pattern recognitionreceptor in Chlamys farreri involved in the immune response against various bacteria. Fish&Shellfish Immunology2010;29:825-831.
    185. Chen G, Shaw MH, Kim YG, Nu ez G.NOD-like receptors: role in innate immunity andinflammatory disease. Annual Review of Pathological Mechanical Disease2009;4:365-398.
    186. Garza-Gonzalez E, Bosques-Padilla F, Mendoza-Ibarra S, Flores-Gutierrez J, Maldonado-Garza H, Perez-Perez G.Assessment of the toll-like receptor4Asp299Gly, Thr399Ile andinterleukin-8-251polymorphisms in the risk for the development of distal gastric cancer. BMCcancer2007;7:70.
    187. Uenishi H, Shinkai H, Morozumi T, Muneta Y.Genomic survey of polymorphisms in patternrecognition receptors and their possible relationship to infections in pigs. VeterinaryImmunology and Immunopathology2011:
    188. Kataria RS, Tait RG, Kumar D, Ortega MA, Rodiguez J, Reecy JM.Association of toll-likereceptor four single nucleotide polymorphisms with incidence of infectious bovinekeratoconjunctivitis (IBK) in cattle. Immunogenetics2010:1-5.
    189. Leveque G, Forgetta V, Morroll S, Smith AL, Bumstead N, Barrow P, et al.Allelic variationin TLR4is linked to susceptibility to Salmonella enterica serovar Typhimurium infection inchickens. Infection and immunity2003;71:1116.
    190. Ferrandon D, Imler JL, Hoffmann JA. Sensing infection in Drosophila: Toll and beyond.2004:Elsevier.
    191. Padhi A, Verghese B.Detecting molecular adaptation at individual codons in the patternrecognition protein, lipopolysaccharide-and [beta]-1,3-glucan-binding protein of decapods. Fish&Shellfish Immunology2008;24:638-648.
    192. Ilari A, Fiorillo A, Angelaccio S, Florio R, Chiaraluce R, Van Der Oost J, et al.Crystalstructure of a family16endoglucanase from the hyperthermophile Pyrococcus furiosus–structural basis of substrate recognition. FEBS Journal2009;276:1048-1058.
    193. Guo X, Ford SE, Zhang F.Molluscan aquaculture in China. Journal of Shellfish Research1999;18:19-31.
    194. Martinez V.Marker-assisted selection in fish and shellfish breeding schemes. Marker-Assistedselection-Current status and future perspectives in crops, livestock, forestry and fish2007:329-362.
    195. Li L, Xiang J, Liu X, Zhang Y, Dong B, Zhang X.Construction of AFLP-based geneticlinkage map for Zhikong scallop, Chlamys farreri Jones et Preston and mapping of sex-linkedmarkers. Aquaculture2005;245:63-73.
    196. Huan P, Zhang X, Li F, Zhang Y, Zhao C, Xiang J.Chromosomal localization and molecularmarker development of the lipopolysaccharide and beta-1,3-glucan binding protein gene in theZhikong scallop Chlamys farreri (Jones et Preston)(Pectinoida, Pectinidae). Genet Mol Biol2010;33:36-43.
    197. Saavedra C, Bachère E.Bivalve genomics. Aquaculture2006;256:1-14.
    198. Jiggins FM, Kim KW.Contrasting evolutionary patterns in Drosophila immune receptors. Journalof molecular evolution2006;63:769-780.
    199. Jiggins FM, Hurst GDD.The evolution of parasite recognition genes in the innate immunesystem: purifying selection on Drosophila melanogaster peptidoglycan recognition proteins.Journal of molecular evolution2003;57:598-605.
    200. Bulmer MS, Crozier RH.Variation in positive selection in termite GNBPs and Relish. Molecularbiology and evolution2006;23:317.
    201. Lehmann T, Hume JCC, Licht M, Burns CS, Wollenberg K, Simard F.Molecular evolution ofimmune genes in the malaria mosquito Anopheles gambiae. PLoS One2009;4: e4549.
    202. Seabury CM, Seabury PM, Decker JE, Schnabel RD, Taylor JF, Womack JE.Diversity andevolution of11innate immune genes in Bos taurus taurus and Bos taurus indicus cattle.Proceedings of the National Academy of Sciences2010;107:151.
    203. Villase or Cardoso M, Ortega E.Polymorphisms of innate immunity receptors in infection byparasites. Parasite Immunology2011:
    204. Yan BX, Sun YQ.Glycine residues provide flexibility for enzyme active sites. Journal ofBiological Chemistry1997;272:3190.
    205. Lehninger AL, Nelson DL, Cox MM. Lehninger principles of biochemistry. Vol.1: WhFreeman;2005.
    206. Teilum K, Olsen JG, Kragelund BB.Protein stability, flexibility and function. Biochimica etBiophysica Acta (BBA)-Proteins&Proteomics2010:
    207. Teilum K, Olsen JG, Kragelund BB.Functional aspects of protein flexibility. Cellular andmolecular life sciences2009;66:2231-2247.
    208. Yesylevskyy SO, Kharkyanen VN, Demchenko AP.The change of protein intradomain mobilityon ligand binding: Is it a commonly observed phenomenon? Biophysical journal2006;91:3002-
    3013.
    209. Heidary DK, Roy M, Daumy GO, Cong Y, Jennings PA.Long-range Coupling BetweenSeparate Docking Sites in Interleukin-1[beta]. Journal of molecular biology2005;353:1187-1198.
    210. Morris BJ, Chambers SM.HYPOTHESIS: GLUCAGON RECEPTOR GLYCINE TO SERINEMISSENSE MUTATION CONTRIBUTES TO ONE IN20CASES OF ESSENTIALHYPERTENSION*. Clinical and experimental pharmacology and physiology1996;23:1035-
    1037.
    211. Xiangheng ZFHYL, Lingxin MJLSQ.A REPORT ON THE INTRODUCTION, SPAT-REARING AND EXPERIMENTAL CULTURE OF BAY SCALLOP, ARGOPECTENIRRADIANS LAMARCK [J]. Oceanologia et Limnologia Sinica1986;5:
    212. Fusui Z, Yichao H, Lingxin Q, Luning S, Baozhong L.INTRODUCTION AND SPAT-REARING OF THE F_1GENERATION OF ARGOPECTEN IRRADIANS CONCENTRICUSSAY [J]. Oceanologia et Limnologia Sinica1994;4:
    213. Song L, Xu W, Li C, Li H, Wu L, Xiang J, et al.Development of expressed sequence tagsfrom the bay scallop, Argopecten irradians irradians. Marine Biotechnology2006;8:161-169.
    214. van de Locht A, Lamba D, Bauer M, Huber R, Friedrich T, Kr ger B, et al.Two heads arebetter than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin incomplex with thrombin. The EMBO Journal1995;14:5149.
    215. Stubbs MT, Morenweiser R, Stürzebecher J, Bauer M, Bode W, Huber R, et al.The three-dimensional structure of recombinant leech-derived tryptase inhibitor in complex with trypsin.Journal of Biological Chemistry1997;272:19931-19937.
    216. Boigegrain RA, Pugnière M, Paroutaud P, Castro B, Brehélin M.Low molecular weight serineprotease inhibitors from insects are proteins with highly conserved sequences. InsectBiochemistry and Molecular Biology2000;30:145-152.
    217. Johansson MW, Keyser P, S DERH LL K.Purification and cDNA cloning of a four‐domainKazal proteinase inhibitor from crayfish blood cells. European Journal of Biochemistry1994;223:389-394.
    218. Zhu L, Song L, Chang Y, Xu W, Wu L.Molecular cloning, characterization and expression ofa novel serine proteinase inhibitor gene in bay scallops (Argopecten irradians, Lamarck1819).Fish&Shellfish Immunology2006;20:320-331.
    219. Eguchi M, Itoh M, Chou LY, Nishino K.Purification and characterization of a fungal proteasespecific protein inhibitor (FPI-F) in the silkworm haemolymph. Comparative Biochemistry andPhysiology Part B: Comparative Biochemistry1993;104:537-543.
    220. Kanost MR.Serine proteinase inhibitors in arthropod immunity. Developmental&ComparativeImmunology1999;23:291-301.
    221. Dieguez-Uribeondo J, Cerenius L.The inhibition of extracellular proteinases fromAphanomyces spp. by three different proteinase inhibitors from crayfish blood. MycologicalResearch1998;102:820-824.
    222. Wang ZH, Zhao XF, Wang JX.Characterization, kinetics, and possible function of Kazal-typeproteinase inhibitors of Chinese white shrimp, Fenneropenaeus chinensis. Fish&ShellfishImmunology2009;26:885-897.
    223. Zhao J, Song L, Li C, Ni D, Wu L, Zhu L, et al.Molecular cloning, expression of a bigdefensin gene from bay scallop Argopecten irradians and the antimicrobial activity of itsrecombinant protein. Molecular immunology2007;44:360-368.
    224. Maynes JT, Cherney MM, Qasim M, Laskowski M, James MNG.Structure of the subtilisinCarlsberg-OMTKY3complex reveals two different ovomucoid conformations. ActaCrystallographica Section D: Biological Crystallography2005;61:580-588.
    225. Hergenhahn HG, Aspan A, S derh ll K.Purification and characterization of a high-Mrproteinase inhibitor of pro-phenol oxidase activation from crayfish plasma. Biochemical Journal1987;248:223.
    226. Zhang F, He Y, Liu X, Ma J, Li S, Qi L.A report on the introduction, spat-rearing andexperimental culture of bay scallop, Argopecten irradians Lamarck. Oceanol. Limnol. Sin1986;17:367-374.
    227. Reid KBM, Porter RR.The proteolytic activation systems of complement. Annual Review ofBiochemistry1981;50:433-464.
    228. Gorman M, Andreeva O, Paskewitz S.Sp22D: a multidomain serine protease with a putativerole in insect immunity. Gene2000;251:9-17.
    229. Vilcinskas A, Wedde M.Inhibition of Beauveria bassiana proteases and fungal development byinducible protease inhibitors in the haemolymph of Galleria mellonella larvae. BiocontrolScience and Technology1997;7:591-602.
    230. Hancock REW, Diamond G.The role of cationic antimicrobial peptides in innate host defences.Trends in Microbiology2000;8:402-410.
    231. Truninger K, Witt H, K ck J, Kage A, Seifert B, Ammann RW, et al.Mutations of the serineprotease inhibitor, Kazal type1gene, in patients with idiopathic chronic pancreatitis. TheAmerican journal of gastroenterology2002;97:1133-1137.
    232. Witt H, Luck W, Hennies HC, Cla en M, Kage A, La U, et al.Mutations in the geneencoding the serine protease inhibitor, Kazal type1are associated with chronic pancreatitis.Nature Genetics2000;25:213-216.
    233. Drenth J, Te Morsche R, Jansen J.Mutations in serine protease inhibitor Kazal type1arestrongly associated with chronic pancreatitis. Gut2002;50:687-692.
    234. Kabesch M, Carr D, Weiland S, Von Mutius E.Association between polymorphisms in serineprotease inhibitor, kazal type5and asthma phenotypes in a large German population sample.Clinical and Experimental Allergy2004;34:340-345.
    235. Jongepier H, Koppelman GH, Nolte IM, Bruinenberg M, Bleecker ER, Meyers DA, etal.Polymorphisms in SPINK5 are not associated with asthma in a Dutch population.Journal of Allergy and Clinical Immunology2005;115:486-492.
    236. Zhao L, Di Z, Zhang L, Wang L, Ma L, Lv Y, et al.Association of SPINK5genepolymorphisms with atopic dermatitis in Northeast China. J Eur Acad Dermatol Venereol2011:
    237. Laskowski Jr M, Kato I.Protein inhibitors of proteinases. Annual Review of Biochemistry1980;49:593-626.
    238. Rimphanitchayakit V, Tassanakajon A.Structure and function of invertebrate Kazal-type serineproteinase inhibitors. Developmental&Comparative Immunology2010;34:377-386.
    239. Ponprateep S, Tassanakajon A, Rimphanitchayakit V.A Kazal type serine proteinase SP Pm2from the black tiger shrim Penaeus monodo is capable of neutralization and protection ofhemocytes from the white spot syndrome virus. Fish&Shellfish Immunology2011:
    240. Nirmala X, Kodrik D, urovec M, Sehnal F.Insect silk contains both a Kunitz‐type and aunique Kazal‐type proteinase inhibitor. European Journal of Biochemistry2001;268:2064-
    2073.
    241. Nirmala X, Mita K, Vanisree V, urovec M, Sehnal F.Identification of four small molecularmass proteins in the silk of Bombyx mori. Insect molecular biology2001;10:437-445.
    242. Augustin R, Siebert S, Bosch TCG.Identification of a kazal-type serine protease inhibitor withpotent anti-staphylococcal activity as part of Hydra's innate immune system. Developmental&Comparative Immunology2009;33:830-837.
    243. Fitch P, Roghanian A, Howie S, Sallenave J.Human neutrophil elastase inhibitors in innate andadaptive immunity. Biochemical Society Transactions2006;34:279-282.
    244. Sallenave J.Antimicrobial activity of antiproteinases. Biochemical Society Transactions2002;30:
    111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700