用户名: 密码: 验证码:
MBL2基因与奶牛乳腺炎抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以中国荷斯坦奶牛为研究素材,运用real time-RT-PCR、基因定点突变、缺失启动子活性分析、基因克隆表达、PCR-SSCP等技术,测定MBL2mRNA在奶牛不同组织、不同基因型个体中的表达;对牛MBL25′调控区分析,对启动子功能鉴定和核心启动子进行研究;体外表达牛MBL-C蛋白,研究其野生型与突变型的抗菌机制及抗菌能力差异;MBL遗传多态性,确定其基因型、单倍型;在此基础上,统计分析MBL突变与高产奶牛生产性能测定数据,血清补体溶血活性的相关性,结果如下:
     中国荷斯坦牛MBL2基因外显子上存在单核苷酸多态性(g.1164G>A,g.1197C>A,g.1198G>A,1207T>C)与奶牛生产性状、奶牛血清补体活性和血清MBL-C蛋白含量相关分析表明,g.1164G>A,g.1197C>A位点的突变与体细胞评分有显著相关(P<0.01),与血清补体活性没有明显相关,g.1164G>A位点与血清MBL-C蛋白含量显著相关。实验成功突变了MBL2g.1164G>A位点,并体外表达了牛MBL-C野生型和突变型重组蛋白,证明重组蛋白对金黄色葡萄球菌有抑菌效果;扫描电镜观察发现野生型的抗菌能力要强于突变型。
     克隆了牛MBL25’调控区2285bp的DNA序列,用EGFP报告基因瞬时转染技术鉴定了该区域具有启动子功能。通过双荧光素酶报告基因检测系统筛选到牛MBL2基础启动子和调控组件,发现牛MBL2基因5′调控区的-85~+52bp区域具有基本的启动子功能,结合序列分析发现牛MBL2基因上存在多个正调控和负调控组件。通过对牛MBL2基因5’调控区的SNPs分析,首次发现了3个SNPs位点:g.905C>G,g.956C>T,g.895A>T,分析发现这三个位点位于HNF-1、C-Myb、TATA box转录组件,可能具有重要的功能。通过荧光定量RT-PCR方法表明牛MBL2mRNA在肝脏、甲状腺、心脏、脾脏、乳腺、肺脏、肾脏组织均有表达,在肝脏组织中表达量最高;对应g.905C>G和g.956C>T位点不同基因型间乳腺组织mRNA表达没有明显差异。可以初步推断MBL2基因可能是影响奶牛乳腺炎抗性的主效基因或是与乳腺炎抗性相关的QTL连锁基因。
Infectious disease has major adverse effects both on the economics of livestockproduction and on animal welfare. Cow mastitis is a common disease in dairy industryworldwide,and has caused tremendous loss to the dairy production. A number oftherapeutic, prophylactic and management strategies have been proposed to minimizethis complex disease. Although these treatments have very good clinical outcome,emerge of drug-resistant strains and remaining antibiotics in milk have brought greatconcerns. Thus, an approach based on improving the host genetics in resistance toinfectious diseases through molecular marker selective breeding is becoming widelyaccepted. Mannose-binding lectin (MBL) are collagenous C-type lectins involved inthe innate immune response to various microbial pathogens. Antimicrobial functionsof MBL, including opsonization, neutralization, and complement activation. MBLselectively targets invading microorganisms for neutralization by its recognitiondomain’s binding to cell surface mannose, then activating MBL-associated serineproteases (MASPs).
     By screening the genetic variation of MBL2exon in825individuals of ChinaHolstein, using PCR-SSCP techniques, four new SNPs were found in exon1, g.1164G>A, g.1197C>A, g.1198G>A,1207T>C. No SNPs were found in exon2, exon3andexon4in my research. Statistical analyses revealed correlation between both g.1164G>A, g.1197C>A and somatic cell score (SCS).
     The effect of polymorphism g.1164G>A and g.1197C>A loci of MBL2gene oncomplement activity and serum MBL-C level was analyzed, the results indicated thatin the g.1164G>A and g.1197C>A loci, the different genotype had no significantinfluence on complement activity; in the g.1164G>A, the different genotype hadsignificant correlation on serum MBL-C level.
     MBL2gene was amplified using reverse transcription-polymerase chain reaction(RT-PCR). The g.1164G>A loci of MBL2was mutation by rite-directed mutagenesis.The PCR product was inserted into vector pET32a(+) to construct plasmid pET32a (+)/MBL2and pET32a(+)/MBL2-TB, then the plasmid was expressed in E.coli BL21(DE3)cell that induced by IPTG. The diversity of antibacterial activity of wild-typeand mutant was assayed by agar whole diffusion-inhibition zone method and electronmicroscope using the purified recombination protein against Sta. aureu. The resultsanalysis showed the encoding a polypeptide. SDS-PAGE and Western blotting resultsshowed that the recombinant proteins were expressed in E. coli.The purified proteinMBLC had antibacterial activity, the wild-type had stronger antibacterial activity thanmutant by Scanning electron microscope and killed pathogenic bacteria by leaking thecontent out in vitro against Sta. aureus.
     In this research, we cloned the2285bp DNA sequence of bovine MBL25′flanking region by LA-PCR method. The analysis of this2285bp fragment indicatedthat there were no canonical TATA boxes. No CpG island and two repetitive elementswithin promoter region were also found. Of particular interest is the fact that severalwell-documented transcription factor consensus motifs are precisely conserved in theregion immediately upstream of the MBL2exon1,including binding sites for GR、SP1,NF-1, NF-1/L, AP-1et al. Multiple of the sites for enhancer were also found. ThepEGFP-N1/2285plasmid has been constructed and transfetced into293T cells byLip2000, successful expression of EGFP gene was obtained. It implies that the2285bp of bovine MBL25′flanking region is promoter functional.
     To further characterize the5′flanking region, we constructed a set of luciferasereporter gene constructs containing successive5′deletions of the bovine MBL2promoter. Promoter activity analysis was performed by dual-luciferase reporter assaysystem. The core promoter of the gene was located at the+52~-85bp. Some positiveregulatory elements are located at-1189~-562and-297~-85bp. And the results alsoshowed the presence of repressor elements in this region-562~-297bp and-2237~-1549bp.
     In our study, three SNPs including g.905C>G, g.956C>T, g.895A>T wereexamined by sequencing and g.905C>G, g.956C>T were closely linked. Statisticalanalyses revealed correlation between both g.905C>G, g.956C>T and somatic cellscore (SCS). Based on the bioinformatics analysis, the SNPs were further surveyed.
     FQ-PCR was used to detect mRNA expression of MBL2gene in different tissuesand the different genotype of g.905C>G and g.956C>T, the results indicated that MBL2mRNA were expressed in all tissues examined, including heart, liver, spleen,lung, kidney, mammary gland and thyroid, the expression of mRNA in the liver wassignificantly higher than other tissues, the different genotype of g.905C>G and g.956C>T had significant correlation on mRNA expression.
     It could be preliminarily deduced that MBL2gene was probably a major gene ora QTL linked gene which associated with mastitis resistance traits in pig.
引文
[1]Sugii S,Hirota Y. Identication and carbohydrate specicity of a chicken serummannan-binding protein reactive with a Ra chemotype strain of Salmonel-latyphimurium [J]. J Vet Med Sci,1994,56:747~751.
    [2]Laursen SB,Hedemand JE,Thiel S,Willis AC,Skriver E,Madsen PS,Jensenius JC.Collectin in a non-mammalian species.Isolation and acterization of mannan-binding protein (MBP) from chicken serum[J]. Glycobiology,1995,5:553~561.
    [3]Fraser IP,Koziel L, zekowitz RA. The serum mannose-binding protein and themacrophage mannose receptor are pattern recognition molecules that link innateand adaptive immunity[J]. Semin Immunol,1998,10:363~372.
    [4]Lillie BN,Keirstead ND,Squires EJ, et al.Single-nucleotide polymorphisms inporcine mannan-binding lectinA[J]. Immunogenetics,2006,58:983~993.
    [5]Gadjeva M,Takahashi K,ThielS.Mannan-binding lectin-a soluble pattern recog-nition molecule[J]. Mol Immunol,2004,41(2-3):113~121.
    [6]Brown-Augsburger P,Hartshorn K,Chang D,Rust K,Fliszar C, Welgus HG, CrouchEC. Site-directed mutagenesis of Cys-15and Cys-20of pulmonary surfactantprotein D. Expression of a trimeric protein with altered anti-viral properties[J].Biol Chem,1996,271:13724~13730.
    [7]McCormack FX, Damodarasamy M, Elhalwagi BM. Deletion mapping ofN-terminal domains of surfactant protein A. The N-terminal segment is requiredfor phospholipid aggregation and specific inhibition of surfactant secretion[J].Biol Chem,1999,274:3173~3181.
    [8]Ohashi T, Erickson HP. The disulfide bonding pattern in ficolin multimers[J]. BiolChem,2004,279:6534~6539.
    [9]Jensen PH,Weilguny D,Matthiesen F,McGuire KA,Shi L,Hojrup P. Characterization of the oligomer structure of recombinant human mannan-binding lectin[J]. Biol Chem,2005,208:11043~11051.
    [10]Arora M, Munoz E, Tenner A.J. Identification of a site on mannan binding lectin critical forenhancement of phagocytosis[J]. Biol. Chem,2001,276:43087~43094.
    [11]van de Wetering JK,van Golde LM,Batenburg JJ. Collectins: players of the innateimmune system. Eur[J]. Biochem,2004,271:1229~1249.
    [12]Wallis R,Shaw JM,Uitdehaag J,Chen CB,Torgersen D,Drickamer K. Localizationof the serine protease-binding sites in the collagen-like domain of mannose-binding protein:indirect effects of naturally occurring mutations on proteasebinding and activation[J]. Biol Chem,2004,279:14065~14073.
    [13]Davis III AE,Lachmann PJ. Bovine conglutinin is a collagen-like protein[J].Biochemistry,1984,23:2139~2144.
    [14]Colley KJ,Baenziger JU. Identification of the post-translational modifications ofthe core-specific lectin. The corespecific lectin contains hydroxyproline,hydroxylysine, and glucosylgalactosylhydroxylysine residues[J]. Biol Chem,1987,262:10290~10295.
    [15]Crouch E,Chang D,Rust K,Persson A,Heuser J. Recombinant pulmonarysurfactant protein D. Post-translational modification and molecular assembly[J].Biol Chem,1994,269:15808~15813.
    [16]Zhang P, McAlinden A, Li S, Schumacher T,Wang H, Hu S, Sandell L, Crouch E.The amino-terminal heptad repeats of the coiled-coil neck domain of pulmonarysurfactant protein D are necessary for the assembly of trimeric subunits anddodecamers[J]. Biol Chem,2001,276:19862~19870.
    [17]Hoffmann JA,Kafatos FC,Janeway CA, Ezekowitz RA. Phylogenetic perspectivesin innate immunity[J]. Science,1999,292:1313~1318.
    [18]Lu JH,Thiel S,Wiedemann H,Timpl R,Reid KB. Binding of the pentamerhexamer forms of mannan-binding protein to zymosan activates the proenzymeC1r2C1s2complex, of the classical pathway of complement, without involvement of C1q[J].Immunol,1990,144:2287~2294.
    [19]Naito H,Ikeda A,Hasegawa K,Oka S,Uemura K,Kawasaki N,et al. Characterization of human serum mannan-binding protein promoter.[J]. Biochem(Tokyo),1999,126:1004~1012.
    [20]Wallis R,Cheng JY. Molecular defects in variant forms of mannose-bindingprotein associated with immunodeficiency[J].Immunol,1999,163:4953~4959.
    [21]Larsen F, Madsen HO, Sim RB, Koch C, Garred P. Disease-associated mutationsin human mannose-binding lectin compromise oligomerization and activity ofthe final protein[J].Biol Chem,2004,279:21302~21311.
    [22]Seyfarth J,Garred P,Madsen HO. The ‘involution’ of mannose-binding lectin[J].Hum Mol Genet,2005,14(19):2859~2869.
    [23]Guo N, Mogues T, Weremowicz S, Morton CC, Sastry KN. The human orthologof rhesus mannose-binding protein-A gene is an expressed pseudogene thatlocalizes to chromosome10[J]. Mamm Genome,19989,246~249.
    [24]Lillie BN,Keirstead ND,Squires EJ, Hayes MA. Single nucleotide polymorphismsin the porcine mannan-binding lectin genes. EB2005[J]. San Diego CA,2005,231~235
    [25]Sastry K, Herman GA,Day L,et al.The human mannose-binding protein gene.Exon structure reveals its evolutionary relationship to a human pulmonarysurfactant gene and localization to chromosome10[J].Exp Med,1989,170:1175~1189.
    [26]王宏伟,陈政良,左大明等。小鼠MBL-A基因的克隆和序列分析。免疫学杂志,2003,19(4):278~280.
    [27]Phatsara C,Jennen DJ,Ponsuksili S,et al. Molecular genetic analysis of porcinemannose-binding lectin genes, MBL1and MBL2, and their association withcomplement activity[J].Int J Immunogenet,2007,34(1):55~63.
    [28]Podolsky MJ, Lasker A, Flaminio MJ, et al.Characterization of an equinemannose-binding lectin and its roles in disease[J].Biochem Biophys ResCommun,2006,343(3):928~936.
    [29]Stuart LM,Takahashi K,Shi L,et al. Mannose-binding lectin-deficient mice displaydefective apoptotic cell clearance but no autoimmune phenotype[J].JImmunol,2005,174(6):3220~3226.
    [30]梁剑锋,肖亚彬。鸡甘露糖结合凝集素的研究进展[J].文献综述,2005,(20):38.
    [31]http://www.labbase.net/News/ShowNewsDetails-4-29-47012FF4F77372E D.html
    [32]Sorensen GL,Petersen I,Thiel S,et al.Genetic influences on mannan-binding lectin(MBL) and mannan-binding lectin associated serine protease-2(MASP-2)activity[J].Genet Epidemiol,2007,31(1):31~41.
    [33]Hansen S,Holmskov U. Structural aspects of collectins and receptors forcollectins[J]. Immunobiology,1998,199:165~189.
    [34]Taylor ME, Brickell PM, Craig RK, Summerfield JA. Structure and evolutionaryorigin of the gene encoding a human serum mannose-binding protein[J].Biochem J,1989,262:763~771.
    [35]Madsen HO,Satz ML,Hogh B,et al. Different molecular events result in lowprotein levels of mannan-binding lectin in populations from southeast Africa andSouth America[J]. Immunol,1998,161(6):3169~3175.
    [36]Terai I,Kobayashi K,Matsushita M,Miyakawa H,Mafune N,Kikuta H. Relationship between gene polymorphisms of mannose-binding lectin (MBL) and twomolecular forms of MBL[J]. Eur J Immunol,2003,33:2755~2763.
    [37]Butler GS,Sim D,Tam E,Devine D,Overall CM. Mannose-binding lectin(MBL)mutants are susceptible to matrix metalloproteinase proteolysis: potential role inhuman MBL deficiency[J]. Biol Chem,2002,277:17511~17519.
    [38]Madsen HO, Garred P, Thiel S, Kurtzhals JA, Lamm LU, Ryder LP, et al.Interplay between promoter and structural gene variants control basal serumlevel of mannan-binding protein[J]. Immunol,1995,155:3013~3020.
    [39]Crosdale DJ, Ollier WE, ThomsonW, Dyer PA,Jensenious J, Johnson RW, et al.Mannose binding lectin (MBL) genotype distributions with relation to serumlevels in UK Caucasoids[J]. Eur J Immunogenet,2000,27:111~117.
    [40]Garred P, Storm JJ, Quist L, et al.Association of mannose-binding lectin polymer-phisms with sepsis and fatal outcome, in patients with systemic inflammatoryresponse syndrome[J]. Infect Dis,2003,188(9):1394~1403.
    [41]Sumiya M, Super M, Tabona P, Levinsky RJ, Arai T, Turner MW, et al.Molecular basis of opsonic defect in immunodeficient children[J]. Lancet,1991,337:1569~1570.
    [42]Saevarsdottir S,Vikingsdottir T,Vikingsson A,et al.Low mannose binding lectinpredicts poor prognosis in patients with early rheumatoid arthritis.A prospectivestudy[J]. Rheumatol,2001,28(4):728~734.
    [43]Takahashi R,Tsutsumi A,Ohtani K,et al.Association of mannose binding lectin(MBL) gene polymorphism and serum MBL concentration with characteristicsand progression of systemic lupus erythematosus[J].Ann RheumDis,2005,64(2):311~314.
    [44]王方勇,陈政良。甘露聚糖结合凝集素基因启动子区多态性及其意义[J].国外医学:免疫学分册,2002,25(5):269~272.
    [45]Stefensen R,Hofmann K,Varming K.Rapid genotyping of MBL2gene mutationsusing real-time PCR with fluorescent hybridisation probes[J].J ImmunolMethods,2003,278(1-2):191~199.
    [46]Lee SG, Yum JS, Moon HM, Kim HJ, Yang YJ, Kim HL, et al. Analysis ofmannose-binding lectin2(MBL2) genotype and the serum protein levels in theKorean population[J]. Mol Immunol,2005,42:969–977.
    [47]Song le H, Binh VQ, Duy DN, Juliger S, Bock TC, Luty AJ, et al. Mannosebinding lectin gene polymorphisms and hepatitis B virus infection in Vietnamesepatients[J]. Mutat Res,2003,522:119~125.
    [48]Ip WK, To YF, Cheng SK, Lau YL. Serum mannose-binding lectin levels andmbl2gene polymorphisms in different age and gender groups of southernChinese adults[J]. Scand J Immunol,2004,59:310~314.
    [49]Turner MW, Hamvas RM. Mannose-binding lectin: structure, function, geneticsand disease associations[J]. Rev Immunogenet,2000,2:305~322.
    [50]Madsen HO, Garred P, Kurtzhals JA, Lamm LU, Ryder LP, Thiel S, et al. A newfrequent allele is the missing link in the structural polymorphism of the humanmannan-binding protein[J]. Immunogenetics,1994,40:37~44.
    [51]Mayilyan KR, Presanis JS, Arnold JN, Hajela K, Sim RB. Heterogeneity ofMBL–MASP complexes[J]. Mol Immunol,2006,43:1286~1292.
    [52]Liu H,Jensen L,Hansen S,et al. Characterization and quantification of mousemannan-binding lectins (MBL-A and MBL-C) and study of acute phaseresponses[J].Scand J Immunol,2001,53(5):489~497.
    [53]Takahashi K,Gordon J,Liu H et al.Lack of mannose-binding lectin-A enhancessurvival in a mouse model of acute septic peritonitis[J].MicrobesInfect,2002,4(8):773~784.
    [54]Moller-Kristensen M,Ip WK,Shi L,et al.Deficiency of mannose-binding lectingreatly increases susceptibility to postburn infection with Pseudomonasaeruginosa[J]. Immunol,2006,176(3):1769~1775.
    [55]Gadjeva M,Paludan SR,Thiel S,et al.Mannan-binding lectin modulates theresponse to HSV-2infection[J]. Clin Exp Immunol,2004,138(2):304~311.
    [56]Wallis R, Shaw JM, Uitdehaag J, Chen CB, Torgersen D, Drickamer K.Localization of the serine protease-binding sites in the collagen-like domain ofmannose-binding protein: indirect effects of naturally occurring mutations onprotease binding and activation[J]. Biol Chem,2004,279:14065~14073
    [57]Oka S, Ikeda K, Kawasaki T, Yamashina I. Isolation and characterization of twodistinct mannan-binding proteins from rat serum[J].Arch Biochem Biophys,1988,260:257~266.
    [58]Laursen SB, Hedemand JE, Thiel S, Willis AC, Skriver E, Madsen PS, JenseniusJC. Collectin in a non-mam-malian species. Isolation and characterization ofmannan-binding protein (MBP) from chicken serum[J]. Glycobiology,1995,5:553~561.
    [59]Nielsen SL, Andersen PL, Koch C, Jensenius JC, Thiel S. The level of the serumopsonin, mannan-binding protein in HIV-1antibody-positive patients[J]. ClinExp Immunol,1995,100:219~222.
    [60]Agah A,Montalto MC,Young K,et al. Isolation, cloning and functional characterrization of porcine mannose-binding lectin[J]. Immunology,2001,102(3):338~343.
    [61]Lillie BN, Keirstead ND, Squires EJ,et al. Gene polymorphisms associated withreduced hepatic expression of porcine mannan-binding lectin C[J].Dev CompImmunol,2007,31(8):830~846.
    [62]Andersen O,Friis P, Holm Nielsen E,et al. Purification, subunit characterizationand ultrastructure of three soluble bovine lectins: conglutinin,mannose-bindingprotein and the pentraxin serum amyloid P-component[J].Scand JImmunol,1992,36(1):131~141.
    [63]Kawai T, Suzuki Y, Eda S, et al. Cloning and characterization of a cDNAencoding bovine mannan-binding protein[J]. Gene,1997,186:161~165.
    [64]Capparelli R,Parlato M,Amoroso MG,Roperto S,Marabelli R,Roperto F, IannelliD.Mannose-binding lectin haplotypes influence Brucella abortus infection in thewater buffalo (Bubalus bubalis)[J]. Immunogenetics,2008,60:157~165.
    [65]刘梅,王长法。MBL1基因第一内含子与第二外显子多态性与中国荷斯坦牛乳腺炎和乳品质的关联分析。中国农业科学,2010,43(11):2363~2371
    [66]徐燕辉,赵宗胜,班谦。绵羊甘露聚糖结合凝集素(MBL)基因的克隆及序列分析[J].农业生物技术学报,2008,16(3):537~538.
    [67]Emanuelson U,Danell B,Philipsson J. Genetic parameters for clinical mastitis,somatic cell counts, and milk production estimated by multiple-trait restrictedmaximum likelihood[J]. Dairy Sci,1988,71:467~472.
    [68]Hansen LB, Young CW, Miller KP,Touchberry R.W. Health care requirements ofdairy cattle. I. Response to milk yield selection[J]. J Dairy Sci.62:1922~1929.
    [69]Jones WP, Hansen LB, Chester-Jones H. Response of health care to selectionfor milk yield of dairy cattle[J]. Dairy Sci,1994,77:3137~3141.
    [70]Miller RH, Bonczek RR, Dowlen HH, Langholff W, Bell BR, Richardson DO.Deaths and disposals in lines selected for milk yield and control lines of Jerseycattle[J]. Dairy Sci,1994,77:3132~3139.
    [71]Schutz MM. Genetic evaluation of somatic cell scores for United States dairycattle[J]. Dairy Sci,1994,77:2113~2120.
    [72]Shook GE,Shutz M.M,. Selection on somatic cell score to improve resistance tomastitis in the United States[J]. Dairy Sci,1993,77:648~653.
    [73]Shook GE. Selection for disease resistance[J]. Dairy Sci,1989,72:134~139.
    [74]Miller RH,Schultze WD. Genetic resistance to mastitis. Proc.20th AnnualMeeting of the National Mastitis Council,1981,pp.51~78.
    [75]Miller RH,Paape MJ. Relationship between milk somatic cell count and milkyield. Proc.24th Annual Meeting of the National Mastitis Council,1985,pp.60~72.
    [76]Timms LL. Can Somatic Cells Get Too Low Proc.29th Annual Meeting NationalMastitis Council,1990,pp.94~99.
    [77]Miller RH. Traits for sire selection related to udder health and management.[J].Dairy Sci,1984,67:459~464.
    [78]Natzke R.P. Elements of mastitis control[J]. Dairy Sci,1981,64:1431~1437.
    [79]Cohen M.L,Tauxe RV.Drug-resistant salmonella in the United States: Anepidemiologic perspective[J]. Science,1986,234:964~968.
    [80]Holmberg SD,Osterholm MT,Senger BS, Cohen ML. Drug-resistant salmonellafrom animals fed antimicrobials[J]. N Engl J Med,1984,311:617~623.
    [81]Paape MJ,Wergin WP,Guidry AJ,Pearson R.E. Leukocytes: Second line ofdefense against invading mastitis pathogens[J]. Dairy Sci,1979,62:135~141.
    [82]Colleau JJ, Bihan-Duval ELE. A Simulation study of selection methods toimprove mastitis resistance of dairy cows[J]. Dairy Sci,1994,78:659~663.
    [83]Janzen JJ. Economic losses resulting from mastitis. A review[J]. Dairy Sci,1970,53:1151~1161.
    [84]Jones GM,Pearson RE,Clabaugh GA,Heald CW. Relationships between somaticcell counts and milk production[J]. Dairy Sci,1984,67:1823~1831.
    [85]Reents R,Jamrozik J,Schaeffer LR,Dekkers JCM.Estimation of geneticparameters for test day records of somatic cell score[J] Dairy Sci,1995,78:2847~2854.
    [86]Blosser TH. Economic losses from the national research program on mastitis inthe United States[J]. Dairy Sci,1979,62:119~127.
    [87]Coffey EM, Vinson WE.,Pearson RE. Potential of somatic cell concentration inmilk as a sire selection criterion to reduce mastitis in dairy cattle[J]. DairySci,1986,69:2163~2171.
    [88]Miller RH,Owen JR,Moore ED. Heritability of measures of incidence of clinicalmastitis in Jersey cattle[J]. Dairy Sci,1975,58:751(Abstr.).
    [89]O'Bleness GV,VanVleck LD,Henderson CR. Heritabilities of some type appraisaltraits and their genetic and phenotypic correlations with production[J]. DairySci,1960,43:1490~1498.
    [90]Bertrand JA, Berger PJ, Freeman AE,Kelley DH. Profitability in daughters ofhigh versus average Holstein sires selected for milk yield of daughters[J]. DairySci,1985,68:2287~2292.
    [91]Dunklee JS, Freeman AE, Kelley DH. Comparison of Holsteins selected for highand average milk production.2. Health and reproductive response to selection formilk[J]. Dairy Sci,1994,77:3683~3681.
    [92]Gilmore JA, McDaniel BT.Health costs of dairy cattle,its variation and itsassociations with milk yield and type scores[J]. Dairy Sci,1977,60(Supl.1):76.
    [93]Shanks R.D,Freeman AE,Berger PJ,Kelley DH. Effect of selection for milkproduction on reproductive and general health of dairy cows[J]. DairySci,1978,61:1765~1772.
    [94]Wilton JW,VanVleck LD,Everett RW,Guthrie RS,Roberts SJ. Genetic andenvironmental aspects of udder infections[J]. Dairy Sci.55:183~189.
    [95]Weller JI, Saran A, Zeliger Y. Genetic and environmental relationships amongsomatic cell count, bacterial infection, and clinical mastitis[J]. Dairy Sci,1992,75:2532~2541.
    [96]Bodoh GW,Battista WJ,Schltz LH,Johnson R.P. Variation in somatic cell countsin Dairy Herd Improvement milk samples[J]. Dairy Sci,1976,59:1119~1125.
    [97]Kennedy BW, Sethar MS, Moxley JE,Downey BR. Heritability of somatic cellcount and its reltionship with milk yield and composition in Holsteins[J]. DairySci,1982,65:843~851.
    [98]Shook GE. Using the new sire evaluations for somatic cell score. Proc.33rdAnnual Meetings, National Mastitis Council. Orlando, Florida,1994,pp.351~352.
    [99] Ali AKA,Shook GE.. An optimum transformation for somatic cell concentrationin milk[J]. Dairy Sci,1980,63:487~493.
    [100]Young CW, Legates JE,Leece JG. Genetic and phenotypic relationships betweenclinical mastitis,laboratory criteria,and udder height[J]. Dairy Sci,1960,43:54~62.
    [101]Cassell BG. Using somatic cell score evaluations for management decisions[J].Dairy Sci,1993,77:2130~2139.
    [102]Coffey EM, Vinson WE,Pearson RE. Somatic cell counts and infection rates forcows varying somatic cell count in initial test of first lactation[J]. DairySci,1986,69:552~560.
    [103]Van Raden PM,Wiggans GR. Productive life evaluations: Calculation, accuracy,and economic value[J]. Dairy Sci,1995,78:631~635.
    [104]Paape MJ,Ziv G,Miller RH,Schultze WD. Update on the use of intramammarydevices in the control of mastitis. Proc.25th Annual Meeting of the NationalMastitis Council,1986,pp.87~103.
    [105]Andrus DF,McGilliard LD. Selection of dairy cattle for overall excellence[J].Dairy Sci,1975,58:1876~1881.
    [106]Jagannatha S, Keown JF,Van Vleck LD. Estimation of relative economic valuefor herd life of dairy cattle from profile equations[J]. Dairy Sci,1998,81:1702~1710.
    [107]Van Raden PM,Klaaskate EJH. Genetic evaluation of length of productive lifeincluding predicted longevity of live cows[J]. Dairy Sci,1993,76:2758~2764.
    [108] Dekkers JCM. Theoretical basis for genetic parameters of herd life and effectson response to selection[J]. Dairy Sci,1992,76:1433~1440.
    [109]Gill GS,Allaire FR. Relationship of age at first calving,days open,days dry, andherdlife to a profit function for dairy cattle[J]. Dairy Sci,1975,59:1131~1139.
    [110]Rahman MT,Kobayashi N,Alam MM,et al.Genetic analysis of mec Ahomologues in Staphylococcus sciuri strains derived from mastitis in dairy cattle[J].Microbial drug resistance Larchmont,NY,2005,11(3):205~214.
    [111]Roosen S,Exner K,Paul S,et al. Bovine beta-defensins:identificationand characterization of novel bovine beta-defensin genes and their expression in mammarygland tissue[J].Mamm Genome,2004,15(10):834~842.
    [112]Lamote I,Meyer E,DE ketelaere A,et al.Influence of sex steroids onthe viabilityand CD11b,CD18and CD47expression of blood neutrophils from dairycows inthe last month of gestation[J].Veterinary research,2006,37(1):61~74.
    [113]Chiang YC,Pai WY,Chen CY,et al.Use of primers based on the heat shockprotein genes hsp70,hsp40,and hsp10,for the detection of bovine mastitispathogens Streptococcus agalactiae,Streptococcus uberis and Streptococcusbovis[J].Molecular and cellular probes,2008,22(4):262~266.
    [114]Sharma BS,Leyva I,Schenkel F,et al.Association of toll-like receptor4polymorphisms with somatic cell score and lactation persistency in Holsteinbulls[J].Journal of dairy science,2006,89(9):3626~3635.
    [115]Ibeagha-awemu EM,Lee JW,Ibeagha AE,et al.Bacterial Lipopolys accharideinduces increased expression of toll-like receptor(TLR)4and downstream TLRsignaling molecules in bovine mammary epithelial cells[J].Veterinaryresearch,2008,39(2):11~16.
    [116]Goldammer T,Zerbe H,Molenaar A,et al.Mastitis increases mammary mRNAabundance of beta-defensin5,toll-like-receptor2(TLR2)and TLR4but not TLR9in cattle[J].Clinical and diagnostic laboratory immunology,2004,11(1):174~185.
    [117]Patel D,Almeida RA,Dunlap JR,et al.Bovine lactoferrin serves as a molecularbridge for internalization of Streptococcus uberis into bovine mammaryepithelial cells[J].Veterinary microbiology,2009,24:134~145
    [118]Liang S,Li L,Hsu WL,et al.Exploring the molecular design of protein interactionsites with molecular dynamics simulations and free energy calculations[J].Biochemistry,2009,48(2):399~414.
    [119]Lahouassa H,Rainard P,Caraty A,et al.Identification and characterization of anew interleukin-8receptor in bovine species[J].Molecular immunology,2008,45(4):1153~1164.
    [120]Chang YF,Novosel V,Chang CF.The isolation and sequence of canine interle-ukin-8receptor[J].DNA Seq,1999,10(3):183~187.
    [121]Martinez R,Toro R,Montoya F,et al.Bovine SLC11A13'UTR SSCP genotypeevaluated by a macrophage in vitro killing assay employing a Brucella abortusstrain[J].Journal of animal breeding and genetics biologie,2008,125(4):271~279.
    [122]Davies D,Meade KG,Herath S,et al.Toll-like receptor and antimicrobial peptideexpression in the bovine endometrium[J].Reprod Biol Endocrinol,2008,6:53~57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700