用户名: 密码: 验证码:
华北北缘中元古界蓟县群沉积学及碳硫循环
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中元古代记录了古海洋从太古代的完全厌氧、富铁向显生宙以来富氧转换的重要历程,同时它也是地球生物圈从最初的以微生物为主导的群落结构向宏体生物占统治地位转变的关键时期。因此,对这一地质历史时期古海洋化学状态以及海洋生物与环境之间的相互作用过程的研究极为重要,也是目前前寒武纪研究的重要命题之一。但迄今为止,由于地质时代久远,且在当时特殊的环境条件下,海洋微生物难以形成钙化的外壁,生物化石记录极不完整,对这一时期特殊的海洋化学条件下海洋主导的微生物功能类群及其与环境之间的相互作用关系的研究极为薄弱,目前还主要停留在一些概念性和轮廓性的认识上,严重阻碍了人们对这一时期生命与环境演化关系的深入认识。
     华北燕山地区中元古界特别是以碳酸盐岩沉积为主的蓟县群地层发育齐全、地层连续,且区域变质变形程度低,很好地保存了这一时期海洋生物与环境演化的原始信息。本文主要通过对华北地台中元古界蓟县群(1.6~1.4Ga)地层中保存的大量与微生物活动密切相关的生物沉积建造、典型的沉积微相(微组构)特征以及与生命代谢过程密切相关的碳、硫稳定同位素组成及演化,并结合典型层段氧化还原敏感元素的分布特征的深入分析,来探讨中元古代早期古海洋化学演化的基本规律以及在这一特殊的环境条件下海洋中主导的地球微生物学过程,获得了以下几点主要的认识:
     1、华北地台中元古界以碳酸盐岩为主的地层中发育了大量不同形态类型的微生物岩,包括叠层石、凝块石、纹层石、核形石(核形石状的碳酸盐岩结核)以及各类MISS构造,表明这一时期海洋微生物极为活跃。结合前人研究资料认为,叠层石、凝块石、纹层石以及核形石等浅水环境中产出的微生物岩类型主要代表了建礁的丝状或球状蓝细菌在不同的环境背景条件下的生物代谢作用过程,微生物岩的不同外部形态和内部微组构的差异受环境物理化学条件变化的影响相对较大;而在深水环境中产出的以核形石状的碳酸盐岩结核为代表的微生物岩的出现可能主要与厌氧型微生物如硫酸盐还原菌和食甲烷古菌等的代谢过程密切相关。这一时期海洋中不同的微生物功能类群及其主导的生物地球化学过程共同影响和改造着当时的大气和海洋环境。
     2、通过室内偏光显微镜下对大量岩石薄片观察发现了部分针状文石矿物,它们在地层中或以弥散状分布于深水相地层中,或以孔隙胶结物形式存在于浅水潮坪相受微生物席保护的局部“微环境”中。针状文石的出现表明这一时期深部海洋处于贫氧/缺氧状态,而在浅水环境一些受微生物席保护的局部微环境也可能贫氧;海水HCO3-离子过饱和,可能与当时较高的大气pC02有关。
     3、为了能够对中元古代早期地球表层系统包括大气圈、水圈以及生物圈层的演化有比较深入的了解,本文在华北燕山地区中元古界蓟县群三个剖面五个组地层(河北平泉高于庄组、杨庄组,辽宁凌源雾迷山组、铁岭组以及河北怀来洪水庄组)中连续采样,获得了623个δ13Ccarb和252个δ13Corg数据,这一研究代表了迄今为止中元古代盖层系(1.6~1.4Ga)时期国际上最完整、最高分辨率的碳同位素数据资源,从而也使得我们对这一时期的全球碳循环过程及其机理有了一个前所未有的认识与理解。从整个地层序列来看,δ13Ccarb主要集中在0±2‰范围内波动,具有明显的旋回性特征,与国际国内同期地层剖面能够很好的对比。相对于同一时期国际其他地层剖面而言,燕山地区具有地层连续、区域变质变形程度低、有良好的锆石年代学约束等优势,因此,在中元古界蓟县群地层序列中,本文工作获得的如此高分辨率的碳同位素数据为我们提供了一条较为可靠的中元古代盖层系碳同位素参考曲线,也为今后更好的进行国际国内地层剖面的对比、地层界线的划分以及地质事件的厘定等方面的研究提供了良好的基础资料。
     4、在整个蓟县群地层序列中,δ13Ccarb在平均同位素组成及其偏移幅度上表现为随时间演变而逐渐增加的趋势。高于庄组除中部层位~50m的层段外,δ13Ccarb平均值-0.3‰,变化范围在-1‰~1‰之间;至雾迷山组δ13Ccarb平均值增加到-0.1‰,变化范围在-1.8‰~+1.8‰。然而高于庄期和雾迷山期有机碳的埋藏速率变化范围不大,forg始终保持在0.15~0.25较小的范围内波动,因此记录在这一段地层序列中δ13Ccarb组成和偏移幅度的增加很可能与这一时期大气pC02的降低以及海水DIC库缓冲能力的下降有关。由此推测,中元古代早期,并司能在整个中元古代时期(1.6~1.0Ga),大气pCO2、海水DIC库经历了长期的、逐渐降低减小的演化过程。
     5、基于对蓟县群δ13Ccarb-δ13Corg的综合分析,认识到δ13Corg组成具有明显的深度梯度效应。在高于庄组顶部和雾迷山组,δ13Corg变化范围主要集中在-269--30%o之间,平均值约-28‰,δ13Corg与δ13Ccarb耦合性较好,表明在浅水潮坪环境中,以自养型微生物(菌藻类为主)对碳的代谢过程居于统治地位,有机碳的埋藏和氧化分解是影响碳同位素组成的重要区素;而在高于庄组中部和下部层位,δ13Corg明显偏负,波动范围在-26.3‰~34.4‰,平均值-31.1‰,多数样品碳同位素的分馏(AC)可以达到32%o以上,由此可以推断在中元古代淘洋深水环境中,异养型或化能自养型微生物对有机碳的再矿化可能是当时深部海洋中非常重要的碳的代谢途径。微生物及其碳代谢途径的空间差异性同时也暗示当时较低的大气p02,这一时期海洋处于一种表层适度氧化、而深部厌氧硫化的分层的状态,这与上述通过地层沥积相和沉积微相特征获得的初步认识是一致的。
     6、为了能够对中元古代早期古海洋氧化还原条件有更准确的认识,本文选取平泉剖面高于庄组中部-80m厚的一段地层序列进行了氧化还原敏感元素的测试分析,由于该段地层记录了古海洋从深潮下带静水环境向浅潮下带至潮间带下部逐渐变浅的演化过程,为古海洋氧化还原状态的研究提供了良好的载体。分析结果显示,中元古代早期海洋氧化还原界面较浅,可能在潮下带下部既已缺氧甚至硫化。
     7、在高分辨率碳同位素研究的基础上,本文选取碳酸盐含量高且重结晶程度较低的高于庄组和雾迷山组共110件样品进行了碳酸盐晶格硫酸盐(CAS)硫同位素的测试分析,经果显示这一时期海洋硫酸盐δ34S组成极不稳定,表现为快速、大幅度的波动特征,变化范围在+3.7‰~38.6‰,表明当时海洋硫库规模较小,极易受到外界环境和生物因素的影响,海洋硫酸盐水平较低,可能仅~1mM或者更低,这与中元古代早期较低的pO2分压以及贫氧条件下较低的陆地风化作用强度有着密不可分的联系。两次明显的834SCAs正偏(δ34ScAs>+35%o)分别出现于高于庄组中部和雾迷山组顶部,表明中元古代早期至少存在两次(以上)全球性或区域性环境厌氧程度的加剧;综合的C-S同位素组成特征还显示,在氧化还原化变层之下存在着巨大的DOC库,这一时期深部海洋中活跃的微生物类群除SRB以外,还包括如甲烷菌等厌氧型微生物,并导致了广泛的有机碳的矿化。
     8、中元古代早期较低的海水硫酸盐浓度严重阻碍了甲烷厌氧氧化过程(AOM)的发生,极大的促进了甲烷古菌类微生物的发展、繁衍,从而使得大部分的甲烷气体得以上升至上部水柱或逃逸到大气层中。作为一类非常重要的温室气体,大量CH4的释放也必然导致这一时期强烈的温室效应,从而维持了地质历史上长达16亿年的漫长的高温时期。迄今为止,在中元古界地层中也发现了大量与CH4气体逃逸密切相关的沉积相标志,进一步印证和支持了甲烷逃逸的发生。
The Mesoproterozoic has recorded a critical evolution of the palaeoceanic chemistry from completely anoxic, iron-rich for the Archean to fully oxic for most of the Phanerozoic eon, meantime, it is also a critical geological stage when the Earth's biosphere evolution from dominated by microbes into macro-organisms. Therefore, it is very important to study the palaeoceanic chemisty and the interaction between the organisms and environments during this time interval, and also is one of important topics of the Precambrian researches. But so far, due to so long-time geological courses, and special environmental conditions, microbes are very hard to preserve their calcified outerwalls, leading to incomplete fossil records. Therefore, the study on the eary Mesoproterozoic oceanic chemistry, dominant microbial functional groups and interactions with natural environments has been extremely weak, that strongly hampered further understanding for the organisms and environments.
     The Mesoproteozoic, especially the Jixian Group dominated by carbonate strata developed very well at the Yanshan Basin, North China, they were relatively complete, continuous and have resisted a high degree of regional metamorphisms and deformations, holding the potential to record their primary information about marine organisms and environments. This study mainly focuses on the bio-sedimentary construction, typical microfacies (micro-fabrics), and the carbon and sulfur stable isotopic compositions, combined with distribution of the redox-sensitive trace elements from a~80m thick sequence of the Gaoyuzhuang Formation, to disscuss the evolutionary patterns of the early Mesoproterozoic oceanic chemistry and dominant biogeochemistry processes under the special environmental conditions. The main results related to this study are given as follows.
     1, Microbialites are much more abundant in the well-preserved Mesproterozoic Jixian successions, including stromatolites, thrombolites, biolaminites, oncolites (oncolite-like carbonate concretions) and various types of microbially induced sedimentary structures (MISS), indicating diversified microbial activities in the early Mesoproterozoic ocean. On the basis of this study and previous achievements, microbialites that mainly occurred in shallw water environments, such as stromatolites, thrombolites, biolaminites and oncolites are believed to be probably related with fiamentous and/or spherical cyanobacteria metabolizing processes under distinct environmental conditions. The differences in external morphology and internal microfabrics for these shallow-water microbialites are mainly controlled by changes of environment physical/chemical conditions. However, the oncolite-like carbonate concretions, mainly appeared in relatively deeper water environments, are closely associated with anaerobic microbes such as sulfate-reducing bacteria (SRB), and methanogenic archaea (ANME) et al. The various microbial fuctional groups and their biogeochemical processes might have put significant influences on the early Mesoproterozoic climate and oceanic environments.
     2, The abundance of acicular aragonites are recognized in the thin-sections under microscopes, these argonites generally occur as fibrous cladding at organic-rich micro-pellets edges or as cements filling in some "mini-environments" protected by intensive microbial mats layers, suggesting dysoxic/anoxic conditions are prevalent in the Mesoproterozoic deep ocean, and also, some special shallow water environments protected by microbial mat layers are probably dysoxic due to oxygen consumption during the processes of organic matter decompositions. In addition, the appearence of abundant acicular aragonites indicates HCO3-supersaturated seawater conditions, which is probably related with much higher PCO2during the early Mesoproteorozic.
     3, To improve our knowledge about the evolutional processes of the early Mesoproterozoic surface system including atmosphere, hydrosphere and biosphere, the Mesoproterozoic Jixian depositional successions composed of five formations from three study sections (Gaoyuzhuang and Yangzhuang formations from the Pingquan Section, Wumishan and Tieling formations from the Lingyuan Section and Hongshuizhuang formation from the Huailai Section) are systematically ananlyzed on high-resolution carbonate and organic carbon isotopic compositions, including623δ13Ccarb and252δ13Corg data. The dataset presented here currently reprsents the highest resolution chemostratigraphic dataset from the early Mesoproterozoic Calymmian period (1.6~1.4Ga) and, as such, permits unprecedented exploration of the isotopic patterns and origin of isotopic variation in the early Mesoproterozoic carbon cycle. In the Jixian succession,623carbonate carbon isotope data points reveal values within a narrow range from-2‰to+2‰, oscillating in a repeated succession of positive and negative excursions around values near0%o. Data presented here show strong isotopic similarity to the previously reported that from other stratigraphic successions elsewhere, however, compared to them, strata within the Yanshan area have a series of superiority in strata continuity, integrity, low degree of regional metamorphisms and deformations and superb age constraints, thus, so high-resolution carbon isotope dataset presented here have the potcntical to serve as a reference for the entire early Mesoproterozoic, and provide important data materials for stratigraphic comparision, subdivision and definition of geological events in the further.
     4, The carbon isotope data from the early Mesoproterozoic Jixian succession record an increase in both the average isotopic composition and an increase in the magnitude of isotopic excursions. Data from the Gaoyuzhuang Formation, which record-with the exception of a single50 m thick interval-only minimal isotopic variation from-1‰to+1‰, with an average isotope composition of-0.3‰. While data shift to more variable from-1.8‰to+1.8‰, with an increased average value at-0.1‰in the Wumishan Formation. Despite relatively differences in carbon isotopes for the two formations, the degree of organic carbon burial (forg) calculated here remained within a fairly narrow range (0.15~0.25), which suggests that the increased isotopic variation observed in marine carbonate between the two successions must have been driven, instead by a decrease in the buffering capacity of the marine DIC system, probably related to a long-term decrease in PCO2through the early Mesoproterozoic and perhaps until the whole Mesoproteorzoic.
     5, A vertical depth-gradient in the isotopic composition of organic carbon is identified from the studied Jixian succession. δ13Corg vary from-26‰to-30‰, with values averaging-28‰, in the upper Gaoyuzhuang Formation and the entire Wumishan Formation, and the δ13Corg is coupled with the coeval δ13Ccarb, reflecting a microbial community dominated by autotrophic organisms in shallow water peritidal environments, and the burial or oxidative decomposition of benthic microbial material put much influence on carbon isotopic compositions. By constrast, the lower and middle Gaoyuzhuang Formation representing relatively deeper water environments shows substantially lighter isotopic compositions for organic carbon (varying from-26.3‰~-34.4‰, and averaging-31.1‰) and correspoding higher AC values (≥32‰), which suggests a substantially enhanced heterotrophic remineralization of benthic microbial mats. These differences in organic and inorganic carbon isotopes under different depositional environment most likely reflect generally low oxygen conditions and a dynamically maintained stratified ocean, where anoxic conditions likely occurred close to oxygenated, well-mixed surface oceans, this conclusion is consistent with that derived from sedimentary features.
     6, The analyses on redox-sensitive trace elements, such U, V, Mo, Cr and Co et al., are performed in a~80m thick carbonate succession from the middle Gaoyuzhuang Formation. This succession spans an interval from relatively queit and deeper subtidal zone to high energic shallower subtidal/intertidal environments and therefore is particularly well-suited to explore the early Mesoproterozoic ocean redox states. The distributions of redox-sensitive trace elements suggest a relatively shallow chemocline in the ocean, transitions from anoxic/euxinic to oxic seawater conditions may occur in lower subtidal zone.
     7, Based on high-resolution carbon isotope records,110carbonate samples are selected from the Gaoyuzhuang and Wumishan formations for CAS sulfur isotope analyses. Unlike the δ13Ccarb, CAS-sulfur isotopes show significant stratigraphic variations, with values ranging from+3.7‰~+38.6%o, indicating a very small sulfate reservoir size, which are more easily affected by environmental and biological changes. The oceanic sulfate concentration is speculated to be very low during the early Mesoproterozoic, probably near or less than1mM. The extremely low sulfate level is compatible with low atmospheric oxygen concentrations and low weathering ratios in that time period. More than two episodes of enrichments of534SCAS exceeding+35‰were present in the middle Gaoyuzhuang and top Wumishan formations, indicating multiple-episodes of ocean anoxic aggravation on a local or global scale during the early Mesoproterozoic. A combined study of C-S cycles indicates a huge DOC reservoir below the chemocline, heterotrophic and secondary chemoautotrophic microbes (eg. methanogen) except for sulfate-reducing bacteria probably exists and contributes widespread organic carbon remineralization in the defined anoxic deep ocean.
     8, The declined oceanic sulfate concentration would also have reduced anaerobic oxidation of methane (AOM) dominated by a consortia of methanogenic archaea and sulfate-reducing bacteria, but in turn facilitated the development of methanogenic archaea and enhanced fluxes of CH4release into the surface ocean and the atmosphere. Being an important greenhouse gas, the release of abundant CH4would have intensified the global warming at that time period, and maintained as long as1.6Ga "no ice" ages in the geological period. The abundance of well preserved sedimentary signatures, such as gas blister structures et al., provide evidences for CH4generation and release under some proper conditions.
引文
[1]Narbonne G M. Ocean Chemistry and Early Animals. Science,2010,328(5974):53-54.
    [2]Kasting J F, Siefert J L. Life and the evolution of earth's atmosphere. Science 2002,296: 1066-1068.
    [3]Derry L A. Fungi, Weathering, and the Emergence of Animals. Science,2006,311(5766): 1386-1387.
    [4]Poulton S W, Fralick P W, Canfield D E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geoscience,2010,3(7):486-490.
    [5]Javaux E J. Microfossils from early Earth. Nature Geoscience,2011,4:663-665.
    [6]Fike D. Biogeochemistry:Earth's redox evolution. Nature Geosci,2010,3(7):453-454.
    [7]Fischer W W. Biogeochemistry:Life before the rise of oxygen. Nature (London),2008,455: 1051-1052.
    [8]Bekker A, Holland H D, Wang P L, et al. Dating the rise of atmospheric oxygen. Nature,2004, 427(6970):117-120.
    [9]Scott C, Lyons T W, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature,2008,452(7186):456-U5.
    [10]Farquhar J, Bao H M, Thiemens M. Atmospheric influence of Earth's earliest sulfur cycle. Science,2000,289(5480):756-758.
    [11]Kasting J F. When methane made climate. Sci. Am.,2004,291(1):78-85.
    [12]Holland H D. The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B-Biological Sciences,2006,361(1470):903-915.
    [13]Holland H D. Volcanic gases, black smokers, and the Great Oxidation Event. Geochimica Et Cosmochimica Acta,2002,66(21):3811-3826.
    [14]Kump L R. The rise of atmospheric oxygen. Nature (London),2008,451(7176):277-278.
    [15]Catling D C, Claire M W. How earth's atmosphere evolved to an oxic state:A status report. Earth and Planetary Science Letters,2005,237:1-20.
    [16]Sessions A L, Doughty D M, Welander P V, et al. The Continuing Puzzle of the Great Oxidation Event. Current Biology,2009,19(14):R567-R574.
    [17]史晓颖,张传恒,蒋干清,等.华北地台中元古代碳酸盐岩中的微生物成因构造及其生烃潜力.现代地质,2008,22(5):669-682.
    [18]Habicht K S, Gade M, Thamdrup B, et al. Calibration of sulfate levels in the Archean Ocean. Science,2002,298(5602):2372-2374.
    [19]Jorgensen B B, Bottcher M E, Luschen H. Anaerobicmethane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochimica Et Cosmochimica Acta,2004,68(9):2095-2118.
    [20]Shen Y, Knoll A H, Walter M R. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature,2003,423(6940):632-635.
    [21]Fike D A, Grotzinger J P, Pratt L M, et al. Oxidation of the Ediacaran Ocean. Nature,2006, 444(7120):744-747.
    [22]Johnston D T, Poulton S W, Goldberg T, et al. Late Ediacaran redox stability and metazoan evolution. Earth and Planetary Science Letters,2012,335-336(0):25-35.
    [23]Knoll A H, Javaux E J, Hewitt D, et al. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society B:Biological Sciences,2006,361(1470): 1023-1038.
    [24]史晓颖,蒋干清.前寒武纪微生物地质作用与地球表层系统演化.见:谢树成等.地球生物学——生命与地球环境的相互作用和协同演化.第一版.北京:科学出版社,2011.190-235.
    [25]Nisbet E G, Sleep N H. The habitat and nature of early life. Nature (London),2012,409: 1083-1091.
    [26]Schopf J W. Microfossils of the early Archean apex chert:New evidence of the antiquity of life. Science,1993,260(5108):640-646.
    [27]Schopf J W. Fossil evidence of Archaean life. Philosophical Transactions of the Royal Society B:Biological Sciences,2006,361(1470):869-885.
    [28]Des Marais D J. Sea change in sediments. Nature 2005,437:7060-7061.
    [29]Fumes H, Banerjee N R, Muehlenbachs K, et al. Early life recorded in Archean pillow lavas. Science (New York, N.Y.),2004,315(5819):1704-1707.
    [30]Tice M M. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature (London),2004, 431:549-552.
    [31]All wood A C, Walter M R, Kamber B S, et al. Stromatolite reef from the Early Archaean era of Australia. Nature,2006,441(7094):714-718.
    [32]Shen Y A, Buick R, Canfield D E. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature,2001,410(6824):77-81.
    [33]Ueno Y, Yamada K, Yoshida N, et al. Evidence from fluid unclusions for microbial methanogenesis in the early Archean era. Nature (London),2006,440:516-519.
    [34]Knoll A H. Archean and proterozoic paleontology. In:J. Jansonius and D.C. McGregor. Palynology:principles and applications. Version 2, Dallas:American Association of Stratigraphic Palynologists Foundation,1996.51-80.
    [35]Des Marais D J. Evolution- When did photosynthesis emerge on earth? Science,2000, 289(5485):1703-1705.
    [36]Kasting J F, Howard M T. Atmospheric compsition and climate on the early Earth. Philosophical Transactions of the Royal Society B:Biological Sciences,2006,361: 1733-1742.
    [37]吉利明,陈践发,郑建京,等.华北燕山地区中新元古代沉积记录及其古气候、古环境特 征.地球科学进展,2001,16(5):777-784.
    [38]Brocks J J, Logan G A, Buick R, et al. Archean molecular fossils and the early rise of eukaryotes. Science,1999,285:1033-1036.
    [39]Eigenbrode J L, Freeman K H. Late Archean rise of aerobic microbial ecosystems. Proceedings of the National Academy of Sciences of the United States of America,2006,103: 15759-15764.
    [40]Schopf J W. Solution to Darwin's Dilemma:Discovery of the missing Precambrian record of life. Proceedings of the National Academy of Sciences of the United States of America,2000, 97(13):6947-6953.
    [41]Knoll A H. The geological consequences of evolution. Geobiology,2003,1(1):3-14.
    [42]Brocks J J, Love G D, Summons R E, et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature,2005,437(7060):866-870.
    [43]Summons R E, Bradley A S, Jahnke L L, et al. Steroids, triterpenoids and molecular oxygen. Philosophical Transactions of the Royal Society B:Biological Sciences,2006,361(1470): 951-968.
    [44]Javaux E J. Early eukaryotes in Precambrian oceans. In:M. Gargaud et al. Origins and evolution of life:An astrobiological perspective. Version 1. New York:Cambridge University Press,2011.414-449.
    [45]Han T M, Runnegar B. megascopic eukaryotic algea from the 2.1-billion-year-old Negaunee Iron-Formation, Michigan. Science (New York, N.Y.),1992,257:232-235.
    [46]Butterfield N J. Bangiomorpha pubescens n. gen., n. sp.:implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology,2000,26(3):386-404.
    [47]Butterfield N J. Probable proterozoic fungi. Paleobiology,2005,31(1):165-182.
    [48]Butterfield N J. Macroevolution and macroecology. Paleobiology,2007,31(1):165-182.
    [49]孙淑芬.古生物化石的组合划分和特征.见:孙淑芬.中国蓟县中、新元古界微古植物化石.第一版.北京:地质出版社,2006.57-65.
    [50]孙淑芬,朱士兴,黄学光,等.燕山长城系串岭沟组Parachuaria化石的发现及其意义.地质学报,2004,78(6):721-726.
    [51]朱士兴,孙淑芬,黄学光.华北燕山中元古代高于庄组碳质宏体化石的新研究.
    [52]朱士兴,陈辉能.华北蓟县长城群团山子组叶状宏观化石的发现和意义.科学通报,1995,40(12):1122-1125.
    [53]朱士兴,孙淑芬,黄学光,等.燕山常州沟组[约1800 Ma)碳质压型化石及其多细胞组织的发现.科学通报,1999,44(14):1552-1557.
    [54]Li C, Peng P, Sheng G Y, et al. A molecular and isotopic geochemical study of Meso- to Neoproterozoic (1.73-0.85 Ga) sediments from the Jixian section, Yanshan Basin, North China. Precambrian Research,2003,125(3-4):337-356.
    [55]谢树成,罗根明,宋金明,等.2001-2010年生物地球化学研究进展与展望.矿物岩石地球化学通报,2012,31(5):447-469.
    [56]Robert F, Chaussidon M. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature,2006,443(7114):969-972.
    [57]Knauth L P. Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeography, Palaeoclimatology, Palaeoecology,2005, 219(1-2):53-69.
    [58]Pavlov A A, Hurtgen M T, Kasting J F, et al. Methane-rich Proterozoic atmosphere? Geology, 2003,31(1):87-90.
    [59]Kah L C, Riding R. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology,2007,35(9):799-802.
    [60]Shi X Y, Jiang G Q, Zhang C H, et al. Sand veins and MISS from the Mesoproterozoic black shale (ca.1.7 Ga) in North China: Implication for methane degassing from microbial mats. Science in China Series D-Earth Sciences,2008,51(11):1525-1536.
    [61]Kaufman A J, Xiao S H. High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature,2003,425(6955):279-282.
    [62]Sheldon N D. Precambrian paleosols and atmospheric CO2 levels. Precambrian Research, 2006,147(1-2):148-155.
    [63]Bartley J K, Kah L C. Marine carbon reservoir, C-org-C-carb coupling, and the evolution of the Proterozoic carbon cycle. Geology,2004,32(2):129-132.
    [64]Farquhar J, Wu N P, Canfield D E, et al. Connections between Sulfur Cycle Evolution, Sulfur Isotopes, Sediments, and Base Metal Sulfide Deposits. Economic Geology,2010,105(3): 509-533.
    [65]Lyons T W, Kah L C, Gellatly A M. The Precambrian sulphur isotope record of evolving atmospheric oxygen. In:P.G. Eriksson et al. The Precambrian earth:Tempos and events. Version 1. Netherlands:Elsevier,2004.421-440.
    [66]Canfield D E, Teske A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature,1996,382(6587):127-132.
    [67]Kah L C, Lyons T W, Frank T D. Low marine sulphate and protracted oxygenation of the proterozoic biosphere. Nature,2004,431(7010):834-838.
    [68]Hurtgen M T, Arthur M A, Suits N S, et al. The sulfur isotopic composition of Neoproterozoic seawater sulfate:implications for a snowball Earth? Earth and Planetary Science Letters,2002, 203(1):413-429.
    [69]Gellatly A M, Lyons T W. Trace sulfate in mid-Proterozoic carbonates and the sulfur isotope record of biospheric evolution. Geochimica Et Cosmochimica Acta,2005,69(15):3813-3829.
    [70]Azmy K, Veizer J, Misi A, et al. Dolomitization and isotope stratigraphy of the Vazante Formation, Sao Francisco Basin, Brazil. Precambrian Research,2001,112(3-4):303-329.
    [71]Shen Y N, Canfield D E, Knoll A H. Middle proterozoic ocean chemistry:Evidence from the McArthur Basin, northern Australia. American Journal of Science,2002,302(2):81-109.
    [72]Staudt W J, Schoonen M A A. Sulfate Incorporation into Sedimentary Carbonates, Geochemical Transformations of Sedimentary Sulfur. ACS Symposium Series. American Chemical Society,1995, pp.332-345.
    [73]Baker P A, Kastner M. Constraints on the Formation of Sedimentary Dolomite. Science,1981, 213(4504):214-216.
    [74]Hurtgen M T, Arthur M A, Halverson G P. Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite. Geology, 2005,33(1):41-44.
    [75]Johnston D T, Farquhar J, Summons R E, et al. Sulfur isotope biogeochemistry of the Proterozoic McArthur Basin. Geochimica Et Cosmochimica Acta,2008,72(17):4278-4290.
    [76]Johnston D T, Wing B A, Farquhar J, et al. Active microbial sulfur disproportionation in the Mesoproterozoic. Science,2005,310(5753):1477-1479.
    [77]Parnell J, Boyce A J, Mark D, et al. Early oxygenation of the terrestrial environment during the Mesoproterozoic. Nature,2010,468(7321):290-293.
    [78]赵振华.条带状铁建造(BIF)与地球大氧化事件.地学前缘,2010,17(2):1-12.
    [79]Fabre S, Nedelec A, Poitrasson F, et al. Iron and sulphur isotopes from the Carajas mining province (Para, Brazil):Implications for the oxidation of the ocean and the atmosphere across the Archaean-Proterozoic transition. Chemical Geology,2011,289(1-2):124-139.
    [80]Canfield D E, Habicht K S, Thamdrup B. The Archean Sulfur Cycle and the Early History of Atmospheric Oxygen. Science,2000,288(5466):658-661.
    [81]Cloud P. A working model of the primitive Earth. American Journal of Science,1972,272(6): 537-548.
    [82]Poulton S W, Fralick P W, Canfield D E. The transition to a sulphidic ocean similar to 1.84 billion years ago. Nature,2004,431(7005):173-177.
    [83]Canfield D E. A new model for Proterozoic ocean chemistry. Nature,1998,396(6710): 450-453.
    [84]Arnold G L, Anbar A D, Barling J, et al. Molybdenum isotope evidence for widespread anoxia in mid-proterozoic oceans. Science,2004,304(5667):87-90.
    [85]Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean. Science, 2010,328(80):80-83.
    [86]Johnston D T, Poulton S W, Dehler C, et al. An emerging picture of Neoproterozoic ocean chemistry:Insights from the Chuar Group, Grand Canyon, USA. Earth and Planetary Science Letters,2010,290(1-2):64-73.
    [87]Planavsky N J, McGoldrick P, Scott C T, et al. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature,2011,477(7365):448-451.
    [88]Poulton S W, Canfield D E. Ferruginous conditions:A dominant feature of the ocean through Earth's history. Elements,2011,7:107-112.
    [89]Karhu J A, Holland H D. Carbon isotopes and the rise of atmospheric oxygen. Geology,1996, 24(10):867-870.
    [90]Buick R, Marais D J D, Knoll A H. Stable Isotopic Compositions of Carbonates from the Mesoproterozoic Bangemall Group, Northwestern Australia. Chemical Geology,1995, 123(1-4):153-171.
    [91]Riding R. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmopheric composition. Geobiology,2006,4(4):299-316.
    [92]Burne R V, Morre L S. Microbialites:Organosedimentary deposits of benthic microbial communities. Palaios,1987,2(3):241-254.
    [93]Harwood C L, Sumner D Y. Microbialites of the Neoproterozoic Beck Spring Dolomite, Southern California. Sedimentology,2011,58(6):1648-1673.
    [94]Noffke N. Microbially induced sedimentary structures in Archean sandstones: A new window into early life. Gondwana Research,2007,11(3):336-342.
    [95]Noffke N, Beukes N, Gutzmer J, et al. Spatial and temporal distribution of microbially induced sedimentary structures:A case study from siliciclastic storm deposits of the 2.9 Ga Witwatersrand Supergroup, South Africa. Precambrian Research,2006,146(1-2):35-44.
    [96]Porada H, Bouougri E H. Wrinkle structures—a critical review. Earth-Science Reviews,2007, 81(3-4):199-215.
    [97]Kampschulte A, Strauss H. The sulfur isotopic evolution of Phanerozoic seawater based'on the analysis of structurally substituted sulfate in carbonates. Chemical Geology,2004,204(3-4): 255-286.
    [98]Chu X L, Zhang T G, Zhang Q R, et al. Sulfur and carbon isotope records from 1700 to 800 Ma carbonates of the Jixian section, northern China:Implications for secular isotope variations in Proterozoic seawater and relationships to global supercontinental events. Geochimica Et Cosmochimica Acta,2007,71(19):4668-4692.
    [99]Shields G, Veizer J. Precambrian marine carbonate isotope database:Version 1.1. Geochemistry Geophysics Geosystems,2002,3(6):1-12.
    [100]Schidlowski M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history:evolution of a concept. Precambrian Research,2001,106(1-2):117-134.
    [101]Ueno Y, Isozaki Y, Yurimoto H, et al. Carbon Isotopic Signatures of Individual Archean Microfossils(?) from Western Australia. International Geology Review,2001,43(3):196-212.
    [102]Habicht K S, Canfield D E. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochimica Et Cosmochimica Acta,1997,61(24):5351-5361.
    [103]Kah L C, Lyons T W, Chesley J T. Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands:implications for Mesoproterozoic marine evolution. Precambrian Research,2001,111(1-4):203-234.
    [104]Brasier M D, Lindsay J F. A billion years of environmental stability and the emergence of eukaryotes:New data from northern Australia. Geology,1998,26(6):555-558.
    [105]Bartley J K, Kah L C, Mc Williams J L, et al. Carbon isotope chemostratigraphy of the Middle Riphean type section (Avzyan Formation, Southern Urals, Russia):Signal recovery in a fold- and -thrust belt. Chemical Geology,2007,237(1-2):211-232.
    [106]Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton:lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research,2001,107(1-2):45-73.
    [107]陈晋镳.中朝准地台中-末元古代地质演化的初步探讨.地质论评,1983,29(1):1-8.
    [108]Zhao G C. Palaeoproterozoic assembly of the North China Craton. Geological Magazine,2001, 138(1):87-91.
    [109]Kusky T M, Windley B F, Zhai M-G. Tectonic evolution of the North China Block:from orogen to craton to orogen. Geological Society, London, Special Publications,2007,280(1): 1-34.
    [110]Zhai M. Cratonization and the Ancient North China Continent:A summary and review. Science China Earth Sciences,2011,54(8):1110-1120.
    [111]段吉业,刘鹏举,夏德馨.浅析华北板块中元古代—古生代构造格局及其演化.现代地质,2002,16(4):331-338.
    [112]李江海,钱祥麟,侯贵廷,等.“吕梁运动”新认识.地球科学——中国地质大学学报,2000,25(1):15-20.
    [113]胡俊良,赵太平,徐勇航,et al.华北克拉通大红峪组高钾火山岩的地球化学特征及其岩石成因.矿物岩石,2007,27(4):70-77.
    [114]刘自亮.燕山中东部高于庄组-雾迷山组层序岩相古地理及臼齿碳酸盐岩研究.北京,中国地质大学(北京),2006.
    [115]翟明国,卞爱国.华北克拉通新太古代末超大陆拼合及古元古代末·中元古代裂解.中国科学D辑:地球科学,2000,20(增刊):129-137.
    [116]高林志,张传恒,尹崇玉,等.华北古陆中、 新元古代年代地层框架SHRIMP锆石年龄新依据.地球学报,2008,29(3):366-376.
    [117]李怀坤,陆松年,李惠民,等.侵入下马岭组的基性岩床的锆石和斜锆石U-Pb精确定年——对华北中元古界地层划分方案的制约.地质通报,2009,28(10):1396-1404.
    [118]陆松年,李怀坤,相振群.中国中元古代同位素地质年代学研究进展述评.中国地质,2010,37(4):1002-1013.
    [119]Wan Y, Zhang Q, Song T. SHRIMP ages of detrital zircons from the Changcheng System in the Ming Tombs area, Beijing:Constraints on the protolith nature and maximum depositional age of the Mesoproterozoic cover of the North China Craton. Chinese Science Bulletin,2003, 48(22):2500-2506.
    [120]李怀坤,李惠民,陆松年.长城系团山子组火山岩颗粒锆石U-Pb年龄及其地质意义.地球化学,1995,24(1):43-49.
    [121]陆松年,李惠民.蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年.中国地质科学院院报,1991,22:137-146.
    [122]李怀坤,朱士兴,相振群,等.北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束.岩石学报,2010,26(7):2131-2140.
    [123]苏文博,李怀坤,Huff W D,等.铁岭组钾质斑脱岩锆石SHRIMP U-Pb年代学研究及其地质意义.科学通报,2010,55(22):2197-2206.
    [124]Su W, Li H, Huff W D, et al. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation, North China. Chinese Science Bulletin,2010,55(29):3312-3323.
    [125]Su W B, Zhang S H, Huff W D, et al. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation:Implications for revised subdivision of the Meso- to Neoproterozoic history of the North China Craton. Gondwana Research,2008,14(3):543-553.
    [126]高林志,张传恒,史晓颖,等.华北古陆下马岭组归属中元古界的锆石SHRIMP年龄新依据.科学通报,2008,53(21):2617-2623.
    [127]河北省地质矿产局.河北省、北京市、天津市区域地质志.第一版.北京:地质出版社,1989.69-115.
    [128]徐德斌,白志达,王敦则,等.河北省兴隆地区大红峪组沉积古环境研究.地层学杂志,2002,26(1):73-79.
    [129]孙淑芬.天津蓟县洪水庄组微古植物群.前寒武纪研究进展,2000,23(3):165-172.
    [130]乔秀夫,高林志,张传恒.中朝板块中、新元古界年代地层柱与构造环境新思考.地质通报,2007,26(5):503-509.
    [131]郭华,杜远生,黄俊华,等.河北平泉中元古界高于庄组生境型及古环境.古地理学报,2010,12(3):269-280.
    [132]Guo H, Du Y, Kah L C, et al. Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group, North China:Implications for biological and oceanic evolution. Precambrian Research,2013,224(0):169-183.
    [133]Shi X Y, Zhang C H, Jiang G Q, et al. Microbial Mats in the Mesoproterozoic Carbonates of the North China Platform and Their Potential for Hydrocarbon Generation. Journal of China University of Geosciences,2008,19(5):549-566.
    [134]旷红伟,彭楠,罗顺社,等.燕山中东部凌源地区雾迷山组MT构造的发现、地质特征和研究意义.自然科学进展,2009,19(12):1308-1318.
    [135]Hofmann H J, Jackson G D. Proterozoic Ministromatolites with Radial-Fibrous Fabric. Sedimentology,1987,34(6):963-971.
    [136]罗顺社,李任远,汪凯明,等.河北宽城蓟县系铁岭组岩石特征及沉积环境分析.石油天然气学报,2010,32(3):1-7.
    [137]Kah L C, Bartley J K, Frank T D, et al. Reconstructing sea-level change from the internal architecture of stromatolite reefs:an example from the Mesoproterozoic Sulky Formation, Dismal Lakes Group, arctic Canada. Canadian Journal of Earth Sciences,2006,43(6): 653-669.
    [138]Wang Y, Tong J, Wang J, et al. Calcimicrobialite after end-Permian mass extinction in South China and its palaeoenvironmental significance. Chinese Science Bulletin,2005,50(7): 665-671.
    [139]Bosak T, Liang B, Sim M S, et al. Morphological record of oxygenic photosynthesis in conical stromatolites. Proceedings of the National Academy of Sciences,2009,106(27):10939-10943.
    [140]Riding R. The term stromatolite:towards an essential definition. Lethaia,1999,32(4): 321-330.
    [141]Andres M S, Pamela Reid R. Growth morphologies of modern marine stromatolites:A case study from Highborne Cay, Bahamas. Sedimentary Geology,2006,185(3-4):319-328.
    [142]Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology,2006,185(3-4):229-238.
    [143]Aitken J D. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Research,1967,37(4):1163-1178.
    [144]Hofmann H J. Stromatolites:Characteristics and utility. Earth-Science Reviews,1973,9(4): 339-373.
    [145]Walter M R, Heys G R. Links between the rise of the metazoa and the decline of stromatolites. Precambrian Research,1985,29(1-3):149-174.
    [146]Gabelein C D. Biologic control of stromatolite microstructure:implications for Precambrian time stratigraphy. American Journal of Science,1974,274(6):575-598.
    [147]Awramik S M. Precambrian columnar stromatolite diversity:reflection of metazoan appearance. Science,1971,174(4011):825-827.
    [148]Kennard J M, James N P. Thrombolites and stromatolites:Two distinct types of microbial structures. Palaios,1986,1(5):492-503.
    [149]梅冥相.从凝块石概念的演变论微生物碳酸盐岩的研究进展.地质科技情报,2007,26(6):1-9.
    [150]Aitken J D, Narbonne G M. Two occurrences of precambrian thrombolites from the Mackenzie Mountains, Northewestern Canada. Palaios,1989,4(4):384-388.
    [151]Kah L C, Grotzinger J P. Early Proterozoic (1.9 Ga) Thrombolites of the Rocknest Formation, Northwest Territories, Canada. Palaios,1992,7(3):305-315.
    [152]Tang D J, Shi X Y, Jiang G Q. Mesoproterozoic biogenic thrombolites from the North China platform. International Journal of Earth Sciences,2012.
    [153]Feldmann M, McKenzie J A. Stromatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas. Palaios,1998,13(2):201-212.
    [154]刘建波,江崎洋一,杨守仁,等.贵州罗甸二叠纪末生物大灭绝事件后沉积的微生物岩的时代和沉积学特征.古地理学报,2007,9(5):473486.
    [155]Peryt T. Phanerozoic oncoids—an overview. Facies,1981,4(1):197-213.
    [156]Whalen M T, Day J, Eberli G P, et al. Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems:examples from the Late Devonian, Alberta basin, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology,2002,181(1-3):127-151.
    [157]王尚彦,王宁,罗永明,等.贵州关岭上三叠统瓦窑组中碳酸盐岩结核形成的生物作用.地质通报,2002,21(12):855-857.
    [158]Gerdes G, Krumbein W E. Biolaminated deposits Berlin, Springer-Verlag,1987,183 pp.
    [159]Noffke N, Gerdes G, Klenke T, et al. Microbially Induced Sedimentary Structures:A New Category within the Classification of Primary Sedimentary Structures. Journal of Sedimentary Research,2001,71(5):649-656.
    [160]汤冬杰,史晓颖,李涛,等.微生物席成因构造形态组合的古环境意义:以华北南缘中—新元古代为例.地球科学——中国地质大学学报,2011,36(6):1033-1043.
    [161]邢智峰,齐永安,郑伟,等.从微观角度认识微生物席在中元古代的繁盛——以豫西云梦山组为例.沉积学报,2011,29(5):857-865.
    [162]史晓颖,王新强,蒋干清,等.贺兰山地区中元古代微生物席成因构造——远古时期微生物群活动的沉积标识.地质论评,2008,54(5):577-588.
    [163]Noffke N, Gerdes G, Klenke T. Bentic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (silicliclastic, evaporitic salty, and evaporitic carbonatic). Earth-Science Reviews,2003,62:163-176.
    [164]赵贵生.华北中元古代雾迷山组微生物岩及其古海洋环境意义,北京:中国地质大学(北京),2011.
    [165]Seong-Joo L, Golubic S. Multi-trichomous cyanobacterial microfossils from the Mesoproterozoic Gaoyuzhuang Formation, China:Paleoecological and taxonomic implications. Lethaia,1998,31(3):169-184.
    [166]Seong-Joo L, Golubic S. Microfossil populations in the context of synsedimentary micrite deposition and acicular carbonate precipitation:Mesoproterozoic Gaoyuzhuang Formation, China. Precambrian Research,1999,96(3-4):183-208.
    [167]Shapiro R S. A comment on the systematic confusion of thrimbolites. Palaios,2000,15(2): 166-169.
    [168]党皓文,刘建波,袁鑫鹏.湖北兴山中寒武统覃家庙群微生物岩及其古环境意义.北京大学学报(自然科学版),2009,45(2):289-298.
    [169]Riding R. Microbial carbonates:the geological record of calcified bacterial—algal mats and biofilms. Sedimentology,2000,47:179-214.
    [170]杨仁超,樊爱萍,韩作振,等.核形石研究现状与展望.地球科学进展,2011,26(5):465-474.
    [171]Sumner D Y, Grotzinger J P. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? Geology,1996,24(2):119-122.
    [172]汤冬杰,史晓颖,裴云鹏,等.华北中元古代陆表海氧化还原条件.古地理学报,2011,13(5):563-580.
    [173]汤冬杰,史晓颖,蒋干清,等.中元古代微指状叠层石:超微组构和有机矿化过程.地质论评,2012,58(6):1001-1016.
    [174]Sumner D Y, Grotzinger J P. Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani Platform, South Africa. Sedimentology, 2004,51(6):1273-1299.
    [175]Grotzinger J P. Geochemical model for Proterozoic stromatolite decline. American Journal of Science,1990,290-A:80-103.
    [176]汤冬杰,史晓颖,刘娟,等.华北地台串岭沟组砂脉中自生碳酸盐沉淀和自生黄铁矿——中元古代甲烷厌氧氧化的沉积证据.古地理学报,2009,11(4):361-374.
    [177]Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature,2000,407(6804):623-626.
    [178]Milucka J, Ferdelman T G, Polerecky L, et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature,2012,491(7425):541-546.
    [179]Claire M W, Catling D C, Zahnle K J. Biogeochemical modelling of the rise in atmospheric oxygen.2006,4(4):239-269.
    [180]Jiang G Q, Kennedy M J, Christle-Bllck N. Stable isotopic evidence for mathane seeps in Neoproterozoic postglacial cap carbonates. Nature (London),2003,426:822-826.
    [181]Wang J S, Jiang G Q, Li Q, et al. Carbon isotope evidence for widespread methane seeps in the ca.635 Ma Doushantuo cap carbonate in south China. Geology,2008,36(5):347-350.
    [182]Knoll A H, Kaufman A J, Semikhatov M A. The Carbon-Isotopic Composition of Proterozoic Carbonates-Riphean Successions from Northwestern Siberia (Anabar Massif, Turukhansk Uplift). American Journal of Science,1995,295(7):823-850.
    [183]王可法.海相碳酸盐碳同位素组成及其意义.地质地球化学,1994,5:50-54.
    [184]Berner R A. GEOCARBSULF:A combined model for Phanerozoic atmospheric O-2 and CO2. Geochimica Et Cosmochimica Acta,2006,70(23):5653-5664.
    [185]Des Marais D J. Isotopic Evolution of the Biogeochemical Carbon Cycle During the Precambrian. Reviews in Mineralogy and Geochemistry,2001,43(1):555-578.
    [186]Holser W T. Geochemical events documented in inorganic carbon isotopes. Palaeogeography Palaeoclimatology Palaeoecology,1997,132(1-4):173-182.
    [187]Shen S-z, Crowley J L, Wang Y, et al. Calibrating the End-Permian Mass Extinction. Science, 2011,334(6061):1367-1372.
    [188]Berner R A. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Palaeogeography Palaeoclimatology Palaeoecology,1989,75: 97-122.
    [189]Bond D, Wignall P B, Racki G. Extent and duration of marine anoxia during the Frasnian-Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geological Magazine,2004,141(2):173-193.
    [190]Chen D Z, Qing H R, Li R W. The Late Devonian Frasnian Famennian (F/F) biotic crisis: Insights from δ13Ccarb,813Corg and 87Sr/86Sr isotopic systematics. Earth and Planetary Science Letters,2005,235:151-166.
    [191]Gilleaudeau G J, Kah L C. Carbon isotope records in a Mesoproterozoic epicratonic sea: Carbon cycling in a low-oxygen world. Precambrian Research,2013,228(0):85-101.
    [192]Kump L R, Arthur M A. Interpreting carbon-isotope excursions:carbonates and organic matter. Chemical Geology,1999,161(1-3):181-198.
    [193]Dean W E, Arthur M A, Claypool G E. Depletion of 13C in Cretaceous marine organic matter: Source, diagenetic, or environmental sigal? Marine Geology,1986,70:119-157.
    [194]Bekker A, Holmden C, Beukes N J, et al. Fractionation between inorganic and organic carbon during the Lomagundi (2.22-2.1 Ga) carbon isotope excursion. Earth and Planetary Science Letters,2008,271:278-291.
    [195]Jiang G, Wang X, Shi X, et al. Organic carbon isotope constraints on the dissolved organic carbon (DOC) reservoir at the Cryogenian-Ediacaran transition. Earth and Planetary Science Letters,2010,299(1-2):159-168.
    [196]Jiang G, Wang X, Shi X, et al. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca.542-520Ma) Yangtze platform. Earth and Planetary Science Letters,2012,317-318(0):96-110.
    [197]Hollander D J, Smith M A. Microbially mediated carbon cycling as a control on the 813C of sedimentary carbon in eutrophic Lake Mendota (USA):new models for interpreting isotopic excursions in the sedimentary record. Geochimica Et Cosmochimica Acta,2001,65(23): 4321-4337.
    [198]Hayes J M, Strauss H, Kaufman A J. The abundance of C-13 in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chemical Geology,1999,161(1-3):103-125.
    [199]Teranes J L, Bernasconi S M. Factors controlling 813C values of sedimentary carbon in hypertrophic Baldeggersee, Switzerland, and implications for interpreting isotope excursions in lake sedimentary records. Limnology and Oceanography,2005,50:914-922.
    [200]李牛,胡超涌,马仲武,等.四川广元上寺剖面上二叠统大隆组优质烃源岩发育主控因素初探.古地理学报,2011,13(3):347-354.
    [201]沈尔卜,胡超涌,马仲武,等.广西来宾铁桥剖面二叠系生物地球化学信号的解读.古地理学报,2010,12(2):194-201.
    [202]Wright V P. Carbonate sediments and limestones:constituents. In:M.E. Tucker and V.P. Wright, Carbonate sedimentology. Version 1. Oxford:Wiley-Blackwell,1990.1-27.
    [203]Turner E C, Narbonne G M, James N P. Neoproterozoic reef microstructures from the Little Dal Group, northwestern Canada. Geology,1993,21:259-262.
    [204]Marshall J D. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geological Magazine,1992,129:143-160.
    [205]Veizer J. Trace elements and isotopes in sedimentary carbonates. Reviews in Mineralogy and Geochemistry,1983,11:265-299.
    [206]Frank T D, Kah L C, Lyons T W. Changes in organic matter production and accumulation as a mechanism for isotopic evolution in the Mesoproterozoic ocean. Geological Magazine,2003, 140(4):397-420.
    [207]Kah L C, Bartley J K, Teal D A. Chemostratigraphy of the Late Mesoproterozoic Atar Group, Taoudeni Basin, Mauritania:Muted isotopic variability, facies correlation, and global isotopic trends. Precambrian Research,2012,200-203(0):82-103.
    [208]Derry L A, Kaufman A J, Jacobsen S B. Sedimentary Cycling and Environmental-Change in the Late Proterozoic-Evidence from Stable and Radiogenic Isotopes. Geochimica Et Cosmochimica Acta,1992,56(3):1317-1329.
    [209]Derry L A, Brasier M D, Corfield R M, et al. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton:a paleoenvironmental records during the 'Cambrian explosion'. Earth and Planetary Science Letters,1994,128:671-681.
    [210]Kaufman A J, Knoll A H. Neoproterozoic Variations in the C-Isotopic Composition of Seawater-Stratigraphic and Biogeochemical Implications. Precambrian Research,1995, 73(1-4):27-49.
    [211]Schidlowski M, Echimann R, Junge C E. Precambrian sedimentary carbonates:Carbon and oxgen isotope geochemistry and implications for the terrestrial oxygen budget. Precambrian Research,1975,2:1-69.
    [212]Tang H, Chen Y, Wu G, et al. Paleoproterozoic positive [delta] 13Ccarb excursion in the northeastern Sino-Korean craton:Evidence of the Lomagundi Event. Gondwana Research, 2011,19(2):471-481.
    [213]Maheshwari A, Sial A N, Gaucher C, et al. Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion:A review of occurrences in Brazil, India, and Uruguay. Precambrian Research,2010,182(4):274-299.
    [214]Bekker A, Karhu J A, Kaufman A J. Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America. Precambrian Research,2006, 148(145-180).
    [215]Planavsky N J, Bekker A, Hofmann A, et al. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proceedings of the National Academy of Sciences,2012.
    [216]Jacobsen S B, Kaufman A J. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology,1999,161:37-57.
    [217]张同钢,储雪蕾,冯连君,等.新元古代“雪球”事件对海水碳、硫同位素组成的影响.地球学报,2003,24(6):487-493.
    [218]Rothman D H, Hayes J M, Summons R E. Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences of the United States of America,2003, 100(14):8124-8129.
    [219]Xiao S H, Bao H M, Wang H F, et al. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan:evidence for a post-Marinoan glaciation. Precambrian Research,2004,130:1-26.
    [220]Knoll A H, Carroll S B. Early animal evolution:Emerging views from comparative biology and geology. Science,1999,284(5423):2129-2137.
    [221]Guo H, Du Y S, Kah L C, et al. Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group, North China:Implications for biological and oceanic evolution. Precambrian Research.
    [222]Lindsay J F, Brasier M D. A carbon isotope reference curve for ca.1700-1575 Ma, McArthur and Mount Isa Basins, northern Australia. Precambrian Research,2000,99(3-4):271-308.
    [223]Frank T D, Lyons T W, Lohmann K C. Isotopic evidence for the paleoenvironmental evolution of the Mesoproterozoic Helena Formation, Belt Supergroup, Montana, USA. Geochimica Et CosmochimicaActa,1997,61(23):5023-5041.
    [224]Kah L C, Crawford D C, Bartley J K, et al. C-and Sr-isotope chemostratigraphy as a tool for verifying age of Riphean deposits in the Kama-Belaya aulacogen, the east European platform. Stratigraphy and Geological Correlation,2007,15(1):12-29.
    [225]Li R W, Jenshi C, Shukun Z, et al. Secular variations in carbon isotopic compositions of carbonates from Proterozoic successions in the Ming Tombs Section of the North China Platform. Journal of Asian Earth Sciences,2003,22(4):329-341.
    [226]Meyer K M, Yu M, Jost A B, et al.δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth and Planetary Science Letters,2011.
    [227]Fio K, Spangenberg J E, Vlahovic I, et al. Stable isotope and trace element stratigraphy across the Permian-Triassic transition:A redefinition of the boundary in the Velebit Mountain, Croatia. Chemical Geology,2010,278(1-2):38-57.
    [228]Joachimski M M. Comparison of organic and inorganic carbon isotope patterns across the Frasnian-Famennian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology,1997, 132(1-4):133-145.
    [229]Luo G, Kump L R, Wang Y, et al. Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction. Earth and Planetary Science Letters, 2010,300(1-2):101-111.
    [230]Luo G M, Wang Y B, Yang H, et al. Stepwise and large-magnitude negative shift in delta(13)C(carb) preceded the main marine mass extinction of the Permian-Triassic crisis interval. Palaeogeography Palaeoclimatology Palaeoecology,2011,299(1-2):70-82.
    [231]陈锦石,闻传芬,钟华,等.古生代海洋碳同位素演化.地质科学,1995,30(4):338-347.
    [232]Des Marais D J, Strauss H, Summons R E, et al. Carbon Isotope Evidence for the Stepwise Oxidation of the Proterozoic Environment. Nature,1992,359(6396):605-609.
    [233]Anbar A D, Knoll A H. Proterozoic ocean chemistry and evolution:A bioinorganic bridge? Science,2002,297(5584):1137-1142.
    [234]Knoll A H. Proterozoic and Early Cambrian Protists-Evidence for Accelerating Evolutionary Tempo. Proceedings of the National Academy of Sciences of the United States of America, 1994,91(15):6743-6750.
    [235]Kah L C, Bartley J K. Protracted oxygenation of the proterozoic biosphere. International Geology Review,2011,00(00):1-13.
    [236]Bottrell S H, Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth-Science Reviews,2006,75(1-4):59-83.
    [237]Canfield D E. Biogeochemistry of sulfur isotopes. Stable Isotope Geochemistry,2001,43: 607-636.
    [238]Ault W U, Kulp J L. Isotopic geochemistry of sulphur. Geochimica Et Cosmochimica Acta, 1959,16(4):201-235.
    [239]汪建国,陈代钊,严德天.重大地质转折期的碳、硫循环与环境演变.地学前缘,2009,16(6):33-47.
    [240]Claypool G E, Holser W T, Kaplan I R, et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology,1980,28:199-260.
    [241]Strauss H. The Sulfur Isotopic Record of Precambrian Sulfates-New Data and a Critical-Evaluation of the Existing Record. Precambrian Research,1993,63(3-4):225-246.
    [242]常华进,储雪蕾,黄晶,等.沉积环境细菌作用下的硫同位素分馏.地质论评,2007,53(6):807-813.
    [243]蔡靖,郑平,张蕾.硫酸盐还原菌及其代谢途径.科技通报,2009,25(4):427-431.
    [244]Bottrell S H, Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth-Science Reviews,2006,75(1-4):59-83.
    [245]Kasten S, Jorgensen B B. Sulfate reduction in marine sediments. In:H.D. Schulz and M. Zabel. Marine Chemistry. Version 2. Boston:Harvard University Press,2000.263-275.
    [246]Habicht K S, Canfield D E, Rethmeier J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochimica Et Cosmochimica Acta, 1998,62(15):2585-2595.
    [247]Bottrell S H, Parkes R J, Cragg B A, et al. Isotopic evidence for anoxic pyrite oxidation and stimulation of bacterial sulphate reduction in marine sediments. Journal of Geological Society (London),2000,157:711-714.
    [248]Fry B, Cox J, Gest H, et al. Discrimination between 34S and 32S during Bacterial Metabolism of Inorganic Sulfur Compounds. Journal of Bacteriology,1986,165(1):328-330.
    [249]Fry B, Gest H, Hayes J M. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum. FEMS Microbiology Letters,1985,27(2):227-232.
    [250]Fry B, Gest H, Hayes J M. Isotope effects associated with the anaerobic oxidation of sulfide by the purple photosynthetic bacterium, Chromatium vinosum. FEMS Microbiology Letters,1984, 22(3):283-287.
    [251]Fry B, Ruf W, Gest H, et al. Sulfur isotope effects associated with oxidation of sulfide by 02 in aqueous solution. Chemical Geology:Isotope Geoscience section,1988,73(3):205-210.
    [252]Kaplan I R, Rittenberg S C. Microbiological Fractionation of Sulphur Isotopes. Journal of General Microbiology,1964,34(2):195-212.
    [253]Bak F, Cypionka H. A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature,1987,326(6116):891-892.
    [254]Thamdrup B, Finster K, Hansen J W, et al. Bacterial Disproportionation of Elemental Sulfur Coupled to Chemical-Reduction of Iron or Manganese. Applied and Environmental Microbiology,1993,59(1):101-108.
    [255]Habicht K S, Canfield D E. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology,2001,29(6):555-558.
    [256]Canfield D E. The evolution of the earth surface sulfur reservior. American Journal of Science, 2004,304:839-861.
    [257]Lyons T W, Luepke J J, Schreiber M E, et al. Sulfur geochemical constraints on Mesoproterozoic restricted marine deposition:lower Belt Supergroup, northwestern United States. Geochimica Et Cosmochimica Acta,2000,64(3):427-437.
    [258]Luepke J J, Lyons T W. Pre-Rodinian (Mesoproterozoic) supercontinental rifting along the western margin of Laurentia:geochemical evidence from the Belt-Purcell Supergroup. Precambrian Research,2001, 111(1-4):79-90.
    [259]Shen B, Xiao S, Zhou C, et al. Carbon and sulfur isotope chemostratigraphy of the Neoproterozoic Quanji Group of the Chaidam Basin, NW China:Basin stratification in the aftermath of an Ediacaran glaciation postdating the Shuram event? Precambrian Research, 2010,177(3-4):241-252.
    [260]Johnston D T, Farquhar J, Canfield D E. Sulfur isotope insights into microbial sulfate reduction:When microbes meet models. Geochimica Et Cosmochimica Acta,2007,71(16): 3929-3947.
    [261]Thompson C K, Kah L C. Sulfur isotope evidence for widespread euxinia and a fluctuating oxycline in Early to Middle Ordovician greenhouse oceans. Palaeogeography Palaeoclimatology Palaeoecology,2012,313:189-214.
    [262]Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system-1:Trace elements. Journal of Sedimentary Petrology,1980,50(4):1219-1236.
    [263]kaufman A J, Knoll A H. Neoproterozoic variations in the C isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research,1995,73:27-49.
    [264]张同钢,储雪蕾,张启锐,等.扬子地台灯影组碳酸盐岩中的硫和碳同位素记录.岩石学报,2004,20(3):717-724.
    [265]旷红伟,李家华,彭楠,等.燕山地区1.6~1.0 Ga时期碳酸盐岩碳、氧同位素组成、演化及其地质意义.地学前缘,2009,16:118-133.
    [266]李鑫,罗顺社,旷红伟,等.辽西凌源雾迷山组碳酸盐岩碳氧同位素特征研究.沉积地质及特提斯地质,2009,29(2):107-111.
    [267]Shen B, Xiao S, Kaufman A J, et al. Stratification and mixing of a post-glacial Neoproterozoic ocean:Evidence from carbon and sulfur isotopes in a cap dolostone from northwest China. Earth and Planetary Science Letters,2008,265(1-2):209-228.
    [268]Mallinson D J, Compton J S. The influence of iron sulfide oxidation on the sulfur isotope analysis of Miocene phosphorites from Florida, USA. Geochimica Et Cosmochimica Acta, 1998,62(23-24):3689-3694.
    [269]Marenco P J, Corsetti F A, Hammond D E, et al. Oxidation of pyrite during extraction of carbonate associated sulfate. Chemical Geology,2008,247(1-2):124-132.
    [270]Mazumdar A, Goldberg T, Strauss H. Abiotic oxidation of pyrite by Fe(III) in acidic media and its implications for sulfur isotope measurements of lattice-bound sulfate in sediments. Chemical Geology,2008,253(1-2):30-37.
    [271]Goldberg T, Poulton S W, Strauss H. Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China:Diagenetic constraints and seawater evolution. Precambrian Research,2005,137(3-4):223-241.
    [272]John E H, Wignall P B, Newton R J, et al.δ34SCAS and δ18OCAS records during the Frasnian-Famennian (Late Devonian) transition and their bearing on mass extinction models. Chemical Geology,2010,275(3-4):221-234.
    [273]Gill B C, Lyons T W, Jenkyns H C. A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event. Earth and Planetary Science Letters,2011,312:484-496.
    [274]Paytan A, Kastner M, Campbell D, et al. Sulfur Isotopic Composition of Cenozoic Seawater Sulfate. Science,1998,282(5393):1459-1462.
    [275]Gill B C, Lyons T W, Saltzman M R. Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservior. Palaeogeography Palaeoclimatology Palaeoecology,2007,256:156-173.
    [276]Horacek M, Brandner R, Richoz S, et al. Lower Triassic sulphur isotope curve of marine sulphates from the Dolomites, N-Italy. Palaeogeography Palaeoclimatology Palaeoecology, 2010,290:65-70.
    [277]Deny L A, Murray R W. Continental Margins and the Sulfur Cycle. Science,2004,303(5666): 1981-1982.
    [278]Raab M, Spiro B. Sulfur isotopic variations during seawater evaporation with fractional crystallization. Chemical Geology:Isotope Geoscience section,1991,86(4):323-333.
    [279]Strauss H, Beukes N J. Carbon and sulfur isotopic compositions of organic carbon and pyrite in sediments from the Transvaal Supergroup, South Africa. Precambrian Research,1996, 79(1-2):57-71.
    [280]Strauss H. Geological evolution from isotope proxy signals-sulfur. Chemical Geology,1999, 161(1-3):89-101.
    [281]Garrels R M, Lerman A. Coupling of the sedimentary sulfur and carbon cycles; an improved model. American Journal of Science,1984,284(9):989-1007.
    [282]Holser W, Clement G, Jansa L, et al. Evaporite deposits of the North Atlantic rift. Triassic-Jurassic Rifting and Opening of the Atlantic:Continental Breakup and the Origin of the Atlantic Passive Margin, Part A. Elsevier, Amsterdam,1988:525-557.
    [283]Newton R J, Pevitt E L, Wignall P B, et al. Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy. Earth and Planetary Science Letters,2004,218(3-4):331-345.
    [284]Sweeney R E, Kaplan I R. Stable isotope composition of dissolved sulfate and hydrogen sulfide in the Black Sea. Marine Chemistry,1980,9:145-152.
    [285]Li R, Chen J, Zhang S, et al. Spatial and temporal variations in carbon and sulfur isotopic compositions of Sinian sedimentary rocks in the Yangtze platform, South China. Precambrian Research,1999,97(1):59-75.
    [286]Strauss H, Schieber J. A sulfur isotope study of pyrite genesis: The Mid-Proterozoic Newland Formation, Belt Supergroup, Montana. Geochimica Et Cosmochimica Acta,1990,54: 197-204.
    [287]Newton R, Bottrell S. Stable isotopes of carbon and sulphur as indicators of environmental change: past and present. Journal of the Geological Society,2007,164:691-708.
    [288]Xie S C, Luo G M, Song J M, et al. An overview on biogeochemistry during the decade of 2001 to 2010. Bulletin of Mineralogy, Petrology and Geochemistry,2012,31(5):447-469.
    [289]Guo H, Du Y S, Zhou L, et al. Trace and rare earth elemental geochemistry of carbonate succession in the middle Gaoyuzhuang Formation, Pingquan section:Implications for early Mesoproterozoic ocean redox conditions. Journal of Palaeogeography,2013,2(2):209-221.
    [290]Lambert I B, Donnelly T H. Atmospheric oxygen levels in the precambrian: a review of isotopic and geological evidence. Palaeogeography, Palaeoclimatology, Palaeoecology,1991, 97(1-2):83-91.
    [291]Bottomley D J, Veizer J, Nielsen H, et al. Isotopic composition of disseminated sulfur in Precambrian sedimentary rocks. Geochimica Et Cosmochimica Acta,1992,56(8):3311-3322.
    [292]罗根明.二叠纪-三叠纪之交的微生物地质过程和C-N-S生物地球化学循环.武汉:中国地质大学(武汉),2011.
    [293]王林.华南埃迪卡拉纪陡山沱期古海洋环境的氧化还原特征,中国地质大学(北京),北京,2012,117 pp.
    [294]Lyons T W, Gill B C. Ancient Sulfur Cycling and Oxygenation of the Early Biosphere. Elements,2010,6(2):93-99.
    [295]Wu N P, Farquhar J, Strauss H, et al. Evaluating the S-isotope fractionation associated with Phanerozoic pyrite burial. Geochimica Et Cosmochimica Acta,2010,74(7):2053-2071.
    [296]Kump L R, Junium C, Arthur M A, et al. Isotopic Evidence for Massive Oxidation of Organic Matter Following the Great Oxidation Event. Science,2011,334(6063):1694-1696.
    [297]Kurtz A C, Kump L R, Arthur M A, et al. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography,2003,18(4):1090.
    [298]Conrad R, Chan O, Claus P, et al. Characterization of methanogenic Archaea and stable isotope fractionation during methane production in the profundal sediment of an oligotrophic lake (Lake Stechlin, Germany). Limnology and Oceanography,2007,52(4):1393.
    [299]Jorgensen B B, Kasten S. Sulfur cycling and methane oxidation. In:H.D.Schulz and M. Zabel, Marine Geochemistry. Version 1. Berlin:Springer,2006.271-309.
    [300]Kasting J F. Methane and climate during the Precambrian era. Precambrian Research,2005, 137(3-4):119-129.
    [301]Kasting J F, Ono S. Palaeoclimates:the first two billion years. Philosophical Transactions of the Royal Society B-Biological Sciences,2006,361(1470):917-929.
    [302]Slack J F, Grenne T, Bekker A, et al. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth and Planetary Science Letters,2007,255(1-2):243-256.
    [303]Berner R A, VandenBrooks J M, Ward P D. Oxygen and Evolution. Science,2007,316(5824): 557-558.
    [304]Kendall B, Gordon G W, Poulton S W, et al. Molybdenum isotope constraints on the extent of late Paleoproterozoic ocean euxinia. Earth and Planetary Science Letters,2011,307(3-4): 450-460.
    [305]Arnaboldi M, Meyers P A. Trace element indicators of increased primary production and decreased water-column ventilation during deposition of latest Pliocene sapropels at five locations across the Mediterranean Sea. Palaeogeography Palaeoclimatology Palaeoecology, 2007,249(3-4):425-443.
    [306]Azmy K, Sylvester P, de Oliveira T F. Oceanic redox conditions in the Late Mesoproterozoic recorded in the upper Vazante Group carbonates of Sao Francisco Basin, Brazil:Evidence from stable isotopes and REEs. Precambrian Research,2009,168(3-4):259-270.
    [307]Ge L, Jiang S, Swennen R, et al. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea:Evidence from trace and rare earth element geochemistry. Marine Geology,2010,277(1-4):21-30.
    [308]Wright J, Schrader H, Holser W T. Paleoredox Variations in Ancient Oceans Recorded by Rare-Earth Elements in Fossil Apatite. Geochimica Et Cosmochimica Acta,1987,51(3): 631-644.
    [309]常华进,储雪蕾,冯连君,等.氧化还原敏感微量元素对古海洋沉积环境的指示意义.地质论评,2009,55(1):91-99.
    [310]Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chemical Geology,2009,258(3-4):338-353.
    [311]Crusius J, Calvert S, Pedersen T, et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters,1996,145(1-4):65-78.
    [312]Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology,2004,206(3-4):289-318.
    [313]McManus J, Berelson W M, Severmann S, et al. Molybdenum and uranium geochemistry in continental margin sediments:Paleoproxy potential. Geochimica Et Cosmochimica Acta,2006, 70(18):4643-4662.
    [314]Jones B, Manning D A C. Comparison of Geochemical Indexes Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology,1994,111(1-4):111-129.
    [315]Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology,2009,268(3-4):211-225.
    [316]Snow L J, Duncan R A, Bralower T J. Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event 2. Paleoceanography,2005,20(3).
    [317]Zhou L, Zhang H Q, Wang J, et al. Assessment on redox conditions and organic burial of siliciferous sediments at the latest Permian Dalong Formation in Shangci, Sichuan, South China. Journal of China University of Geosciences,2008,19(5):496-506.
    [318]Taylor S R, McLennan S M. The continental crust:Its composition and evolution.Verison 1. Palo Alto:Blackwell Scientific Publications,1985.1-328.
    [319]史晓颖,蒋干清,张传恒,等.华北地台中元古代串岭沟纽页岩中的砂脉构造:17亿年前甲烷气逃逸的沉积标识?地球科学——中国地质大学学报,2008,33(5):577-590.
    [320]Kump L R, Pavlov A, Arthur M A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology,2005,33(5):397-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700