用户名: 密码: 验证码:
多壁碳纳米管的形态控制及场发射性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分别以石英、纳米二氧化硅粒子和纳米二氧化硅/碳化聚苯胺(GPANI)三种材料作为基底,采用化学气相沉积(CVD)法制备多壁碳纳米管,在一定程度上实现了碳纳米管微观结构及聚集状态的控制,控制作用体现在:在石英基底上生长出碳纳米管的阵列,进而又在该阵列上生长出多层碳纳米管阵列;以纳米二氧化硅控制Fe催化剂的空间尺寸,从而实现了直径分布较窄的碳纳米管的快速生长;通过改变生长促进剂噻吩的浓度和碳源注入速度等因素,在纳米二氧化硅的协助下,制备出竹节状碳纳米管,并且实现了竹节碳层密度在一定程度上的可控生长;制备了纳米二氧化硅/碳化聚苯胺复合基底,使纳米二氧化硅处于镶嵌状态,从而实现了竹节状碳纳米管薄膜的快速生长,竹节状碳纳米管的生长密度受到纳米二氧化硅表面分布密度的控制。
     使用扫描电镜(SEM)、透射电镜(TEM)对上述碳纳米管的形态和结构进行了表征和分析。并在此基础上,结合X射线光电子能谱(XPS)和X射线能谱仪元素分析(EDS)对碳纳米管的生长机理进行了研究,初步推测了竹节状碳纳米管的生长机理。
     分析了空气氧化和混酸氧化两种纯化方法对碳纳米管结构的影响,针对所制备的碳纳米管提出了纯化方法。通过经氢氟酸浸泡和450℃空气氧化30min两步处理,得到了高纯度的碳纳米管。使用体积比为3:1的浓硫酸与浓硝酸于60℃条件下对碳纳米管进行混酸氧化,通过SEM、红外光谱(FTIR)对纯化效果进行了分析,结果表明,随着氧化时间的延长,碳纳米管被不同程度裁短,并使管壁上生成羧基和羟基。
     使用热重分析(TGA)和拉曼(Raman)光谱对碳纳米管进行了缺陷分析,发现竹节状碳纳米管具有较多的缺陷。碳纳米管的场发射性能测试与丝网印刷浆料的研究结合进行,在氧化铟锡(ITO)导电玻璃表面牢固形成碳纳米管/低熔点玻璃复合薄膜。场发射性能测试结果表明,由于缺陷作用,竹节状碳纳米管的场发射性能远高于普通结构的碳纳米管。
     采用激光刻蚀技术在ITO玻璃衬底上制备出碳纳米短管薄膜。SEM和TEM测试显示碳纳米管被激光截短,管壁变得粗糙不平。Raman光谱分析说明石墨层晶格结构发生了扭曲和混乱。该薄膜具有一定的场发射性能和电子发射稳定性。
     本研究还制备了一种新的场发射材料碳化聚苯胺。通过对不同条件制备的碳化聚苯胺进行场发射测试,确定了合理的反应条件为:60~100MPa压片,900℃下氢气热处理2h。XRD、SEM、TEM、Raman光谱和XPS分析表明:碳化聚苯胺是一种氮掺杂的非晶态碳材料,其场发射性能主要来源于:表面纳米级的凸起结构;sp~2C结构中包含一定量的sp~3C;适量的氮掺
     杂使表面势垒降低,降低了电子溢出功。研究了在碳化聚苯胺基底上原位生长碳纳米管制备场发射阴极材料的方法。采用旋转蒸发—高温还原法实现了Fe/SiO_2催化剂的快速制备,将该催化剂沉积在碳化聚苯胺基底表面的空隙中,采用低压化学气相沉积法(LPCVD)生长碳纳米管,结果表明:在碳纳米管生长的同时,部分碳原子在孔隙中沉积使孔隙封闭,从而使碳纳米管的根部牢固固定在基底上。因此赋予该材料很强的场发射稳定性。对在纳米二氧化硅/碳化聚苯胺复合基底上生长竹节状碳纳米管薄膜进行了分析和表征。场发射性能测试结果表明,该阴极材料具有很低的开启电场强度和阈值电场强度,并表现出较强的场发射稳定性。
In this stduy, multi-wall carbon nanotubes (MWNTs) were prepared with chemical vapor deposition (CVD) on three substrates: quartz, nano-SiO_2 and nanoSiO_2/ Graphitized Polyaniline (GPANI), respectively. To some extent, the micro-structure of resulted carbon nanotubes were controlled, i.e.: 1) the array of carbon nanotubes was formed on quartz, and then multi-layer carbon nanotubes further grew on this array; 2) the narrow distribution carbon nanotubes grew rapidly by using nano-SiO_2 to control Fe catalyst space; 3) by changing experiment factors(such as the concentration of the promoter thiophene, the inject rate of carbon source) and with the aid of nano-SiO_2, the bamboo-like carbon nanotubes was synthesized with the control of bamboo joint carbon layer intensity; 4) the insertion state nano-SiO_2 on the composite substrate of nano-SiO_2/ GPANI made bamboo-like nanotubes film grow much faster. Therefore, the intensity of bamboo-like carbon nanotubes was controlled by the distribution (intensity) of nano-SiO_2 at the surface.
     The micro-structure of above carbon nanotubes were analyzed with scanning electron microscope (SEM) and transmission electron microscopy (TEM). With the combination of X-ray photoelectron spectroscopy analysis (XPS) and X-ray microanalysis (EDS), the growing mechanism of bamboo-like carbon nanotubes was investigated tentatively.
     The thermal gravimetric analysis (TGA) and Raman spectrum indicated there were many defects on the bamboo-like carbon nanotubes.
     The effects of purifying methods, air oxidation and mixed-acid oxidation, on the structure of carbon nanotubes were analyzed. The moderate method of the two-step treatment was proposed. The resulted carbon nanotubes was rinsed in HF and oxidized in the air at 430℃for 30 min. The high purified carbon nanotubes was obtained in the expense of slight damage of the structure of the carbon nanotubes. And then oil of vitriol and dense nitric acid (volume ratio for 3:1) oxidated CNTs at 60℃, the result of SEM and TEM analyses showed that the CNTs were cut into short,and the shell of the tubes produced carboxyl and hydroxy with oxidization time.
     The carbon nanotubes/low melting point glass composite film was formed tightly on the surface of the ITO glass. The study of the carbon nanotube field emission performance with the aid of screen printing paste indicated that, due to the defect of resulted carbon nanotubes, the field emission performance of bamboo-like carbon nanotubes was higher that of common carbon nanotubes.
     The short carbon nanotubes film was prepared with laser sculpture technology. The result of SEM and TEM analyses showed that the CNTs were truncated and the tube became rough. Raman spectra showed that the carbon layer crystal lattice structure was contorted and disordered. The film possessed field emission properties and electronic emission stability.
     A new field emission material, GPANI, was prepared at different reaction conditions. The results of field emission tests indicated that the optimum reaction conditions were: pressure under 60-100MPa,then treated with hydrogen under 900℃for 2h. XRD, SEM, TEM, Raman spectra and XPS results indicated that GPANI was a kind of N-doped amorphous carbon material, its field emission performance resulted from that the surface containing convex structure and the sp~2C structure containing sp~3C,and the appropriate N-doped structure would decrease the surface potential barrier which improved the field emission performance.
     The preparation of field emission cathode material for in situ growing the carbon nanotube on the GPANI substrate was also studied. The rapid preparation of Fe/SiO2 catalyst was realized with rotation evaporation and high temperature reduction. Once this catalyst was deposited in the gap of the surface of GPANI substrate, the carbon nanotubes would grow by low pressure chemical vapor deposition (LPCVD). The results indicated that the gap was closed by partial carbon atoms during the deposition when the carbon nanotubes grew, which made the root of the carbon nanotubes fixed firmly on the substrate. Therefore, this material possessed perfect field emission stability. Finally, the study of growing the bamboo-like carbon nanotubess film on composite substrate of nano-SiO2/GPANI was carried out, then the resulted film was use as field emission cathode material. The result showed that this material had low turn-on filed strength and threshold field strength, and good field emission properties.
引文
1 S. Iijima. Helical Microtubes of Graphitic Carbon. Nature. 1991, 354: 56-58
    2 C. H. Kiang, M. Endo, P. M. Ajayan et al. Size Effects in Carbon Nanotubes. Phys Rev Lett. 1998, 81: 1869-1872
    3 A. G. Rinzler, J. H. Hafner, P. Nikolaev et al. Unraveling Nanotubes: Field Emission from an Atomic Wire. Science. 1995, 269: 1550-1553
    4 K. Okano. Electron Field Emission of Diamond. Nature. 1993, 381:140-148
    5 C. A. Spindt, I. Brodie, L. Humphrey et al. Physical Properties of Thin-film Field Emission Cathodes with Molybdenum Cones. Journal of Applied Physics. 1976, 47: 5248-5263
    6 C. W. Oh, C. G. Lee, B. G. Park et al.Fabrication of Metal Field Emitter Arrays for Low Voltage and High Current Operation. Journal of Vacuum Science and Technology B. 1998, 16: 807-810
    7 J. R. Essing. Fabrication and Characterization of Gated Porous Silicon Cathode Field Emission arrays. Journal of Vacuum Science and Technology B. 1998, 16: 777-779
    8 F. J. Himpsel, J. A. Knapp, J. A. Van Vechten et al. Quantum Photo Yield of Diamond(111)-A stable Negative-affinity Emitter. Phys. Rev. B. 1979, 20: 624–627
    9 F. Y. Chuang. Local Electron Field Emission Characteristics of Pulse of Caster Deposited Diamond-like Carbon Films. Appl. Phys. Lett. 1996, 69: 3504-3509
    10 A. A. Talin. Field Emission Display-a critical review. Solid-statte Electronics. 2001, 45: 963
    11 S. Iijima and T. Ichihashi. Single-shell Carbon Nanotubes of 1-nm Diameter. Nature. 1993, 363: 603-605
    12 N. Hamada, S. Sawada, and A. Oshiyama. New One-Dimensional Conductors: Graphitic Microtubules. Phys. Rev. Lett. 1992, 68: 1579–1581
    13 K. Hernadi, A. Fonseca, J. B. Nagy et al. Catalytic Synthesis and Purification of Carbon Nanotubes. Synthetic Metals. 1996, 77: 31-34
    14 J. C. Withers, R. D. Loutfy, and T. P. Lowe. Fullerene Commercial Vision. Fullerene Sci. Techno l. 1997, 5(1): 1-31
    15 M. Jose-yacaman, M. Miki-Yoshida, L. Rendon et al. Catalytic Growth of Carbon Microtubules with Fullerene Structure. Appl. phys. Lett. 1993, 62(6): 657-659
    16 V. Ivanov, J. B. Nagy, P. Lambin et al. The Study of Carbon Nanotubules Produced by Catalytic Method. Chem. Phys. Lett. 1994, 223: 329-335
    17 G. Yu, J. Gong, S. Wang et al. Etching Effects of Ethanol on Multi-walled Carbon Nanotubes. Carbon. 2006, 44: 1218–1224
    18 T. W. Ebbesen and P. M. Aiayan. Large-scale Synthesis of Carbon Nanotubes. Nature. 1992, 358: 220-222
    19 A. Peigney, C. Laurent, F. Dobigeon et al. Carbon Nanotubes Grown In situ by a Novel Catalytic Method. J. Mater. Res. 1997, 12(3): 613-615
    20 D. L. Carroll, P. Redlich, and P. M. Ajayan. Electronic Structure and Localized States at Carbon Nanotube Tips. Phys. Rev. Lett. 1997, 78(14) : 2811-2814
    21 W. Li, S. Xie, W. Liu et al. A Structure Model and Growth Mechanism for Novel Carbon Nanotubes. Journal of Materials Science. 1999, 34: 2745-2749
    22 C. J. Lee and J. Park. Growth and Structure of Carbon Nanotubes Produced by Thermal Chemical Vapor Deposition. Carbon. 2001, 39: 1891–1896
    23 W. D. Zhang, J. T. L. Thong, W. C. Tjiu et al. Fabrication of Vertically Aligned Carbon Nanotubes Patterns by Chemical Vapor Deposition for Field Emitters. Diamond and Related Materials. 2002, 11: 1638–1642
    24 V. D. Blank, I. G. Gorlova, J. L. Hutchison et al. The Structure of Nanotubes Fabricated by Carbon Evaporation at High Gas Pressure. Carbon. 2000, 38: 1217–1240
    25 Q. Liu, W.i Liu, Z. Cui et al. Synthesis and Characterization of 3D Double Branched K Junction Carbon Nanotubes and Nanorods. Carbon. 2007, 45: 268–273
    26 T. Gou. Catalytic Growth of Single-walled Nanotubes by Laser Vaporization. Chem. Phys. Lett. 1995, 243: 49-54
    27 C. Joumet, W. K. Maser, P. Bemier et al. Large-scale Production of Single Walled Carbon Nanotubes by the Electric are Technique. Nature. 1997, 388: 756-758
    28 W. Kratschmer, L. D. Lamb, K. Fostiropoulos et al. Solid C60: a New Formof Carbon. Nature. 1990, 347: 354-358
    29 M. Ishigami, J. Cumings, A. Zettl et al. A Simple Method for the Continuous Production of Carbon Nanotubes. Chem. Phys. Lett. 2000, 319:457-459
    30 D. S. Bethune, C. H. Klang, M. S. de Vries et al. Cobalt-catalysed Growth of Carbon Nanotubes with Single-atomic-layer Walls. Nature. 1993, 363: 605-607
    31 C. Liu C, H. Cong, F. Li et al. Semi-continuous Synthesis of Single-wall Carbon Nanotubes by a Hydrogen Arc Discharge Method. Carbon. 1999, 37: 1865-1868
    32 Y. Ando, X. Zhao, K. Hirahara et al. Mass Production of Single-wall Carbon Nanotubes by the Arc Plasma Jet Method. Chem. Phys. Lett. 2000, 323: 580-583
    33 W. Kristschmer, L. D. Lamb, K. Fortiropoulos et al. Solid C60: a new form of carbon. Appl. Phys. Lett. 1993, 62: 202-204
    34 N. M. Rodriguez, M. S. Kim, R. T. K. Baker et al. Decoration of Activated Carbon Nanofibers a Unique Catalyst Support Medium. J. Phys. Chem. 1994,
    98: 13108-13111
    35 H. Cheng, F. Li, G. Su et al. Large-scale and Low-cost Synthesis of Single-walled Carbon Nanotubes by the Catalytic Pyrolysis of Hydrocarbons. Appl. Phys. Lett. 1998, 72: 3282-3284
    36 V. K. Varadan and J. Xie. Large-scale Synthesis of Multi-walled Carbon Nanotubes by Microwave CVD. Smart Mater. Struct. 2002, 11: 610-616
    37 M. Endo and H. W. Kroto. Formation of Carbon Nanotubes. J. Phys. Chem. 1992, 96: 6941-6944
    38 R. Segura, W. Ibá?ez, R. Soto et al. Growth Morphology and Spectroscopy of Multiwall Carbon Nanotubes Synthesized by Pyrolysis of Iron Phthalocyanine. Journal of Nanoscience and Nanotechnology. 2006, 6:1945-1953
    39 K. Liu, K. Jiang, F. Chen et al. A Growth Mark Method for Studying Growth Mechanism of Carbon Nanotube Arrays. Carbon. 2005, 43: 2850–2856
    40 J. M. Bonard, J. P. Salveta, F. Maier et al. Purification and Size-selection of Carbon Nanotubes. Adanced Materials. 1997, 9(10):827-831
    41 K. B. Shelimov, R. O. Esenalie, A. G. Tinzler et al. Purification of Single-wall Carbon Nanotubes by Ultrasonically Assisted Filtration. Chem. Phys. Lett. 1998, 282: 429-432
    42 M. Yudasaka, M. Zhang, C. Jabs et al. Effect of an Organic Polymer in Purification and Cutting of Single-wall Carbon Nanotubes. Appl. Phys. A-Materials Science & Processing. 2000, 71:449-452
    43 W. A. De Heer, W. S. Bacsa, A. Chatelain et al. Aligned Carbon Nanotubes Films: Production and Optical and Electronic Properties. Science, 1995, 268: 845-847
    44 K. Yamamoto, S. Akita, Nakayama et al. Orientation and Purification of Carbon Nanotubes using ac Electrophoresis. J. Phys. D: Appl. Phys. 1998, 31: 34-36
    45 G. S. Duesberg, M. J. Burghard, G. Philipp et al. Separation of Carbon Nanotubes by Size Exclusion Chromatography. Chemical Communications. 1998, 3: 435-438
    46 M. Holzinger, A. Hirsch, P. Bernier et al. A New Purification Method for Single-wall Carbon Nanotubes (SWNTs). Appl. Phys. A Mater. SCI. Process. 2000, 70: 599-602
    47 P. M. Ajayan, T. W. Ebbesen, T. Ichihasi et al. Opening Carbon Nanotubes with Oxygen and Impllication for Filling. Nature. 1993, 362: 522-524
    48 T. W. Ebbesen, P. M. Ajayan, and H. Hiuraetal. Purification of Nanotubes. Nature. 1994, 367:519-521
    49 C. J. Lee, J. Park, and J. A. Yu. Catalyst Effect on Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition. Chemical Physics Letters. 2002, 360: 250-255
    50 孙晓刚, 曾效舒. 空气氧化法提纯碳纳米管的研究. 新型炭材料, 2004 19: 65-68
    51 S. C. Tsang, P. J. F. Harris, and M. L. H. Green. Thinning and Opening of Carbon Nanotubes by Oxidation Using Carbon Dioxide. Nature. 1993, 262: 520-522
    52 S. C. Tsang, Y. K. Chen, P. J. F. Harris et al. A Simple Chemical Method of Opening and Filling Carbon Nanotubes. Nature. 1994, 372: 159–162
    53 H. Hiura, T. W. Ebbesen, and K. Tanigaki. Opening and Purification of Carbon Nanotubes in High Yields. Adv. Mater. 1995, 7 (3): 275- 276
    54 J. F. Colomer, P. Piedigrosso, I. Willems et al. Purification of Catalytically Produced Multi-wall Nanotubes. Journal of the Chemical Society-Faraday Transactions. 1998, 94: 3753-3756
    55 邱军, 王国建, 屈泽华等. 氧化处理方法与多壁碳纳米管表面羧基含量的关系. 新型炭材料. 2006, 21: 269-272
    56 江琳沁, 高濂. 化学处理对碳纳米管分散性能的影响. 无机材料学报. 2003, 18: 1135-1138
    57 Z. H. Yang, H. Q. Wu, J. Li et al. Purification of Carbon Nanotubes-Oxidation Method by Using Electrochemistry. Chemical Journal of Chinese Universities. 2001, 22:446
    58 李权龙, 袁东星, 林庆梅. 多壁碳纳米管的纯化. 化学学报. 2003, 61: 931-936
    59 X. Wang, M. Wang, Z. Li et al. Modeling and Calculation of Field Emission Enhancement Factor for Carbon Nanotubes Array. Ultramicroscopy. 2005, 102: 181–187
    60 A. S. Teh, S. B. Lee, K. B. K. Teo et al. Lateral Field Emitters Fabricated Using Carbon Nanotubes. Microelectronic Engineering. 2003, 67-68: 789-796
    61 N. Xu. Quantum-Mechanical Investigation of Field-Emission Mechanism of a Micrometer-Long Single-Walled Carbon Nanotube. Phys. Rev. Lett. 2004, 92: 106803-106804
    62 J. M. Bonard, J. P. Salvetat, T. Stockli et al. Field Emission from Carbon Nanotubes: Perspectives for Applications and Clues to the Emission Mechanism. Appl. Phys. 1999, 69: 245-254
    63 O. M. Küttel, O. Groening, C. Emmenegger et al. Electron Field Emission from Phase Pure Nanotube Films Grown in a Methane/ Hydrogen Plasma. Appl. Phys. Lett. 1998, 73: 2113-2116
    64 A. M. Rao, D. Jacques, R. C. Haddon et al. In situ-grown Carbon Nanotube Array with Excellent Field Emission Characteristics. Appl. Phys. Lett. 2000, 76: 3813-3815
    65 张继华, 冯涛, 于伟东等. 氢等离子处理—一种有效提高碳纳米管场发射性能的方法. 光散射学报. 2003, 15: 6-9
    66 Y. C. Choi, Y. M. Shin, D. J. Bae et al. Patterned Growth and Field EmissionProperties of Vertically Aligned Carbon Nanotubes. Diamond and Related Materials. 2001, 10: 1457-1464
    67 W. B. Choi, D. S. Chung, J. H. Kang et al. Fully Sealed, High-brightness Carbon-nanotube Field-emission Display. Appl. Phys. Lett. 1999, 75: 3129-3131
    68 L. Nilsson, O. Groening, C. Emmenegger et al. Scanning Field Emission from Patterned Carbon Nanotube Films. Appl. Phys. Lett. 2000, 76: 2071-2073
    69 C. Adessi and M. Devel. Theoretical Study of Field Emission by Single-wall Carbon Nanotubes. Phys. Rev. B. 2000, 62: 13314-13316
    70 K. A. Dean and B. R. Chalamala. The Environmental Stability of Field Emission from Single-walled Carbon Nanotubes. Appl. Phys. Lett. 1999, 75: 3017-3019
    71 W. I. Milne, K. B. K. Teo, M. Chhowalla et al. Electrical and Field Emission Investigation of Individual Carbon Nanotubes from Plasma Enhanced Chemical Vapour Deposition. Diamond and Related Materials. 2003, 12: 422–428
    72 Y. Mei, X. Wu, X. Li et al. Well-aligned Carbon Nanotube Array Grown on Si-based Nanoscale SiO2 Islands. Journal of Crystal Growth. 2003, 255: 414-418
    73 J. Yu, Q. Zhang, J. Ahn et al. Field Emission from Patterned Carbon Nanotube Emitters Produced by Microwave Plasma Chemical Vapor Deposition. Diamond and Related Materials. 2001, 10: 2157-2160
    74 J. Bonard, M. Croci, C. Klinke et al. Carbon Nanotube Films as Electron Field Emitters. Carbon. 2002, 40: 715-1728
    75 J. H. Huang , S. P. Chen, C. C. Chuang et al. Electron Emitters Synthesized by Selected Area Deposition of Carbon Nanotubes on Silicon Substrates. Diamond and Related Materials. 2003, 12: 481-485
    76 S. Fan, W. Liang, H. Dang et al. Carbon Nanotube Arrays on Silicon Substrates and their Possible Application. Physica E. 2000, 8: 179-183
    77 M. Sveningsson, R. E. Morjan, O. Nerushev et al. Electron Field Emission from Multi-walled Carbon Nanotubes. Carbon. 2004, 42: 1165–1168
    78 吴功伟, 曹安源, 魏秉庆等. 工艺参数对碳纳米管定向薄膜生长的影响.清华大学学报(自然科学版). 2002, 42(2): 151-153
    79 S. Huang. Growing Carbon Nanotubes on Patterned Submicron-size SiO2 Spheres. Carbon. 2003, 41: 2347-2352
    80 A. Yamamoto and T. Tsutsumoto. Field Emission from Carbon Films Deposited on Stainless Steel Substrate. Diamond and Related Materials. 2002, 11: 784–787
    81 Y. Sun, C. Gu, W. Liu et al. Carbon Nanotubes Synthesized by CVD Method on Au-Ni Films and the Field Emission Properties. Diamond and Related Materials. 2004, 13: 1187–1190
    82 W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga et al. Carbon Nanotubes as Field Emission Sources. J. Mater. Chem. 2004, 14: 933–943
    83 J. Li, W. Lei, X. Zhang et al. Field Emission Characteristic of Screen-printed Carbon Nanotube Cathode. Applied Surface Science. 2003, 220: 96–104
    84 H. Ago, J. Qi, K. Tsukagoshi et al. Catalytic Growth of Carbon Nanotubes and their Patterning Based on Ink-jet and Lithographic Techniques. Journal of Electroanalytical Chemistry. 2003, 559: 25-30
    85 J. H. Park, J. H. Choi, J. Moon et al. Simple Approach for the Fabrication of Carbon Nanotube Field Emitter Using Conducting Paste. Carbon. 2005, 43: 698–703
    86 孙明岩, 车仁超, 陈清. 定向碳纳米管薄膜的制备及其场发射性能的研究. 材料工程. 2003 (8): 13-16
    87 王茂章, 李峰, 杨全红等. 由不同碳源合成及制备碳纳米管的进展. 新型炭材料. 2003, 18: 250-264
    88 W. Li, L. Qian, S. Qian et al. Structure and Growth Hermodynamics of Carbon Tubes. Science in China, Series A. 1996, 39: 657 – 664
    89 L. Sun, J. Pan, B. Chang et al. Growth of Straight Nanotubes with a Cobalt-nickel Catalyst by Chemical Vapor Deposition. Appl. Phys. Lett. 1999, 74(5): 644-646
    90 A. K. M. F. Kibria, Y. H. Mo, and K. S. Nahm. Synthesis of Carbon Nanotubes over Nickel-iron Catalysts Supported on Alumina under Controlled Conditions. Catal. Lett. 2001, 71: 229-236
    91 W. E. Alvarez, B. Kitiyanan, A. Borgna et al. Synergism of Co and Mo in the Catalytic Production of Single-wall Carbon Nanotubes by Decomposition ofCO. Carbon. 2001, 39: 547–558
    92 Z. Wang, Y. Huang, X. Bai et al. Synthesis and Field Emission Properties of Carbon Nanotubes/nanofibers Grown on Pyrolyzed Polyaniline-SiO2 Substrates. Diamond and Related Materials. 2005, 14: 1411-1415
    93 M. Shajahan, Y. H. Mo, and A. K. M. F. Kibria. High Growth of SWNTs and MWNTs from C2H2 Decomposition over Co-Mo/MgO Catalysts. Carbon. 2004, 42: 2245-2253
    94 潘正伟,常保和,孙连峰等. 超长、开口定向碳纳米管阵列的制备. 中国科学(A 辑). 1999, 29: 743-749
    95 雷中兴, 刘静, 王建波等. 催化剂结构与形态对碳纳米管生长的影响. 新型炭材料. 2003, 18(4): 271-276
    96 罗君航, 张孝彬, 李昱等. 超临界干燥法制备催化剂合成单壁碳纳米管及表征. 无机材料学报. 2005, 20(6): 1358-1362
    97 包建春, 王克宁, 张宇等. 竹节状碳纳米管有序阵列的合成和表征. 无机化学学报. 2002, 18: 1097-1100
    98 朱素冰, 孙思修, 周薇薇等. 以吡啶为原料制备氮掺杂碳纳米管. 物理化学学报. 2004, 20: 1320-1323
    99 C. F. Chen, C. L. Tsai, and C. L. Lin. The Characterization of Boron-doped Carbon Nanotube Arrays. Diamond and Related Materials. 2003 12: 1500-1504
    100 徐军明, 张孝彬, 陈飞等. 窄直径分布竹节状碳纳米管膜的制备和表征. 无机材料学报. 2004, 19(5): 1105-1110
    101 R. Saito, M. S. Dresselhaus, and G. Dresselhaus. Physical Properties of Carbon Nanotubes. London: Imperial College Press. 1999
    102 T. W. Ebbesen. Carbon Nanotubes. Phys. Today. 1996, 49(6): 26-32
    103 D. Ugarte, T. Stockli, J. M. Bonard et al. Filling Carbon Nanotubes. Appl. Phys. A. 1998, 67: 101-05
    104 B. C. Satishkumar, A. Govindaraj, J. Mofokeng et al. Novel Experiments with Carbon Nanotubes: Opening, Filling, Closing and Functionalizing Nanotubes. J. Phys. B: At Mol Opt phys. 1996, 29: 4925-4934
    105 S. C. Tsang, Y. K. Chen, P. J. F. Harris et al. A Simple Chemical Method of Opening and Filling Carbon Nanotubes. Nature. 1994, 372: 159-162
    106 汪树军, 朱时珍, 刘红研. 聚苯胺碳化产物表面和体相结构表征. 分子科学学报. 2001, 17: 212-218
    107 Y. Umehara, S. Murai, Y. Koide et al. Effects of sp2/sp3 Bonding Ratios on Field Emission Properties of Diamond-like Carbon Films Grown by Microwave Plasma Chemical Vapor Deposition. Diamond and Related Materials. 2002, 11: 1429-1435
    108 P. W. May, S. Hohn, M. N. R. Ashfold et al. Field Emission from Chemical Vapor Deposited Diamond and Diamond-like Carbon Films:Investigations of Surface Damage and Conduction Mechanisms. Journal of Applied Physics. 1998, 84(3): 1618-1625
    109 A. C. Ferrari and J. Robertson. Resonant Raman Spectroscopy of Disordered, Amorphous, and Diamondlike Carbon. Phys. Rev. 2000, B61: 14095-14118
    110 李俊杰, 吴汉华, 龙北玉等. N 离子注入对金刚石膜场发射特性的影响. 物理化学学报. 2005, 54(3): 1447-1451
    111 S. H. Jo, D. Z. Wang, J. Y. Huang et al. Field Emission of Carbon Nanotubes Grown on Carbon Cloth. Appl. Phys. Lett. 2004, 85: 810-815
    112 Y. J. Jung, S. Kar, S. Talapatra, et al. Hybrid Architectures for Diverse Flexible Electronic Applications. Nano Lett. 2006, 6: 413-418
    113 M. Sveningsson, R. E. Morjan, O. A. Nerushev et al. Highly Efficient Electron Field Emission From Decorated Multiwalled Carbon Nanotube Films. Appl. Phys. Lett. 2004, 85: 4487-4489
    114 L. Zhang, L. Balzano and D. E. Resasco. Single-Walled Carbon Nanotubes of Controlled Diameter and Bundle Size and Their Field Emission Properties. J. Phs. Chem. B. 2005, 109: 14375-14381
    115 J. M. Bonard, J. P. Salvetat, T. Stockli et al. Field Emission from Single-wall Carbon Nanotube Films. Appl. Phys. Lett. 1998, 73: 918-920
    116 X. Liu, C. Zhu, W. Liu et al. Large-area Carbon Nanotubes Film Synthesized for Field Emission Display by Special CVD Equipment and the Field Emission Properties. Mater. Chem. Phys. 2005, 93: 473-477

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700