用户名: 密码: 验证码:
UAFB-缺氧—好氧MBR组合工艺处理生活污水效能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对能源危机、水资源紧缺等问题,生活污水资源化利用已经成为社会发展的趋势之一。为了同时达到从生活污水中回收能源性气体和深度处理生活污水的目的,试验采用升流式厌氧污泥固定床(Up-flow Anaerobic Fixed Bed,UAFB)-缺氧-好氧膜生物反应(Membrane Bioreactor,MBR)组合工艺处理生活污水。
     试验重点研究了不同HRT和温度对UAFB转化有机物途径的影响、不同有机负荷和HRT对缺氧-好氧MBR运行效能的影响,以及组合工艺在优化参数条件下耦合运行时对生活污水的处理效能,包括能源性气体的产生效能、对污染物质的处理效能、以及对污泥浓度的控制。
     不同HRT和温度主要通过影响产甲烷菌的活性,对UAFB转化有机物途径产生影响,研究结果表明,HRT为3h时UAFB将生活污水中溶解性有机物转化为气态CH4与VFAs的比例相当,而且HRT=3h、温度20℃的条件下,出水COD为170mg/L,其中VFAs总量可以达到58.07mg/L,消化气体产生量为1.61L/d,为各试验条件下的最大值。
     不同进水有机负荷和HRT都会不同程度的影响缺氧-好氧MBR运行的效能,其中不同进水有机负荷是在水质耦合的基础上,以UAFB不同HRT条件下运行为依托进行,进水有机负荷的增加会提高系统对COD的去除率,而稳定高效去除NH+4-N的有机负荷条件为0.072gCOD/gMLSS,研究中同时发现,HRT=2.5h时,系统对COD、NH+4-N和三氮和的去除效率分别为89.99%、99.93%和63.03%,为不同HRT条件下的最佳值。
     UAFB-缺氧-好氧MBR组合工艺在温度20℃、HRT为9.5h的条件下耦合运行时,消化气体产生量为1.55L/d,COD去除率为93.28%,NH+4-N去除率为90.60%,UAFB出水VFAs总量54.74mg/L,相应NO-3-N的积累率为45.19%,TN去除率为45.51%。另外,通过基于某污水处理厂的经济评价可知,拟建组合工艺污水处理厂基建投资与该污水处理厂(处理工艺为CAST)相比多47.54%,运行费用多51.08%,利用甲烷发电所回收的价值为运行费用5.4%,而污水回用的价值约为年运行费用的2.54倍,因此污水回用将是污水处理厂创造价值的一个主要平台,也将是今后污水处理厂发展的一个重要方向。
Facing energy crisis, shortage of water resource, domestic wastewater showed an enormous potential on reclaiming energy and reusing wastewater. In this study, the combined treatment process making up of up-flow anaerobic sludge fixed bed (UAFB), anoxic tank and aerobic membrane bioreactor (MBR) was used to treat domestic wastewater. And the ability of reclaiming methane and reusing wastewater was investigated.
     The transformation of organic compound in the UAFB at different HRTUAFB and temperature, the running efficiency of anoxic tank - aerobic MBR at different influent COD and HRT, and the efficiency of the combined treatment process treating wastewater at optimized parameter were studied in this paper.
     The transformation of organic compound in the UAFB at different HRTUAFB and temperature showed that, when UAFB run at HRT 3h and 20℃, influent soluble organic compound transformed into CH4 was as much as that transformed into VFAs, which means the UAFB used influent soluble COD in best way for reclaiming methane and nitrogen removal. At this run parameter, the UAFB effluent COD was 170mg/L including total VFAs 58.07mg/L, and anaerobic gas production was 1616ml/d which was the best at all parameters.
     The running efficiency of anoxic tank - aerobic MBR at different influent organic load and HRT showed that, the COD and NH+4-N removal efficiency and NO-3-N accumulating rate could achieve a better level with higher influent organic load. The study also found that when anoxic tank - aerobic MBR run at HRT 2.5h, the COD and NH+4-N removal efficiency were 89.99 and 99.93% respectively and NO-3-N accumulating rate was 36.90% which was the highest at different HRTs.
     The combined treatment process treating domestic wastewater run at optimized parameter (20℃, HRT were 3h, 3h, 3.5h) indicated that, the anaerobic gas production was 1545ml/d, the COD and NH+4-N removal efficiency were 93.28% and 90.60% respectively, UAFB effluent including 54.74mg/L of total VFAs, corresponding NO-3-N accumulating rate was 45.19% and TN removal efficiency was 45.51%. At the same time, according to the economy evaluation compared with Shuang-cheng wastewater treatment plant, we found that the investment of the combined treatment process wastewater treatment plant will be 47.54% more and running expense will be 51.08% more, the value of reclaim methane will be 5.4% of running expense. However, the value of reusing wastewater will be 2.54 time of running expense. So reusing wastewater will be the most important way to create economy value in wastewater treatment plant and reusing wastewater will be the development trend of wastewater treatment plant.
引文
1 C. J. V?r?smarty, P. Green, J. Salisbury, R. B. Lammers. Global Water Resources: Vulnerability from Climate Change and Population Growth [J]. 2000, Science 289(5477): 284
    2 T. Oki, S. Kanae. Global Hydrological Cycles and World Water Resources [J]. 2006, Science 313 (5790): 1068-1072
    3 R. A. Kerr, World Oil Crunch Looming [J]. 2008, Science 322 (5905): 1178-1179
    4 V. Smil. Energy at the Crossroads Global Perspectives and Uncertainties [M]. MIT Press, 2003
    5 T. A. Mohammed, A. H. Birima, M. J. M. M. Noor, S. A. Muyibi, A. Idris. Evaluation of Using Membrane Bioreactor for Treating Municipal Wastewater at Different Operating Conditions [J]. Desalination, 2008, 221: 502-510.
    6黄霞,桂萍,范晓军,汪诚文,钱易.膜生物反应器废水处理工艺的研究[J].环境科学研究. 1998, 11(1): 40-44
    7匡延云,马克平,白克智.生物质能研发展望[J].中国科学基金. 2005, 6: 326-330
    8 P. D. Zakkour, M. R. Gaterell, P. Griffin, R. J. Gochin, J. N. Lester. Anaerobic Treatment of Domestic Wastewater in Temperate Climates: Treatment Plant Modelling with Economic Considerationgs [J]. Water Research. 2001, 35(17): 4137-4149
    9傅金祥,宋琦,李璐.温度对常温UASB运行的影响[J].沈阳建筑大学学报(自然科学版). 2007, 23(6): 990-993
    10 W. Verstraete, P. Vandevivere. Broader and newer applications of anaerobic digestion. Proceedings of the 8th International Conference on Anaerobic Digestion [C] .Sendai: Sendai Interna2tional Center, 1997. 67 - 74.
    11 Hanqing YU, J. H. Tay, F. Wilson. A sustainable Municipal Wastewater Treatment Process for Developing Countries [J]. Wat Sci Tech .1997, 35 (9):191 - 198.
    12 U. J. Ndon, R. R. Dague. Effects of Temperature and Hydraulic Retention Time on Anaerobic Sequencing Batch Reactor Treatment of Low-strength Wastewater [J]. Water Research, 1997, 31 (10):2455 - 2466.
    13 G. Lettinga, V. Velsen, S. Hobma. Use of the Upflow Sludge Blanket (USB) Rreactor Concept for Biological Waste Water Ttreatment [J]. Biotechnologh and Bioengineering, 1980, 22: 699 -734.
    14周琪,袁酮兵,竺建荣,胡纪萃,顾夏声.升流式厌氧污泥床处理生活污水[J].中国给水排水. 1992, 8(4): 45-47
    15郭晓磊,胡勇有. UASB处理极低浓度生活污水研究[J].华南理工大学学报(自然科学版), 2002, 30(3): 66-71.
    16杨琦,施汉昌,钱易. UASB反应器处理生活污水的试验研究[J].环境污染治理技术与设备, 2005, 6(11): 75-80.
    17赵建夫,蒋柱武.升流式厌氧污泥床反应器处理生活污水的研究[J].同济大学学报. 2000, 28(6): 748-752
    18李绍衡.厌氧生物处理技术的原理及其在城市污水处理中的应用[J].湖南大学学报. 2008, 28(3): 16-22
    19 G. Lettinga, R. Roersma, P. Grin. Anaerobic Treatment of Raw Domestic Sewage at Ambient Ttemperatures Using a Granular Bed UASB Reacto[J]r. Biotechnol. Bioeng, 1983, 25: 1701–1723
    20 A. R. M. Van der Last, G. Lettinga. Anaerobic Treatment of Domestic Sewage under Moderate (Dutch) Conditions Using Upflow Reactors at Increased Superficial Velocities [J]. Water Sci. Technol., 1992, 25(7): 167–178
    21 B. J. Alderman, T. L. Theis, A. G. Collins. Optimal Design for Anaerobic Pretreatment of Municipal Wastewater [J]. J. Environ. Eng. ASCE., 1998, 124(1): 4–10
    22 G. C. Banik, T. Viraraghavan, R. R. Dague. Low Ttemperature Effects on Anaerobic Microbial Kinetic Parameters [J]. Environ. Technol., 1998, 19:503–512.
    23 I. Bodik, B. Herdov, M. Drtil. The Use of Upflow Anaerobic Filter and AnSBR for Wastewater Treatment at Ambient Temperature [J]. Water Research, 2002, 36: 1084-1088
    24 T. A. Elmitwalli1, K. L. T. Oahn, G. Zeeman, G. Lettinga. Treatment of Domestic Sewage in a Two-step Anaerobic Filter/Anaerobic Hybrid System at Low Temperature [J]. Water Research, 2002, 36:2225-2232
    25 N. Mahmouda, G. Zeemana, H. Gijzenb, G. Lettinga. Anaerobic Sewage Ttreatment in a One-stage UASB Reactor and a Combined UASB-Digester System [J]. Water Research, 2004, 38: 2348-2358
    26 T. A. Elmitwalli, R. Otterpohlb. Anaerobic Biodegradability and Treatment of Grey Water in Upflow Anaerobic Sludge Blanket (UASB) Rreactor [J]. Water Research, 2007, 41: 1379-1387
    27 P. Lant, K. Hartley. Solids Characterisation in an Anaerobic Migrating Bed Reactor (AMBR) Sewage Treatment System [J]. Water Research, 2007, 41: 2437-2448
    28郑林静,陈洪斌,何群彪.污水处理厂沼气发电的经济性分析[J].中国给水排水. 2007, 23(24): 6-10
    29 E. B. Willian, W. O. Robert. Biological Treatment of WasteWater and Industrial Wastes [M]. U S: Dorr Oliver Incorporated. 1996, 3: 472-765.
    30张传义,王丽萍,黄霞,张雁秋.一体式膜生物反应器膜污染形成机理的试验研究[J].中国矿业大学学报. 2004, 33(4): 476-479
    31黄霞,莫罹. MBR在净水工艺中的膜污染特征及清洗[J].中国给水排水. 2003,19(5): 8-12
    32刘锐,黄霞,汪诚文,钱易,张苗苗.一体式膜-生物反应器长期运行中的膜污染控制[J].环境科学. 2000, 21(2): 58-61
    33李盈利,孙宝盛,臧倩,刘鹏.曝气方式对一体式膜生物反应器运行特性的影响[J].中国给水排水. 2007. 23(7): 74-77
    34刘建广,金建华,张春阳,楚广诣,王爱华.低氧下膜生物反应器强化脱氮除磷[J].膜科学与技术. 2007, 27(4): 70-73
    35汪舒怡,汪诚文,梁鹏,黄霞.膜曝气生物反应器的除碳脱氮特性研究[J].中国给水排水. 2007, 23(9): 40-44
    36 I. T. Yeom, Y. M. Nah, K. H. Ahna. Treatment of Household Wastewater Using an Intermittently Yated Membracn Bioreactor [J]. Desalination,1999, 124: 193-204
    37肖景霓,张捍民,代文臣,杨凤林,张兴文.序批式膜生物反应器同时脱氮除磷的比较研究[J].环境科学. 2006. 279(11): 2233-2237
    38赵方波,于水利,荆国林,李谦,镇祥华.间歇循环活性污泥-MBR工艺的脱氮除磷特性[J].中国给水排水. 2006. 22(11): 22-25
    39蒋燕,陶冠虹.膜生物反应器短程硝化脱氮处理生活污水的研究[J].环境科学与技术. 2007. 30(11): 95-97
    40张捍民,张杰,肖景霓,杨凤林. A2O-MBR工艺反硝化脱氮除磷的研究[J].大连理工大学学报. 2008. 48(4): 490-495
    41张传义,张雁秋,袁丽梅,高彦林,王强,奚旦立. MBR-厌氧/缺氧交替工艺处理生活污水的试验研究[J].中国矿业大学学报. 2007, 36(3): 347-350
    42 Yingyu An, Fengin Yang, Hwee Chuan Chua, Fook Sin Wong, Bing Wu. The Integration of Methanogenesis with Shortcut Nitrification and Denitrification in a Combined UASB with MBR[J]. Bioresource Technology, 2008, 99:3714-3720.
    43 Bing Wu, Yingyu An.The Integration of Methanogenesis with Shortcut Nitrification and Denitrification in a Combined UASB with MBR [J]. Bioresource Technology.2008,99(9): 3714-3720
    44王琳,任南琪.一体式UASB-MBR反应器处理高浓有机废水[J].中国给水排水.2006,22(15): 33-36
    45 Z. Ahmeda, B. R. Lim, J. Cho, K. G. Song, K. P. Kim, K. H. Ahn. Biological Nitrogen and Phosphorus Removal and Changes in Microbial Community Structure in a Membrane Bioreactor: Effect of different carbon sources [J]. Water Research, 2008, 42: 198-210
    46国家环保总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002.
    47单国彬,金文标,林佶侃.变性凝胶梯度电泳在环境微生物生态中的应用.生态学杂志[J].2006, 25(10): 1257-1258
    48 L. Ovreas, L. Forney, F. L. Daae. Distribution of Bacterioplankton Inmeromictic Lake Saelevannet, as Determined by Denaturing Gradient Gel Electrophoresis of PCR - amplified Gene Fragments Coding for 16S rRNA[J]. Appl Environ Microbiol, 1997, 63(8): 3367 - 3373.
    49马溪平.厌氧微生物学与污水[M].处理化学工业出版社, 2005: 265-266
    50天津大学物理化学教研室.物理化学上册[M].高等教育出版社, 2004: 177-181
    51张自杰.排水工程下册[M].中国建筑工业出版社, 2004: 308-315
    52 V. Kempen, R. Mulder, J. W. Uijterlinde, C. A. Loosdrecht. Overview: Full Scale Experience of the SHARON Process for Treatment of Rejection Water of Digested Sludge Dewatering [J]. Water Sci. Technol., 2001, 44 (1): 145–152
    53 Y. Peng, G. Zhu. Biological Nitrogen Removal with Nitrification and Denitrification via Nitrite Pathway [J]. Appl. Microb. Biotechnol. 2006, 73 (1): 15–26.
    54邓胜琳.市政污水处理中的沼气发电技术[J].中国给谁排水. 2006, 22(10): 40-42
    55郑林静,陈洪斌,何群彪,屈计宁.污水处理厂沼气发电的经济性分析[J].中国给水排水. 2007, 23(24): 6-11
    56 T. A. Mohammed, A. H. Birima, M. J. M. M. Noor, S. A. Muyibi, A. Idris. Evaluation of Using Membrane Bioreactor for Treating Municipal Wastewater at Different Operating Conditions [J]. Desalination, 2008, 221:502-510

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700