用户名: 密码: 验证码:
活性炭和膨润土强化SBR工艺脱氮性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水环境污染、水体富营养化、节水问题的尖锐化及公共环境意识的增强,越来越多的国家和地区制定了严格的氮素排放标准。因此,研究和开发经济高效的脱氮污水处理技术已成为水污染控制工程领域的重点和热点课题之一。
     本论文在SBR (Sequencing Batch Reactor)中分别投加粉末活性炭(PAC)和膨润土,探讨了粉末活性炭和膨润土强化SBR工艺对废水中氮的去除效果和可行性,研究了氨氮的降解动力学过程,并且初步分析了粉末活性炭和膨润土对硝化菌生长的影响及对污泥增殖的影响。通过研究得到以下主要结论:
     (1)PAC和膨润土对氨氮均有一定的吸附作用,且后者的吸附效果明显好于前者。
     (2)投加PAC的SBR工艺(简称为PAC-SBR工艺)的氨氮和总氮去除率最高,分别达到96%和30%;其次是投加膨润土的SBR工艺(简称为膨润土-SBR工艺),氨氮和总氮去除率分别为92%和24%;常规SBR工艺(不投加填料)氨氮和总氮去除率分别为84%和18%。结果表明,投加PAC和膨润土,不仅增强了系统的硝化功能,也有助于反硝化反应的进行,从而提高了系统的总氮去除能力。
     (3)随着反应器运行时间的增长,三种工艺中活性污泥的亚硝化耗氧速率和硝化耗氧速率均呈现出上升趋势:增长最快的是PAC-SBR工艺中的活性污泥;其次是膨润土-SBR工艺中的活性污泥;最后是常规SBR工艺中的活性污泥。由此可见,投加PAC和膨润土,会提高污泥的亚硝化活性和硝化活性。
     (4)对反应器内硝化反应动力学过程的研究表明,PAC-SBR工艺和膨润土-SBR工艺的饱和常数ks比常规SBR工艺高,说明在同等条件下,去除相同的氨氮量,PAC-SBR工艺和膨润土-SBR工艺比常规SBR工艺所需的反应时间短,或在相同的反应时间内所去除的氨氮较多,从反应动力学角度说明了投加PAC和膨润土能提高生物处理系统对氨氮的去除效果。
     (5)对反应器内污泥增殖动力学过程研究表明,PAC-SBR工艺和膨润土-SBR工艺的Y值和Kd值分别比常规SBR工艺的Y值和Kd值高0.0724 kgVSS/kg COD、0.0424 kgVSS/kg COD和0.0316d-1、0.0133 d-1,说明PAC和膨润土的投加对活性污泥微生物的生长动力学存在较明显影响。
With the increment of water pollution, eutrophication, water-saving problems and a public awarenessof environment, more and more countries and regions have formulated strict emission standards for nitrogen. Therefore research and development of high-effect technology of nutrient removal wastewater treatment become the focus of subject in the field of water pollution control projects.
     This paper intended to add powder activated carbon (PAC) and the bentonite in SBR (Sequencing Batch Reactor), respectively and discuss the effectiveness and feasibility of nitrogen treatment by powdered activated carbon and bentonite enhanced SBR. It also studied the Ammonia-nitrogen degradation dynamics process, and the impact of powder activated carbon and bentonite over nitrification bacterium growth and the sludge proliferation.
     (1)PAC and bentonite could adsorp ammonia, and the latter's adsorption was significantly better than the former.
     (2)Ammonia nitrogen and total nitrogen removal rates of PAC-SBR system were maximal, reaching 96% and 30% respectively, it followed by bentonite-SBR system, of which ammonia nitrogen and total nitrogen removal rates were 92% and 24%; in contrast, ammonia nitrogen and total nitrogen removal rates of conventional SBR system were 84% and 18%. The results showed that dosing PAC and bentonite, not only enhanced the system's nitrification function, but also contributed to denitrification reaction, thus improving the system's total nitrogen removal capacity.
     (3) When the reactors worked, the average oxidation rates of NH4+-N and NO2--N of three devices all displayed an upward trend:Among them, the fastest growing was the activated sludge in PAC-SBR system; it followed by activated sludge in bentonite-SBR system; finally it was activated sludge in conventional SBR system. Thus, dosing PAC and bentonite were associated with the improvement of the nitrosation activity and the nitrification activity of sludge.
     (4)The study of degradation dynamics in nitrogen degradation process of three devices showed that the saturation constant ks of PAC-SBR and bentonite-SBR processes was higher than that of conventional SBR process. Namely, under the same conditions, PAC-SBR and bentonite-SBR processes spent less time on removing the same amount of nitrogen than SBR system did. Consequently, from the kinetic point of view, the dosage of PAC and bentonit to SBR could improve the nitrogen removal rate of microbe treatment system.
     (5)The values Y and Kd of PAC-SBR and bentonite-SBR system were higher than those of SBR progress. This result showed that PAC and Bentonite had significant effect on the microbial growth kinetics.
引文
[1]吴燕国.悬浮载体膨胀床处理生活污水试验研究.哈尔滨工业大学硕士毕业论文.2006.
    [2]严瑞宣.水处理剂应用手册[M].北京:化学工业出版社,2000,424-427.
    [3]郝小非,杨卉芃,王虎.膨润土在废水处理中的应用与展望.矿产保护与利用,2008,2(1):22-25.
    [3]郑兴灿,李亚新.污水除磷脱氮技术.第一版.北京:中国建筑工业出版社,1998,36-37.
    [4]徐亚同,史家梁,张明.污染控制微生物工程.第一版.北京:化学工业出版社,2001.
    [5]刘连成.中国湖泊富营养化的现状分析.灾害学,1997,12(3):61-65.
    [6]楼台方,夏中明.氮与水质富营养化.氮肥设计,1996,34(5):61-62.
    [7]谢雄飞,肖锦.水体富营养化问题评述.四川环境,2000,19(2):22-25.
    [8]邓嫔.移动床生物膜反应器中完全亚硝化自养生物膜的研究.湖南大学硕士毕业论文.2007.
    [9]Ye R W et al. Applied and Environmental Mierobiology.1994,60(4):1053-1058.
    [10]郑平,胡宝兰.生物脱氮技术的研究进展.环境污染与防治.1997,19(4):25-28.
    [11]孙锦宜.含氮给水处理技术及应用[M].化学工业出版社,2003,169-172.
    [12]施巍.新型生物膜反应器的设计及废水脱氮研究.大连铁道学院硕士毕业论文.2001.
    [13]高廷耀,顾国维.水污染控制工程(下册)第二版.北京:高等教育出版社,1999:251-253.
    [14]于瑞连,胡恭任.MAP法去除垃圾渗滤液中氨氮的实验研究.福建化工,2003,(4):28-32.
    [15]Oleay T, Isik K, Derin O. Ammonia removal by magnesium ammonium phosphate Precipitation in industrial wastewaters.Water Seienee and Technology.1997,36(2-3):225-228.
    [16]Smith R L et al.APPlied and Environmental Microbiology.1994,60(6):1949-1955.
    [17]龚云华.污水生物脱氮除磷技术的现状与发展.环境保护.2000,7:23-25.
    [18]C.P.Leslie Grady, Jr.Glen T.Daigger, HenryC.Lin.废水生物处理.第二版.北京:化学工业出版社,2003:318.
    [19]常望霓等.城市污水脱氮除磷方法探讨.环境保护.2000,11:19-20.
    [20]Silverstein J., Sehroeder E.Performance of SBR activated sludge Process with nitrifieation/denitrifieation.Journal WPCF.1983,55(4):377-384.
    [21]陈甘棠.化学反应工程.北京:化学工业出版社,1994.
    [22]Robertson L A et al.Nitrogen removal from water and waste.In:Microbial Control of pollution,Cambridge University Press,Cambridge.1992,227-267.
    [23]王向英.A/O生物膜法处理城市生活污水的实验研究.太原理工大学硕士毕业论文.2006.
    [24]王向英,王增长,郝卫东.复合生物膜反应器在城市污水脱氮中的应用与发展[J].山西建筑.2005,22:166-167.
    [25]RUSTEN B L, HEM J,ODEOAARDH.Nitreification of municipal Wastewater in moving bed biofilm reaetors[J].Wat Environ Res,1995,67(1):75-86.
    [26]沈耀良,王宝贞.废水生物处理新技术一理论与应用[M].北京:中国环境科学出版社,1999:196-214.
    [27]麦穗海,吴志超,陈绍伟.沸石强化生物脱氮工艺研究[J].上海环境科学,2002,21(10):641-646.
    [28]曾霞,成官文.沸石强化SBR生物脱氮的影响因素研究.环境科学与技术.2005,28(5):90-92.
    [29]田文华,文湘华,杨爱华等.沸石生物滤池处理低浓度生活污水的工艺性能及影响因素.环境科学,2002,24(5):97-101.
    [30]李德生,黄晓东,王占生.生物沸石反应器在微污染水源水处理中的应用[J].环境科学,2000,21(5):71-73.
    [31]谢冰,徐亚同,戴兴春.沸石强化活性污泥系统的除污效能研究.中国给水排水.2004,20(7):16-20.
    [32]Bookey N A, Cooney E L,Priestley A J. Ammonia removal from sewage using natural Australian zeolite[J].Water Science and technology,1997,34(9):17-24.
    [33]Jorgensen T C,Weatherley L R.Ammonia removal from wastewater by ion exchange in the presence of organic contaminants[J]. Water Research,2003,37:1723-1728.
    [34]Chung Y C,Son D H.Nitrogen and organics removal from industrial wastewater using natural zeolite media[J]. Water Science and technology,2000,42(5):5-6.
    [35]Green M,Mels A,Lahav O,et al. Biological-ion exchange process for ammonium removal form secondary efflunt.Water Science and technology,1996,34(1-2):449-458.
    [36]O Lahav, M Green. Ammonium removal from primary and secondary effluents using a bioregenerated ion exchange process[J]. Wat.Sci.Tech,2000,42(1-2):179-185.
    [37]L Piirtola, B Hultman, M Lowen. Effects of detergent zeolite in a nitrogen removal activated sludge process [J].Wat. Sci. Tech,1998,38(2):41-48.
    [38]罗虹,顾平,杨造燕.应用投加粉末活性炭的膜生物反应器处理生活污水的研究.重庆环境科学.2002,24(3):29-31.
    [39]郑其庚.活性炭的应用[M].上海:华东理工出版社,2002.
    [40]兰淑澄.活性炭水处理技术[M].北京:中国环境科学出版社,1991.
    [41]罗金鸣.简析活性炭在水处理中的应用.中国高新技术企业.2008,93-95.
    [42]Nasrin Aghamohammadi,Hamidi bin Abdul Aziz, Mohamed Hasnain Isa, et al.Powdered activated carbon augmented activated sludge process for treatment of semi-aerobic landfill leachate using response surface methodology. Bioresource Technology.2007,18(98):3570-3578.
    [43]李玉华,任刚.粉末活性炭强化SBR法处理有机化工废水应用研究.哈尔滨工业大学学报.2006,38(12):2094-2097.
    [44]耿峰,戴海平.PAC对靛蓝染料废水处理的研究[J].染料与染色.2007,44(33):35-37.
    [45]王宝庆,陈亚雄,宁平.活性炭水处理技术应用.云南环境科学.2000,19(3):46-49.
    [46]Arvind Kumar, B. Prasad, I.M. Mishra. Adsorptive removal of acrylonitrile by commercial grade activated carbon:Kinetics, equilibrium and thermodynamics. Journal of Hazardous Materials. 2008(152):589-600.
    [47]劳善根,胡宏,张永珍.活性炭厌氧流化床处理含酚废水的机理.上海环境科学.1996,15(3):13-14.
    [48]张小洪,邓仕槐,漆辉.SBR和PACT法处理造纸废水的对比研究.四川农业大学学报.2005,23(1):58-60.
    [49]XIA Sheng-ji, LIU Ya-nan,LI Xing, et al. Drinking water Production by ultrafiltration of Songhuajiang River with PAC adsorption. Journal of Environmental Sciences,2007(19):536-539.
    [50]姜成春,马军,王志军.高锰酸钾与粉末活胜上炭连用处理微污染原[J].中国给水排水.2001,17(3):12-15.
    [51]莫罹,黄霞.粉末活性炭-MBR工艺处理微污染原水.中国给水排水,2002,18:16-19.
    [52]马传苹,梁晓,李曼.MF-PAC-UF工艺用于城市污水深度处理的试验研究.科学技术与工程,2007-5,10(7):2452-2454.
    [53]李绍峰,王雪芹,王宏杰.PAC对MBR膜阻力影响研究.水处理技术.2007-6,33(6):14-17.
    [54]王代芝.膨润土在废水处理中的应用进展[J].辽宁化工,2004,33(8):480-482.
    [55]BANAT F A, BASHIR A B,ASHEH A S,et al.Adsorptionof phenol by bentonite[J]. Environmental Pollution.2000,27(6):391-398.
    [56]孙家寿.交联粘土矿物的吸附特性研究(Ⅵ)-铝皓交联膨润土对废水中有机物的吸附[J].武汉化工学院学报.2000,22(2):33-35.
    [57]]David C R.Adsorption of Sodium dodeeyIbenzene suffonate on organphilic bentonite[J].Applied Clay Science.2001,18(6):173-181.
    [58]O.R.Pal,A.K.Vanjara.Removal of malathion and butachlor from aqueous solution by clays and organoelays[J].Separation and Purification Technology.2001,24(11):167-172.
    [59]陈天虎等.蒙脱石粘土改性吸附剂处理印染废水实验研究[J].中国环境科学.1996,16(1):60-63.
    [60]Anoop kaPoor, T.Viraraghavam. Use of inunobilized bentonite in removal of heavy metals from wastewater[J].Joural of Environmental Engineering.1998,124(10):1020-1024.
    [61]金辉等.膨润土对汞的吸附性能研究[J].水处理技术.1999,25(4):226-229.
    [62]王林山,刘伟,王育红.膨润土与PAM联用处理含重金属离子废水[J].辽宁城乡环境科技.1997,17(6):62-63.
    [63]Tahir SS,RaufN.Thermodynamic studies of Ni(Π) adsorption onto bentonite from aqueous solution[J].ChemThermodynamies.2003,35:2003-2009.
    [64]Zostak R, Invan Bekkum H. Introduction to zeolite Science and Practice[M]. Amsterdam Elsevier Science Publishers B.V.1991.5(23):17-20.
    [65]李春杰,耿琰,周琪,等.SMSBR中PAC对膜污染的防治作用[J].中国给水排水,2002,18(6):5-9.
    [66]Lee H S, Park S J, Yoon T I. (2002) Wastewater treatment in a hybrid biological reactor using powdered minerals:effects of organic loading rates on COD removal and nitrification. Process Biochemistry.38,81-88.
    [67]肖文胜,郭建林,赵旭德.生物沸石强化SBR工艺脱氮研究.环境科学与技术.2007,30(8):78-79.
    [68]王建龙,吴立波,齐星等.用氧吸收速率(OUR)表征活性污泥硝化活性的研究.环境科学学报.1999,19(3):225-229.
    [69]赵如今PF-MBR处理城市生活污水及其膜污染控制.江苏大学博士毕业论文.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700