用户名: 密码: 验证码:
富营养化水体除磷技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化日益受到人们的关注,磷是引起水体富营养化的主要营养因素之一,磷元素含量的多少直接反映着藻类生长的优劣。对水体中的磷进行有效控制,切断藻类生存必需的营养来源,是水体富营养化防治的重要手段,也是地表水处理技术领域的研究热点之一。本文针对水体富营养化成因、物质转化过程、关键控制环节和控制技术展开研究;结合富营养化水质浊度高、含藻多、透明度差、底部厌氧等特点,提出以提高透明度、促进底栖植物生长、控制底泥磷释放为主要控制环节,并以强化混凝、底泥抑磷混凝、澄清工艺等为主要内容的控制湖泊富营养化的方法。
     为研究混凝前后水体中磷的含量、形态分布以及底泥磷的生物可利用性,以铝盐为原料制备不同碱化度的聚合氯化铝(PAC1),并对富营养化水体进行混凝处理,结果表明,不同碱化度的混凝剂对磷的去除效果不同,对水体中磷形态分布的影响也较为显著:Ala是混凝剂除磷过程中起重要作用的铝形态,主要表现为混凝剂碱化度越低,除磷率越高,因此PAC10除磷效果最好。随着混凝剂(PACl0)投量的不断增加,水体中各形态磷(溶解态磷、颗粒态磷)均逐渐减少,当混凝剂投量超过一定剂量(0.2mmol·L-1)时,水体中的溶解态磷及颗粒态磷都转为底泥磷而存在。控制浊度时混凝剂投量0.02~0.lmmol·L-1效果最好,与除磷所需的混凝剂投量不一致,理想的总磷去除率需要更高的混凝剂投量。藻类可利用磷(algal available phosphorus, AAP)的含量随混凝剂(PAC10)投量的增加变化显著,在0.1mmol·L-1前AAP随混凝剂投量的增加逐渐增加:当超过0.1mmol·L-1时,AAP随混凝剂投量的增加而逐渐减少。投加过量的混凝剂(相对除浊要求)可抑制底泥磷中AAP的释放,对长效控磷有着重要意义。
     为研究预氧化强化混凝对水体磷分布及去除的影响,在本文中用臭氧作为预氧化剂应用于水处理过程中,并用AICl3与FeCl3作为混凝剂,考察不同剂量臭氧预氧化条件下混凝对水体中磷的去除效果。结果表明,未加入混凝剂条件下,随着臭氧剂量的增加,水体中的浊度、藻数逐渐减小;水体中的DOC呈现先增大后减少的趋势;水体中总磷量保持不变,但是随着臭氧剂量的增大,溶解态磷逐渐增大,颗粒态磷逐渐减少。臭氧能够强化混凝对水体中各形态磷的去除,且随着臭氧剂量的增加,去除率逐渐增加;在不同剂量臭氧下,混凝对溶解态磷的去除率明显大于总磷的去除率。AICl3对水体中颗粒态磷的去除率远大于FeCl3,但FeCl3对水体中溶解态磷的去除稍好于AlCl3。预氧化虽然能强化对水体中磷的去除,但沉后水底泥中AAP释放量亦明显增加,控制水体中磷一定要兼顾底泥磷的释放。
     制备了一种铝铁复合混凝剂对富磷水体进行混凝处理并与铝盐混凝剂AlCl3、 PACl)比较。结果表明,复合混凝剂对浊度去除效果优于AlC13、PACl,较AlCl3、 PACl沉降性能好且耗药量少;复合混凝剂对水体各形态磷的去除率也远远大于AlCl3、PACl,且对溶解态磷的去除率大于对总磷的去除率,与前文结果一致。对沉后水底泥中的正磷酸盐进行检测,底泥中正磷酸盐随着混凝剂剂量的增加释放量逐渐减少,不与混凝后底泥总磷量呈正比;且复合混凝剂处理的底泥中正磷酸盐的释放量远远低于AlCl3。
     在实验室研究基础上进行中试模拟实验,用铝铁复合混凝剂对化肥厂有机含膦废水进行混凝处理的中试模拟。结果表,明,中试试验对水体浊度、总磷、COD、DOC、UV254等各项指标均有较好的去除,浊度去除率可达到95%以上,总磷去除率可达到72.5%,COD、DOC及UV254去除率可达到53.7%、31.5%、90.1%,出水水质满足国家污水排放综合一级标准。
In recent years, eutrophication is attracting more attention. The major factors causing water eutrophication include load of nitrogen (N) and phosphorus (P), particularly P, P is the limiting factor of algae growth. Effective Control of phosphorus can cut the main nutritional source of algae growth, which was the important means to control water eutrophication, and has become one of the research hotspot in the domain of water research technology.
     Coagulation experiment was carried out by using PAC1of different basicity. The contents, distributions and algal availability of phosphorus were studied before and after coagulation. Results show that:phosphorus removals were significantly different among the four coagulants with different basicities. In the coagulation experiment, Ala plays an important role for the removal of phosphorus, and the coagulant with lower basicity showed higher phosphorus removal efficiency, PACl0showed the best performance of phosphorus removal. Dissolved and particulate phosphorus decreased obviously with the increase of coagulant dosage. When the coagulant dosage reached a certain value, dissolved and particulate phosphorus would entirely turned into deposit phosphorus. It is proved that the demand of coagulant for turbidity control was unequal to that for phosphoms removal. In the experiment, the best turbidity removal would be get when the coagulant dosage was about0.02-0.1mmol·L-1, while the desired phosphorus removal need much higher dosage. The release of AAP in the sediments increased first and then decreased with the increase of coagulant dosage. It was indicated that AAP in sediments can be controlled effectively by adding superfluous coagulant compared to turbidity removal, which is very important to control phosphorus chronically. It was showed that the turbidity removal can not be as the sole criterion in the process of water treatment, the need for the release of AAP, total phosphorus removal should be considered, which need a larger coagulant dosage.
     In this study, alum chloride and ferric chloride were selected as the coagulants, and ozone, a strong oxidant, as the preoxidation agent to develop an effective coagulation process with the emphasis of phosphorus removal from eutrophication water. Effects of pre-ozonation on the removal efficiency of phosphorus contained in eutrophicated raw water during coagulation were investigated. Results show that:the removal efficiency of both total phosphorus and dissolved phosphorus increased gently at four different ozone dosage as the dosage increased from0to1.5mg·L-1. Dissolved phosphorus increased and particulate phosphorus reduced gradually with the increase of the ozone dosage. The removal efficiency of dissolved phosphorus is higher than particulate phosphorus and total phosphorus. AlCl3exhibit better removal efficiency than FeCl3in removing turbidity and phosphorus. When the ozone dosage was1.5mg·L-1, the coagulant dosages of about0.1mmol·L-1would get the best turbidity removal in the experiment, while much higher dosage was needed to achieve desired phosphorus removal. The amount of AAP (Algal available phosphorus) in the sediments was analyzed before and after preoxidation. Although ozone can enhance coagulation for turbidity and phosphorus removal, the release content of AAP increased distinctly compared with the raw water. These results suggest that preoxidaton is beneficial for phosphorus removal during coagulation, but it also increase the release of AAP.
     The comparison of aluminum iron compound coagulant and AlCl3was studied. The results show that aluminum iron compound coagulant can effectively remove the turbidity at the remove rate of88.5%when the sedimentation time was only15min, which exhibits better coagulation effect and reduce the explosive consumption to a certain extent. For the removal of phosphorus, the removal efficiency of total phosphorus can reach up to95%, the dissolved phosphorus can be removed completely, which was much large than AICI3, and the removal efficiency of dissolved phosphorus was more than total phosphorus, which was consistent with the anticipation. The orthophosphate in sediment after coagulation was detected, with the increase of coagulant dosage, the release amount of orthophosphate decreased, the release of orthophosphate in sediment treated by compound coagulant was far lower than AICl3.
     Pilot Plant Research on Treatment of organic wastewater with high COD and phosphorus of chemical fertilizer plant by using compound coagulant. The results indicated that the great removal efficiency can be obtained when use the compound coagulant for fertilizer plant wastewater, the turbidity removal rate can reach up to95%, while the removal rate of phosphorus, COD, DOC, UV254were72.5%,53.7%,31.5%,90.1%. The treated organic sewage met national discharge standards completely, on the whole, the removal rate of dynamic test was lower than static coagulation test.
引文
[1]王巍.改性沸石除磷吸附剂的制备及其性能研究[D].吉林,吉林大学,2010,22-29.
    [2]朱志平.铝盐铁盐混凝过程行为与最佳pH值预测[J].水处理技术,1993,19(2):106-109.
    [3]贺启环,张勇,方华.处理印染废水的复合混凝剂研究进展[J].工业水处理,2002,22(4)1-5.
    [4]杨艳玲,李星,聂学峰,李圭白.给水处理强化混凝除磷技术研究[J].北京工业大学学报,2006,32(10):939-943.
    [5]董秉直,曹达文,范瑾初.强化混凝去除黄浦江水有机物的试验研究上海环境科学[J].2001,20(11):519-522.
    [6]马维超,马军,刘芳.高铁酸钾预氧化强化混凝工艺对污水深度处理效果的影响[J].水处理技术,2009,10(35):66-68.
    [7]张永吉,南军,刘前军,等.铁盐和铝盐混凝剂对消毒副产物的控制作用及机制研究[J].环境化学,2004,23(4):420-425.
    [8]付乐,陶涛,曹国栋.臭氧和活性炭深度处理微污染水源水实验研究[J].给水排水,2007,33(5):30-34.
    [9]潘碌亭,束玉保.聚合氯化铝铁絮凝剂的制备及其在焦化废水深度处理中的应用[J].环境污染与防治,2009,31(9):25-28.
    [10]李星,徐夫元,陈英文,等.复合混凝剂处理石油化工二级出水的研究[J].工业水处理,2010,30(1):34-37.
    [11]Sinsabaugh R L, Hochn R C,Knocke W.R. Removal of Dissolved Organic Carbon by Coagulation with Iron Sulfate[J]. Amer. Water Works Assoc,1986,78(5):74-82.
    [12]钱晖.臭氧预氧化技术处理地表水的试验研究[J].水科学与工程技术,2009(2):24-27.
    [13]刘勇,贾瑞宝,杨晓,等.臭氧预氧化强化混凝处理引黄水库水的中试研究[J].供水技术,2010,4(2):1-8.
    [14]Yan M Q, Wang D S, Shi B Y, et al. Effect of p re-ozonati on on op timized coagulation of a typical North-China source water[J]. Chemosphere, 2007,69(11):1695-1702.
    [15]王娜.强化混凝与臭氧预氧化强化处理微污染水的对比[J].中国给水排水,2010,26(5):63-66.
    [16]刘婷,陈忠林,沈吉敏,等.臭氧预氧化/MBR工艺处理微污染原水的研究[J].中国 给水排水,2010,26,(11):34-36.
    [17]梁涛,马军,任芝军.预氧化/BAC与常规工艺去除AOC的效果对比[J].中国给水排水,2009,29(19):24-27.
    [18]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第4版).北京:中国环境科学出版社,2002.243-246.
    [19]王琦,姜霞,金相灿,等.太湖不同营养水平湖区沉积物磷形态与生物可利用磷的分布及相关关系[J].湖泊科学,2006,18(2):120-126.
    [20]曲久辉,刘会娟,雷鹏举,等.电解法制备PAC在水处理中的应用研究[J].中国给水排水,2001,17(5):16-19.
    [21]宁寻安.聚氯化铝形态分布及转化硅铝研究[D].广东,中山大学,2007,10-45.
    [22]董申伟,李明玉,陈伟红,等.聚合氯化铝的盐基度与混凝性能关系研究[J].工业水处理,2007,27(2):53-57.
    [23]刘海龙,王东升,汤鸿霄,等.微污染原水预臭氧化-强化混凝处理及其安全性[J].环境科学学报,2008,28(7):1320-1324.
    [24]Liu H L, Wang D SH, Wang M, et al., Effect of pre-ozonation on coagulation with IPF-PACls:Role of coagulant speciation, Colloids and Surfaces A[J]. Physicochemical and Engineering Aspects,2007,294:111-116.
    [25]赵华章,王红宇,栾兆坤.高Alb聚氯化铝的混凝性能与机理研究[J].中国给水排水,2006,22(23):30-34.
    [26]徐秀明,王燕,高宝玉,等.聚合氯化铝中Alb形态去除腐殖酸的效果及机制研究[J].2008,29(11):3065-3068.
    [27]李风亭,何艳,潘宏杰,等.聚合氯化铝混凝性能的影响因素研究[J].工业水处理,2008,28(10):40-43.
    [28]杨忠莲,高宝玉,岳钦艳,等.铝盐混凝剂的混凝效果与残留留铝含量和组分之间的关系研究[J].环境科学,2010,31(6):1542-1545.
    [29]赵华章,彭凤仙,栾兆坤,等.微量加碱法合成聚合氯化铝的改进及Al13的形成机理[J].环境化学,2004,23(2):202-207.
    [30]王秋阳,李涛,王东升,等.不同混凝剂除磷性能的对比研究[J].供水技术,2008,29(1):33-36.
    [31]Gonsiorczyk T, Casper P, Koschel R.Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of Baltic Lake district [J]. Water Science & Technology,1998,37 (3):51-58.
    [32]M.I. Aguilar, J. Saez, M. Llorens, A. Soler, J.F. Ortuoo. Nutrient removal and sludge production in the coagulation-locculation process[J]. Water Res,2002,36:2910-2919.
    [33]P.R. Thomas, D. Allen, D.L. McGregor. Evaluation of combined chemical and biological nutrient removal [J].Water Sci. Technol.1996,34(1/2):285-292.
    [34]刘海龙,王东升,王敏.臭氧对有机物混凝的影响[J].环境科学,2006,27,(3)457-459.
    [35]刘成,高乃云,蔡云龙.强化混凝去除黄浦江原水中有机物研究[J].中国给水排水,2006,22(1):84-88.
    [36]Robert I, Sinsabaugh, et al. Removal of dissolved organic carbon by coagulation with sulfate [J]. Jour.AWWA,1986,78(5):74-82.
    [37]董秉直,曹达文,范瑾初.最佳混凝投加量和pH去除水中有机物的研究[J].工业水处理,2002,22(6);28-32.
    [38]周玲玲,张永吉,孙丽华,等.铁盐和铝盐混凝对水中天然有机物的去除特性研究[J].环境科学,2008,29(5):1187-1189.
    [39]Yang Kai, Li Zhenhua, Zhang Huaiyu. Municipal wastewater phosphorus removal by coagulation[J] ENVIRONMENTAL TECHNOLOGY,2010,31(6):601-609.
    [40]RATNAWEERA HC, DEGAARD H, FETTIG J. Coagulation with prepolymerised aluminium salts and their influence on particle and phosphate removal [J]. Water Sci. Technol.1992,26,1229-1237.
    [41]Hu ChengZhi, Liu HuiJuan, Qu JiuHui, Wang DongSheng. Coagulation Behavior of Aluminum Salts in Eutrophic Water; Significance of Al13 Species and pH Control [J] Environ. Sci. Technol,2006,40:325-331.
    [42]LP Roger, JA Roger. The Mechanism of Phosphate Fixation By Iron Oxides[J]. Soil Sci.Soc.1975,39:837-841.
    [43]K Fytianos,E Voudrias,N Raikos. Modelling of phosphorus removal from aqueous and wastewater samples using ferric iron[J].Environmental Pollution,1998,101:123-130.
    [44]Jia-Qian Jiang, Nigel J D Graham. Pre-polymerised inorganic coagulants and phosphorus removal by coagulation-A review[J].Water SA Vol,1998,24 (3):237-242.
    [45]郑怀礼,刘克万,龙腾锐,等.聚合氯化铝铁(PAFC)絮凝剂污水除磷的研究[J].环境化学,2005,24,(6):693-699.
    [46]李星,徐夫元,陈英文.复合混凝剂处理石油化工二级出水的研究[J].工业水处 理,2010,30,(1):35-38.
    [47]雷国元,徐桂芹,马军.聚合氯化铝铁的形态分布对微污染源水混凝效果的影响[J].环境污染与防治,2007,29(8):565-568.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700