用户名: 密码: 验证码:
控释性可注射牙槽骨修复材料的生物学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】
     本研究从新型牙槽骨修复材料的体外细胞毒性、MC3T3-E1成骨细胞的相容性、软组织和骨组织对材料的反应及其用于牙周组织再生的效果四个方面对该控释性可注射可生物降解牙槽骨修复材料进行了生物学评价,从而为进一步的研究奠定基础。研究共分四个部分:第一部分是用浸提液法评价新型控释性可注射可生物降解牙槽骨修复材料中各组份、交联产物及其降解产物对L929细胞的毒性,以评价其生物安全性;第二部分用直接接触法评价MC3T3-E1成骨细胞在该牙槽骨修复材料上的生长情况和功能的表达,以深入分析该材料的骨细胞相容性和体外骨引导性:第三部分则检测该材料植入兔体内时的软组织和硬组织反应,以评价其在体内的生物相容性、生物可降解性和体内骨引导性;第四部分则将含有四环素(tetracycline,TTC)的牙槽骨修复材料用于实验动物牙周炎模型牙槽骨缺损区的修复,以检测四环素药物在牙周袋内的缓释情况和对牙周组织再生效果的的实际影响,从而评价其在体内的生物学有效性。
     第一部分新型可注射可生物降解牙槽骨修复材料的体外细胞毒性研究
     【材料与方法】将不饱和聚磷酸酯/β-磷酸三钙(unsaturated polyphosphoester/β-tricalcium phosphate,UPPE/β-TCP)复合物各组份分别在细胞培养液中浸提,正常培养液作为对照组,使用AlamarBlue法评价上述各组份不同浓度的浸提液对小鼠成纤维细胞(L-929)的体外细胞毒性;同时对不同浓度的已交联UPPE聚合物浸提液、UPPE/β-TCP复合物浸提液及交联复合物体外快速降解产物稀释液的细胞毒性分别进行评价,对实验结果进行单因素方差分析及Tukey's HSD多重比较。【结果】β-TCP的细胞毒性与对照组的差异无显著性意义(P>0.05),其余UPPE/β-TCP复合物各组份最高浓度组的细胞毒性均较强,与对照组的差异具有显著性意义(P<0.05),但其细胞毒性随着浸提液浓度的降低而降低;已交联的UPPE聚合物和UPPE/β-TCP复合物的细胞毒性与对照组的差异无显著性意义(P>0.05);交联复合物降解产物的细胞毒性同样表现为剂量依赖性,其中两组高浓度降解液的细胞毒性较强,与对照组的差异具有显著性意义(P<0.05)。
     第二部分四环素控释性可生物降解牙槽骨修复材料的体外MC3T3-E1细胞培养研究
     【材料与方法】采用直接接触法评价四环素控释性可注射牙槽骨修复材料的骨细胞相容性。将β-TCP、UPPE聚合物、UPPE/β-TCP复合物及含1%(w/w)TTC的UPPE/β-TCP(UPPE/β-TCP+1%TTC)复合物分别与小鼠胚胎颅顶骨MC3T3-E1细胞(MC3T3-E1)共同培养,AlamarBlue法评价上述材料对MC3T3-E1细胞的体外细胞毒性,吖啶橙-溴化乙锭双荧光染色(Acridine orange/ethidium bromide staining assay,AO/EB)法在荧光显微镜下检测材料表面MC3T3-E1细胞的存活和死亡情况,电子显微镜(scanning electron microscopy,SEM)下观察MC3T3-E1细胞在材料表面的形态、粘附和生长情况;另外,通过测量碱性磷酸酶(alkaline phosphatase,ALP)的活性检测MC3T3-E1细胞在材料表面的分化和功能表达,对实验结果进行单因素方差分析及Turkey's HSD多重比较。【结果】AlamarBlue法检测MC3T3-E1细胞的毒性结果表明β-TCP、UPPE聚合物、UPPE/β-TCP复合物对小鼠胚胎颅顶骨MC3T3-E1细胞的毒性与阴性对照组的差异无显著性意义,添加1%TTC后对复合物的体外细胞毒性无不良影响(P>0.05);荧光显微镜观察结果表明各种材料表面的活细胞密度值相近,死细胞数量均较少;电子扫描显微镜观察发现MC3T3-E1细胞可在所有材料表面附着和增值,并伸展呈现为多角形,细胞突起互相连接;β-TCP、UPPE聚合物、UPPE/β-TCP复合物的MC3T3-E1细胞碱性磷酸酶活性检测值均与阴性对照组相近,其间的差异无统计学意义(P>0.05),而UPPE/β-TCP+1%TTC复合物稍高于阴性对照组,其差异有统计学意义(P<0.05)。
     第三部分四环素控释性可注射可生物降解牙槽骨修复材料的软组织和骨组织反应评价
     【材料与方法】选用25只新西兰大白兔,按2 weeks(w)、4 w、8 w、12 w、24w的植入期分为五组,将β-TCP、UPPE聚合物、UPPE/β-TCP复合物和UPPE/β-TCP+1%TTC复合物分别植入其皮下;同时在其股骨内侧髁制作骨缺损区模型,分别注射UPPE/β-TCP复合物和UPPE/β-TCP+1%TTC复合物,对软组织和骨组织样本进行组织病理学和组织形态学评价,并进行统计学分析。【结果】各组材料的纤维组织囊厚度随植入期的延长而增加,在8 w时最大,以后无明显改变,表明所形成的纤维组织囊已完全成熟;但UPPE聚合物在第8 w时开始出现降解,纤维组织向材料内部浸润生长,未见明显的炎性细胞浸润;所有植入体周围的软组织囊中均未发现成骨细胞、骨细胞或骨组织。在整个植入期内,UPPE/β-TCP复合物和UPPE/β-TCP+1%TTC复合物植入体的骨组织反应基本一致,均可见骨组织与材料的界面处无纤维组织囊插入,骨缺损区内无炎性细胞存在,新生骨组织与材料结合较好。植入4 w后,复合体中与材料结合良好,无纤维结缔组织囊形成,在材料发生吸收而改建的区域,可见成骨细胞和活跃的新骨形成、新生血管;8 w之后,大部分植入体仍存在于骨缺损区,而部分植入体成为“独岛”被完全整合进入新生的骨组织中;12 w时骨组织有广泛的重建;24 w后,植入体主体部分消失,骨组织内生生长和改建获得更加活跃,在新生骨和骨髓样组织中可见大量材料碎片,并可见成骨样细胞。组织形态学分析表明8 w时β-TCP、UPPE聚合物和UPPE/β-TCP复合物组的软组织评级得分低于第2 w,其间的差异具有统计学意义(P<0.05);各时期UPPE/β-TCP+1%TTC复合物组软组织得分的差别无统计学意义(P>0.05)。UPPE/β-TCP复合物和UPPE/β-TCP+1%TTC复合物植入骨缺损区后的吸收率随植入时间的延长而逐渐增加,在8 w以前其吸收率相似,组间的差异无统计学意义(P>0.05),而12 w后UPPE/β-TCP+1%TTC复合物组的吸收率高于UPPE/β-TCP复合物,其间的差异具有统计学意义(P<0.05),24 w后其吸收率均在60%以上。
     第四部分四环素控释性可注射可生物降解牙槽骨修复材料用于牙周组织再生的动物研究
     【材料与方法】选用15只雄性、健康的杂种犬,在双侧上颌尖牙的近中根面放置不锈钢网6 w以形成实验动物牙周炎模型,随后在上颌尖牙近中牙槽骨上制作大小形状基本相同的三壁骨内袋缺损,将含有1%、5%、10%TTC的UPPE/β-TCP复合物直接注射入骨质缺损区,未植入任何材料的一侧作为空白对照组。分别在术后3 days(d)、7 d和14 d用滤纸提取术区的龈沟液,使用高效液相色谱法测定(high-performance liquid chromatography,HPLC)滤纸上的TTC的含量,评价UPPE/β-TCP+TTC复合物植入动物体内后的药物缓释性能;在术后16 w处死动物,常规制备组织病理学样本,对牙周组织的愈合情况进行组织学和组织形态学评价,对实验结果进行单因素方差分析和组间多重比较。【结果】在牙周骨缺损内注射三种含不同浓度TTC的UPPE/β-TCP复合物3 d、7 d和14 d后,所检测的龈沟液中TTC浓度均高于抑制牙周主要致病菌所需要的TTC最低抑菌浓度,在14 d时各材料药物缓释性能间的差异无统计学意义(P>0.05)。在植入复合物的牙周骨缺损区内均可见有新骨和新牙骨质形成等牙周组织的愈合表现,无明显的炎症反应特征,部分UPPE/β-TCP+TTC复合物为新生骨组织所替代,且新生骨组织、新生牙骨质和新生牙周结缔组织附着的宽度与空白对照侧间的差异均有统计学意义(P<0.05)。
     【结论】
     虽然UPPE/β-TCP复合物各组份及其体外降解产物表现出一定的细胞毒性,但已交联的UPPE聚合物和UPPE/β-TCP复合物则具有良好的细胞相容性,因此UPPE/β-TCP复合物仍有望成为理想的可注射、可生物降解的骨缺损修复材料。四环素控释性可注射牙槽骨修复材料具有较好的骨细胞生物相容性,对MC3T3-E1细胞的生长无不利影响,且有利于其粘附形成较高的细胞密度和活性,并表达分化的MC3T3-E1细胞功能,具有良好的体外骨诱导性。可注射牙槽骨修复材料UPPE/β-TCP复合物在动物体内具有良好的软组织和骨组织生物相容性,在骨质缺损区可逐渐降解并为新生骨组织所替代。TTC控释性可注射牙槽骨修复材料UPPE/β-TCP+TTC复合物不但在实验动物体内有较好的药物缓释性能,而且可为牙槽骨缺损区的愈合提供稳定的空间,促进了牙周组织的愈合,有望用于牙槽骨再生的修复治疗。
PART ONE In Vitro Cytotoxicity of a Novel Injectable and BiodegradableAlveolar Bone Substitiute
     Objective Currently, the unsaturated polyphosphoester (UPPE) polymer is beinginvestigated as an injectable and biodegradable system for alveolar bone repair in thetreatment of periodontal diseases. The incorporation of beta-tricalcium phosphate(β-TCP) particles into the UPPE polymer was previously shown to significantlyincrease the material's mechanical properties. Moreover, in vitro experimentsdemonstrated that the UPPE/β-TCP composite was capable of release of tetracyclinefor over 2 weeks (w). This study aimed to investigate the in vitro cytotoxicity of eachindividual component, the resulting cross-linked network, and the eventualdegradation products of the UPPE/β-TCP composite. Methods Each individualcomponent of the UPPE/β-TCP composite was immersed in culture media andincubated, respectively. The culture media without extracts severed as the control.Using cell line L929 as model cells, the individual cytotoxicity of each constituentwas evaluated by an AlamarBlue viability assay. The effects of the leachable productsfrom the cross-linked UPPE polymer and UPPE/β-TCP composite, the in vitrodegradation products obtained from the complete breakdown of the cross-linkedcomposite under accelerated conditions on the cytotoxicity were also investigated.Single factor analysis of variance and Tukey's HSD multiple comparison tests wereused to determine statistical significance of results. Resultsβ-TCP demonstratedcell viability comparable to the control (P>0.05). The other components of the UPPE/β-TCP composite exhibited significantly higher cytotoxicity at the highestconcentration (P<0.05), and dilutions of these extracts produced an improvement incell viability. Once cross-linked, however, the cytotoxicity of the leachable productsfrom the cross-linked UPPE polymer and UPPE/β-TCP composite was comparable tothat of the control (P>0.05) because most of the individual constituents may beincorporated into the cross-linked network. The degradation products of thecross-linked composite displayed a dose-dependent cytotoxic response with only thetwo highest concentration solutions demonstrating cell viability significantly lowerthan the control (P<0.05). Conclusion The results suggest that although there areconcerns regarding the biocompatibility of the novel UPPE/β-TCP composite, it holdsgreat promise for use as an injectable and biodegradable alveolar bone substitute inthe treatment of periodontal diseases.
     PART TWO Investigation of MC3T3-E1 Cell Behavior on the Surface of aBiodegradable Alveolar Bone Substitiute Containing Tetracycline
     Objecitve The early osseointegration of bone substitutes is an important factorfor their clinical success. The challenge in the engineering of bone substitute'ssurfaces is to attract, above all, osteoblasts that produce a bone extracellular matrix,which will ensure a high bone-implant contact. Cell adhesion is one of the initialstages for subsequent proliferation and differentiation of osteoblastic cells producingbone tissue. The aim of this present study is to investigate the behavior of osteoblasticMC3T3-E1 cells on four different bone grafts surfaces in vitro:β-TCP, UPPE polymer,UPPE/β-TCP composite and UPPE/β-TCP containing 1% tetracycline(UPPE/β-TCP+1% TTC) composite. Methods MC3T3-E1 cells were culturedeither on theβ-TCP, UPPE polymer, UPPE/β-TCP composite and UPPE/β-TCP+1%TTC composite discs or in the absence of material (plastic) for 4, 8 and 15 days (d).The cell viability of each group was measured as optical density by an AlamarBlueviability assay, and normalized to cell culture medial (the control) in order to demonstrate differences in cell viability on the different substrates. After 1 or 14 dincubations of the cells on the four materials or the control, the cellswere double-stained with Acridine orange/Ethidium bromide (AO/EB) for 5 minutes(min) and viewed by epifluorescence microscopy to simultaneously examine of bothlive and dead cells on the materials. The morphology of osteoblastic cells MC3T3-E1after culturing for 2 d on the different substrates was examined using a scanningelectron microscope (SEM). The differentiation function of osteoblastic cellsMC3T3-E1 was assessed by measuring alkaline phosphatase (ALP) activity. Singlefactor analysis of variance and Tukey's HSD multiple comparison tests were used todetermine statistical significance of results. Results For all substrates, the resultsshow an increase in cell viability indicating cell proliferation with culture time. After4 d of culture, the cell viability was slightly inferior for all groups compared with thecontrol, but there was no statistical differences between groups (P>0.05). The dataappeared similar for the UPPE/β-TCP composite after 8 and 15 d of culture, andslightly superior for theβ-TCP or UPPE/β-TCP+1% TTC composite after 15 dcompared with the culture. Nevertheless, the statistical analysis did not showsignificant differences between groups (P>0.05). The cell viability remainedslightly lower in UPPE compared with the control. Visual examination revealed thatthe density of live cells adherent to each material was similar after 2 and 15 d ofculture. Live cells, stained green, appeared to have adhered and attained a normalpolygonal morphology on all materials. Dead cells (stained red) were very few on allthree materials. SEM micrographs show similar cell attachment on the four materials.ALP activity increased with culture time whatever the substrate was and appeared tobe at its maximum after 21 d. Conculsion These data show that a UPPE/β-TCPcontaining 1% TTC composite is biocompatible and supports the adhesion, spreading,proliferation and viability of osteoblast cells.
     PART THREE In Vivo Bone and Soft Tissue Response to an Injectable,Biodegradable Alveolar Bone Substitiute Containing Tetracycline
     Objective Earlier investigations have characterized some of the physical andbiological properties of UPPE/β-TCP composite. It is worth noting that sometimes thebone substitute is not only in contact with bone, but also with the surrounding softtissues. To ensure the safety and effectiveness of this technique, this study wasdesigned to assess in vivo soft and bone tissue response to to the UPPE/β-TCPcomposite and UPPE/β-TCP+1% TTC composite after implantation using a rabbitmodel. Methods Twenty-five male New Zealand White rabbits were used asexperimental animals. For the insertion of the subcutaneous implants, fourssubcutaneous pockets at the dorsum of the rabbits were created. The implants (β-TCP UPPE polymer, UPPE/β-TCP composite and UPPE/β-TCP+1% TTC) wereinserted in these pockets. UPPE/β-TCP composite and UPPE/β-TCP+1% TTC wereinjected in circular defects as created in the femoral condyles of rabbits and were leftin place for 2, 4, 8, 12 and 24 w. The specimens were evaluated morphologically(histology, and histomorphometry). Single factor analysis of variance and Tukey'sHSD multiple comparison tests were used to determine statistical significance ofresults. Results The histologic evaluation in vivo after 2 w showed a mild infiltrateof inflammatory cells for most of the groups. UPPE/β-TCP+1% TTC compositeexhibited no signal of inflammatory response. After 4 w. the tissue showed nearnormal pattern for all the groups. The soft tissue capsule had a non-uniformdistribution in thickness, which increased most significantly between 4 w and 12 wafter implantation. After 8 weeks, the capsule thickness did not change much. None ofpolymorphic cells, osteoblast cells or bone cells adjacent to the implant were observed.The surface of theβ-TCP, UPPE/β-TCP composite and UPPE/β-TCP+1% TTCcomposite themselves remained substantially intact without noticeable cracking,chipping or dissolution. However, at 8 w, UPPE polymer showed extensive surfaceerosion and superficial fragmentation that was surrounded by a few inflammatory cells. Gross examination of retrieved implant/bone composite samples indicated thatthe UPPE/β-TCP composite and UPPE/β-TCP+1% TTC composite did not evokeinflammatory response, necrosis or fibrous encapsulation in surrounding bony tissues.Histological examination revealed excellent composite/host bone bonding. At 4 w, theresorption induced voids between terminals of bone defects and implants were largelyfilled with new bone. Composite resorption, new blood vessels, osteocytes, osteonsand osteoblast-like cells lining up with active new bone were observed at remodelingsites. At 12 w, a new bone network was developed within femoral defect, whilecomposite became islands incorporated in the new bone. At 24 w, bone ingrowth andremodeling activities became so extensive that the interface between residual cementand new bone became less identifiable. In general, the resorption ratio valuesincreased with implantation time. Conclusion TC addition optimizedbiocompatibility of the UPPE/β-TCP composite, contributing to anti-inflammatoryresponse during the early phases of the wound healing process. These results showedthat UPPE/β-TCP composite holds promise for use as a syntheticbiodegradable scaffolds for tissue engineering.
     PART FOUR The Influence of Novel Injectable Alvelor Bone Substitutes onRegeneration of Periodontonal Defects with Experimental Periodontitis in Dogs
     Objective Earlier studies showed that an injectable UPPE/β-TCP composite wasbiocompatible and promoted histocompatible healing of bone tissue in rabbits. Thesemisolid consistency of UPPE/β-TCP composite containing TTC shows sustainedand almost constant in vitro drug release in phosphate buffer, pH 7.4 at 37℃, for upto 14 days. The purposes of this present study were (1) to assess the in vivo releaseof drug in the periodontal pockets from the UPPE/β-TCP composite containing 1%,5% or 10% (wt/wt) TTC and (2) to evaluate influence of the formulation onregeneration of periodontal defects with experimental periodontitis in dogs.
     Methods Experimental periodontitis was induced by placing stainless-steel mesh on the mesial side of maxillary canines for 6 w in fifteen adult, healthy dogs.Subsequently, intrabony defects were resized so as to be standard, and UPPE/β-TCPcomposite containing 1%, 5% and 10% TTC were directly injected in theexperimental bone defects. Non-grafted defects on the contralateral side served ascontrols. The retention time of the antibiotic product was determined indirectly bymeasuring the concentration of tetracycline in gingival crevicular fluid (GCF) usinghigh-performance liquid chromatography (HPLC) at 3, 7, and 14 d after the placementof the UPPE/β-TCP + TTC composites. Sixteen weeks after surgery, the animals weresacrificed and histologic specimens were prepared. Periodontal tissue healing wasevaluated histologically and histometrically. Results The TTC concentrations inthe GCF well above the minimum inhibitory concentration (MIC) of most periodontalpathogens were seen at 3, 7, and 14 d following the injection of theUPPE/β-TCP+TTC composite formulations. Healing of periodontal tissues, in termsof bone and cementum formation, was consistently observed in theUPPE/β-TCP+TTC composite-applied sites. UPPE/β-TCP+TTC composites werepartly replaced by new bone. New cementum and periodontal ligament-like tissuewere observed between UPPE/β-TCP+TTC composites and the root surface. Newbone (P<0. 05), new cementum (P<0.05), and new connective tissue attachment andadhesion (P<0.05) were significantly enhanced in the experimental sites.
     Conclusion The UPPE/β-TCP+TTC composite formulations can be retained in theperiodontal pocket for a prolonged period, releasing a sufficient amount oftetracycline to eliminate pathogenic bacteria. The composites containing TTCprovides stable wound healing and enhanced periodontal regeneration in periodontaldefects in dogs with experimental periodontitis. The local application of injectablebioerodible UPPE/β-TCP+TTC composites appears to be promising in the context ofperiodontal treatment.
引文
1.Loe H, Anerud A, Boysen H, et al. Natural history of periodontal disease in man.Rapid, moderate and no loss of attachment in Sri Lankan laborers 14 to 46 years of age. J Clin Periodontol 1986; 13:431-445.
    2.Buck BE, Malinin TI, Brown MD. Bone transplantation and human immunodeficiency virus. An estimate of risk of acquired immunodeficiency syndrome (AIDS). Clin Orthop Relat Res 1989;240:129-136.
    3.Bobyn JD, Mortimer ES, Glassman AH, et al. Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop Relat Res 1992;274:79-96.
    4.Kurashina K, Kurita H, Hirano M, et al. In vivo study of calcium phosphate cements: implantation of an alpha-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement paste. Biomaterials 1997; 18:539-543.
    5.Ratier A, Freche M, Lacout JL, et al. Behaviour of an injectable calcium phosphate cement with added tetracycline. Int J Pharm 2004;274:261-268.
    6.dos Santos LA, De Oliveria LC, Rigo EC, et al. Influence of polymeric additives on the mechanical properties of alpha-tricalcium phosphate cement. Bone 1999;25:99S-102S.
    7.Burdick JA, Frankel D, Dernell WS, et al. An initial investigation of photocurable three-dimensional lactic acid based scaffolds in a critical-sized cranial defect.Biomaterials 2003;24:1613-1620.
    8.Burkoth AK, Anseth KS. A review of photocrosslinked polyanhydrides: in situ forming degradable networks. Biomaterials 2000;21:2395-2404.
    9.Hile DD, Kowaleski MP, Doherty SA, et al. An injectable porous poly(propylene glycol-co-fumaric acid) bone repair material as an adjunct for intramedullary fixation. Biomed Mater Eng 2005;1:219-227.
    10. Zhao Z, Wang J, Mao HQ, et al. Polyphosphoesters in drug and gene delivery.Adv Drug Deliv Rev 2003;55:483-499.
    11. Li Q, Wang J, Shahani S, et al. Biodegradable and photocrosslinkable polyphos-phoester hydrogel. Biomaterials 2006;27:1027-1034.
    12. Kaluzynski K, Libisowski J, Penczek S. A New Class of Synthetic Polyelectrolytes. Acidic Polyesters of Phosphoric Acid (Poly(hydroxyalkylene phosphates)). Macromolecules 1976;9:365-367.
    13. Leong KW, Mao H, Zhuo R. Biodegradable polymers with a phosphoryl-containing backone: tissue engineering and controlled drug delivery allications. Chin J Polymer Sci 1995;13:289-314.
    14. Xu X, Yu H, Gao S, et al. Polyphosphoester microspheres for sustained release of biologically active nerve growth factor. Biomaterials 2002;23:3765-3772.
    15. Wang DA, Williams CG, Yang F, et al. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Eng 2005;11:201-213.
    16.邱进俊,刘承美.可注射性骨组织支架材料不饱和聚磷酸酯的合成,高等学校化学学报2005;10:1952-1956.
    17. Qiu J J, Liu CM, Fen H, et al. Synthesis of unsaturated polyphosphoester as a potential injectable tissue engineering scaffold material. J Applied Polymer Sci 2006;102:3095-3101.
    18. Xiao JZ, Mao J, Zhang ZX, et al. In vitro degradation of a UPPE/β-TCP composite orthopedic scaffold. Tissue Eng, In press.
    19. Xiao JZ, Zhang ZX, Mao J, et al. Controlled drug release from a novel injectable biodegradable UPPE/β-TCP composite. J Biomed Mater Res, In press.
    20. Al-Nasiry S, Geusens N, Hanssens M, et al. The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 2007;22:1304-1309.
    21. Hara S, Mukae H, Sakamoto N, et al. Plectasin has antibacterial activity and no affect on cell viability or IL-8 production. Biochem Biophys Res Commun 2008; 374:709-713.
    22.Yan HD, Li XZ, Xie JM, et al. Effects of advanced glycation end products on renal fibrosis and oxidative stress in cultured NRK-49F cells. Chin Med J (Engl)2007;120:787-793.
    23.International Standards Organization. ISO/EN 10993-5. Biological evaluation of medical devices-part 5: tests for in vitro cytotoxicity. Geneva, Switzerland:International Organization for Standardization; 1999.
    24.Wang DA, Williams CG, Yang F, et al. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Eng 2005; 11:201-213.
    25.Vermonden T, Fedorovich NE, van Geemen D, et al. Photopolymerized thermosensitive hydrogels: synthesis, degradation, and cytocompatibility.Biomacromolecules 2008;9:919-926.
    26.Li Q, Wang J, Shahani S, Sun DD, et al. Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials 2006;27:1027-1034.
    27.Kikuchi M, Koyama Y, Takakuda K, et al. In vitro change in mechanical strength of beta-tricalcium phosphate/copolymerized poly-L-lactide composites and their application for guided bone regeneration. J Biomed Mater Res 2002;62:265-272.
    28.Mistry AS, Mikos AG, Jansen JA. Degradation and biocompatibility of a poly(propylene fumarate)-based/alumoxane nanocomposite for bone tissue engineering. J Biomed Mater Res A 2007;83:940-953.
    29.Driskell TD, Heller AL, Koenigs J. Dental treatments. US patent no 3913229,1975.
    30.Chow LC, Brown WE. Reaction of dicalcium phosphate dihydrate with fluoride. J Dent Res 1973;52:1220-1227.
    31.Schliephake H, Gruber R, Dard M, et al. Repair of calvarial defects in rats by prefabricated hydroxyapatite cement implants. J Biomed Mater Res 2004;69:382-390.
    32.Heini PF, Berlemann U. Bone substitutes in vertebroplasty. Eur Spine J 2001;10:S205-S213.
    33.Constantz BR, Barr BM, Ison IC, et al. Histological, chemical, and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. J Biomed Mater Res 1998;43:451-461.
    34.Suggs LJ, Shive MS, Garcia CA, et al. In vitro cytotoxicity and in vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels. J Biomed Mater Res 1999;46: 22-32.
    35.O'Brien J, Wilson I, Orton T, et al. Investigation of the Alamar Blue (resazurin)fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 2000;267: 5421-5426.
    36.Skotak M, Leonov AP, Larsen G, et al. Biocompatible and biodegradable ultrafine fibrillar scaffold materials for tissue engineering by facile grafting of L-lactide onto chitosan. Biomacromolecules 2008;9:1902-1908.
    37.Sun J, Dai Z, Zhao Y, et al. In vitro effect of oligo-hydroxyalkanoates on the growth of mouse fibroblast cell line L929. Biomaterials 2007;28:3896-3903.
    38.Migliaresi C, Fambri L, Kolarik J. Polymerization kinetics, glass transition temperature and creep of acrylic bone cements. Biomaterials 1994; 15:875-881.
    39.Burdick JA, Padera RF, Huang JV, et al. An investigation of the cytotoxicity and histocompatibility of in situ forming lactic acid based orthopedic biomaterials. J Biomed Mater Res 2002;63:484-491.
    40.van Minnen B, Stegenga B, van Leeuwen MB, et al. A long-term in vitro biocompatibility study of a biodegradable polyurethane and its degradation products. J Biomed Mater Res A 2006;76:377-385
    41.Murphey MD, Sartoris DJ, Bramble JM. Radiograph assessment of bone grafts. In:Habal MB, Hari Reddi A, editors. Bone grafts and bone substitutes. Philadelphia:W.B. Saunders, 1992. p.9-36.
    42.Malinin T. Acquisition and banking of bone allografts. In: Habal MB, Hari Reddi A, editors. Bone grafts and bone substitutes. Philadelphia: W.B. Saunders, 1992. p. 206-25.
    43.Goldberg VM. Selection of bone grafts for revision total hip arthroplasty. Clin Orthop Rel Res 2000;381:68-76.
    44.Ishaug-Riley SL, Crane GM, Gurlek A, et al. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. J Biomed Mater Res 1997;36:l-8.
    45.Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, et al. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 1998;19:1405-1412.
    46.Thomson RC, Yaszemski MJ, Powers JM, et al. Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed 1995;7:23-38.
    47.Thomson RC, Yaszemski MJ, Powers JM, et al. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration. Biomaterials 1998; 19:1935-1943.
    48.Shindo ML, Contantino PD, Friedman CD, et al. Facial skeletal augmentation using hydroxyapatite cement. Arch Otolaryngol Head Neck Surg 1993;119:185-190.
    49.Friedman CD, Costantino PD, Takagi S, et al. BoneSource hydroxyapatite cement:a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction.J Biomed Mater Res 1998;43B:428-432.
    50.Dickens SH, Flaim GM, Takagi S. Mechanical properties and biochemical activity of remineralizing resin-based Ca-PO4 cements. Dent Mater 2003;19:558-566.
    51.Qiu JJ, He ZX, Liu CM, et al. Crosslinking property of an oligomeric unsaturated phosphoester used as a potential injectable biomaterial. Biomed Mater 2008;3:441-447.
    52.Sudo H, Kodama H-A, Magai Y, et al. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 1983;96:191-198.
    53.Suzuki A, Guicheux J, Palmer G, et al. Evidence for a role of p38 MAP kinase in expression of alkaline phosphatase during osteoblastic cell differentiation. Bone 2002;30:91-98.
    54.Attawia MA, Uhrich KE, Botchwey E, et al. In vitro bone biocompatibility of poly(anhydride-co-imides) containing pyromellitylimidoalanine. J Orthopaed Res 1996;14:445-454.
    55.McGahon AJ, Martin SJ, Bissonnette RP, et al. The end of the (cell) line: Methods for the study of apoptosis in vitro. Methods Cell Biol 1995;46:153-185.
    56.Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998; 11:391-401.
    57.Berglundh T, Abrahamsson I, Lang NP, et al. De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Impl Res 2003;14:251-262.
    58.Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000;21:667-681.
    59.Peter SJ, Lu L, Kim DJ, et al. Marrow stromal osteoblast function on a poly(propylene fumarate)/b-tricalcium phosphate biodegradable orthopaedic composite. Biomaterials 2000;21:1207-1213.
    60.Li L, Yun H, Gong Y, et al. Investigation of MC3T3-E1 Cell Behavior on the Surface of GRGDS-Coupled Chitosan. Biomacromolecules 2006;7:1112-1123.
    61.Sudo H, Kodama HA, Amagai Y, et al. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 1983;96:191-198.
    62.Badamia AS, Krekea R, Thompsonb MS, et al. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 2006;27:596-606.
    63.Anselme K, Bigerelle M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater 2005; 1:211-222.
    64.Kim MJ, Kim CW, Lim YJ, Heo SJ. Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. J Biomed Mater Res A 2006;79:1023-1032.
    65. Darnell J, Lodish H, Baltimore D. Molecular cell biology. 2nd ed. New York:Freeman and Company; 1990. p 890-891.
    66. Ehara A, Ogata K, Imazato S, et al. Effects of a-TCP and TetCP on MC3T3-E1 proliferation, differentiation and mineralization. Biomaterials 2003;24:831-836.
    67. Yuasa T, Miyamoto Y, Ishikawa K, et al. Effects of apatite cements on proliferation and differentiation of human osteoblasts in vitro. Biomaterials 2004;25:1159-1166.
    68. Tsukuda N, Gabler WL. The influence of doxycycline of the attachment of fibroblasts to gelatin-coated surfaces and its cytotoxicity. J Periodontol 1993;64:1219-1224.
    69. Wang Y, Morlandt AB, Xu X, et al. Tetracycline at subcytotoxic levels inhibits matrix metalloproteinase-2 and -9 but does not remove the smear layer. J Periodontol 2005;76:1129-1139.
    70. Ignjatovic N, Uskokovic D. Synthesis and application of hydroxyapatite/polylactide composite biomaterial. Appl Surf Sci 2004;238:314-319.
    71. Zhao G, Schwartz Z, Wieland M, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A 2005;74:49-58.
    72. Ryan ME, Greenwald RA, Golub LM. Potential of tetracycline to modify cartilage breakdown in osteoarthritis. Curr Opin Rheumatol 1996;8:238-247.
    73. Dalton BA, McFarland CD, Gengenbach TR, et al. Polymer surface chemistry and bone cell migration. J Biomater Sci Polym Ed 1998;9:781-799.
    74. An YH, Woolf SK, Friedman RJ. Pre-clinical in vivo evaluation of orthopaedic bioabsorbable devices. Biomaterials 2000;21:2635-2652.
    75. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21:2529-2543.
    76. Temenoff JS, Lu L, Mikos AG. Bone-tissue engineering using synthetic biodegradable polymer scaffolds. In: Davies JE, editor. Bone engineering. Toronto:em squared incorporated; 2000. p 454-461.
    77.van der Elst M, Klein CPAT, de Blieck-Hogervorst JM, et al. Bone tissue Response to biodegradable polymers used for intra medullary fracture fixation: A long-term in vivo study in sheep femora. Biomaterials 1999;20:121-128.
    78.Lu L, Stamatas GN, Mikos AG. Controlled release of transforming growth factor betal from biodegradable polymer microparticles. J Biomed Mater Res 2000;50:440-451.
    79.Shea LD, Wang D, Franceschi RT, et al. Engineered bone development from a pre-osteoblast cell line on threedimensional scaffold. Tissue Eng 2000;6:605-617.
    80.Miyamoto Y, Ishikawa K,Takechi M, et al. Histological and compositional evaluations of three types of calcium phosphate cements when implanted in subcutaneous tissue immediately after mixing. J Biomed Mater Res 1999;48:36-42.
    81.Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials 2000;21:2347-2359.
    82.Takemasa R, Yamamoto H. Bioactive calcium phosphate paste injection for repair of vertebral fracture due to osteoporosis. Nippon Rinsho 2002;60:696-703.
    83.Yang Z, Yuan H, Tong W, et al. Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals.Biomaterials 1996;17:2131-2137.
    84.Ruhe PQ, Hedberg-Dirk EL, Padron NT, et al. Porous poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composite for reconstruction of bone defects.Tissue Eng 2006; 12:789-800.
    85.Ooms EM, Egglezos EA, Wolke JG, et al. Soft-tissue response to injectable calcium phosphate cements. Biomaterials 2003;24:749-757.
    86.Jansen JA, Dhert WJA, Waerden JPCM, et al. Semiquantitative and qualitative histologic analysis method for the evaluation of implant biocompatibility. J Invest Surg 1994;7:123-134.
    87.Jarcho M. Biomaterial aspects of calcium phosphates. Properties and applications.Dent Clin North Am 1986;30:25-47.
    88.Kent JN, Zide MF, Kay JF, et al. Hydroxyl apatite blocks and particles as bone graft substitutes in orthognathic and reconstructive surgery. J Oral Maxillofac Surg 1986;44:597-605.
    89.Ooms EM, Wolke JG, van de Heuvel MT, et al. Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone.Biomaterials 2003;24:989-1000.
    90.Ooms EM, Wolke JG, van der Waerden JP, et al. Trabecular bone response to injectable calcium phosphate (Ca-P) cement. J Biomed Mater Res 2002;61:9-18.
    91.Esposito E, Cervellati CF, Menegatti E, et al. Biodegradable microparticles for sustained delivery of tetracycline to the periodontal pocket: formulatory and drug release studies. J Microencapsulation 1997; 14:175-187.
    92.Vandekerckhove BN, Quirynen M, van Steenberghe D, et al. The use of tetracyclin-containing controlled-release fibers in the treatment of refractory periodontitis. J Periodontol 1997;68:353-361.
    93.Seymour RA, Heasman PA, Tetracyclines in the management of periodontal disease. J Clin Periodontol 1995;22:22-35.
    94.Jansen JA. Animal models for studying soft tissue biocompatibility of biomaterials. In: An YH, Friedman RJ, editors. Animal models in orthopaedic research.Boca Raton: CRC Press, 1999. p393-405 [Chapter 20].
    95.Ratner BD, Hoffman AS, Schoen FJ, et al. Biomaterials science.In: Spector M,Lalor PA, editors.In vivo assessment of tissue compatibility. California : Academic Press, 1996. p.222-223.
    96.Jansen JA, Ruijter JE, Janssen PTM, et al. Histological evaluation of a biodegradable polyactive/hydroxyapatite membrane. Biomaterials 1995;16:819-827.
    97.Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials 2000;21:2347-2359.
    98.Wykrota LL,Wykrota FHL, Garrido CA. Long-term bone regeneration in large human defects using calcium-phosphate particulate. In: Davies, J.E. (Ed.), Bone Engineering, first ed. Rainbow Graphic and Printing Ltd., Toronto 1999: pp.516-525.
    99.Rodrigues CVM, Serricella P, Linhares ABR, et al. Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering.Biomaterials 2003;24:4987-4997.
    100.Pataro AL, Oliveira MF, Teixeira KIR, et al. Polymer: Bioceramic composites optimization by tetracycline addition. Int J Pharm 2007;336:75-81.
    101.van der Meulen J, Koerten HK.Inflammat ory response and degradation of three types of calcium phosphate ceramic in a nonosseous environment. J Biomed Mater Res 1994;28:1455-1463.
    102.Yuan HP, Yang ZJ, Li Y, et al. Osteoinduction by calcium phosphate biomaterials. J Biomed Mater Res 1998;9:723-726.
    103.Wong WH, Mooney DJ. Synthesis and properties of biodegradable polymers used as synthetic matrices for tissue engineering. In: Atala, A., Mooney, D.,Vacanti, J.V., Langer, R. (Eds.), Synthetic Biodegradable Polymer Scaffods, first ed. Birkhauser, Boston 1997 pp. 51-82.
    104.Fisher JP, Vehof JWM, Dean D, et al. Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J Biomed Mater Res 2002;59:547-556.
    105.Bulpitt P, Aeschlimann D. New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res 1999;47:152-169.
    106.Barralet J, Akao M, Aoki H, et al. Dissolution of dense carbonate apatite subcutaneously implanted in Wistar rats. J Biomed Mater Res. 2000;49:176-182.
    107.Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 1981;157:259-278.
    108.Beruto DT, Mezzasalma SA, Capurro M, et al. Use of a-tricalcium phosphate(TCP) as powders and as an aqueous dispersion to modify processing,microstructure, and mechanical properties of polymethylmethacrylate (PMMA)bone cements and to produce bone-substitute compounds. J Biomed Mater Res 2000;49:498-505.
    109.Finia M, Giavaresi G, Aldini NN, et al. A bone substitute composed of polymethylmethacrylate and a-tricalcium phosphate: results in terms of osteoblast function and bone tissue formation. Biomaterials 2002;23:4523-4531.
    110.Knabe C, Driessens FCM, Plannel JA, et al. Evaluation of calcium phosphates and experimental calcium phosphate bone cements using osteogenic cultures. J Biomed Mater Res 2000;52:498-508.
    111.Lopes MA, Santos JD, Monteriro FJ, et al. Push-out testing and histological evaluation of glass reinforced hydroxyapatite composites implanted in the tibia of rabbits. J Biomed Mater Res 2001;54:463-469.
    112.Hannink G, Wolke JGC, Schreurs BW, et al. In Vivo Behavior of a Novel Injectable Calcium Phosphate Cement Compared With Two Other Commercially Available Calcium Phosphate Cements. J Biomed Mater Res Part B: Appl Biomater 2008;85B:478-488.
    113.Linka DP, van den Doldera J, van den Beucken JJ, et al. Bone response and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF loaded gelatin microparticles. Biomaterials 2008;29:675-682.
    114.Ignatius AA, Augat P, Ohnmacht M, et al. A new bioresorbable polymer for screw augmentation in the osteosynthesis of osteoporotic cancellous bone: a biomechanical evaluation. J Biomed Mater Res (Appl Biomater)2001;58:254-260.
    115.Heikkila JT, Aho AJ, Kangasniemi I, et al. Polymethylmethacrylate composites: disturbed bone formation at the surface of bioactive glass and hydroxyapatite.Biomaterials 1996;17:1755-1760.
    116.Hannink G, Wolke JGC, Schreurs BW, et al. In Vivo Behavior of a Novel Injectable Calcium Phosphate Cement Compared With Two Other Commercially Available Calcium Phosphate Cements. J Biomed Mater Res Part B: Appl Biomater 2008;85B:478-488.
    117.Hollinger JO, Brekke J, Gruskin E, et al. Role of bone substitutes. Clin Orthop 1996;324:55-65.
    118.Isidor F, Karring T, Nyman S, et al. The significance of coronal growth of periodontal ligament tissue for new attachment formation. J Clin Periodontol 1986;13:145-150.
    119.Stahl SS, Froum S. Histological evaluation of human intraosseous healing responses to the placement of tricalcium phosphate ceramic implants, Ⅰ: Three to eight months. J Periodontol 1986;57:211-217.
    120.Ganeles J, Listgarten MA, Evian CI. Ultrastructure of durapatite-periodontal tissue interface in human intrabony defects. J Periodontol 1986;57:133-140.
    121.Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev 2001;101:1869-1879.
    122.Bae Y, Huh K, Kim Y, et al. Biodegradable amphiphilic multiblock copolymers and their implications for biomedical applications. J Control Release 2000;64:3-13.
    123.PanitchA, Yamaoka T, Fournier MJ, et al. Design and biosynthesis of elastin-like artificial extracellular matrix proteins containing periodically spaced fibronectin CS5 domains. Macromolecules 1999;32:1701-1703.
    124.Nuttelman CR, Henry SM, Anseth KS. Synthesis and characterization of photocrosslinkable, degradable, poly(vinyl alcohol)-based tissue engineering scaffolds. Biomaterials 2002;23:3617-3626.
    125.Laurencin CT, El-Amin SF, Ibim SE, et al. A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. J Biomed Mater Res 1996;30:133-138.
    126.Nuttelman CR, Mortisen DJ, Henry SM, et al. Attachment of fibronectin to poly(vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration. J Biomed Mater Res 2001;57:217-223.
    127.Brown GD, Mealey BL, Nummikoski PV, et al. Hydroxyapatite cement implant for regeneration of periodontal osseous defects in humans. J Periodontol 1998;69:146-157.
    128.van Winkelhoff AJ, Winkel EG. Periodontal infections and treatment. J Parodontol Implantol Orale 1996; 15:219-232.
    129.Moore WEC, Moore LVH. The bacteria of periodontal diseases. Periodontology 1994;2000:66-77.
    130.Baehni PC. Supportive care of the periodontal patient. Curr Opin Periodontol 1997; 4:151-157.
    131.Mombelli A, Schmid B, Rutar A, et al. Persistence patterns of Porphyromonas gingivalis, Prevotella intermedia/nigriscens, and Actinobacillus actinomycetem comitans after mechanical therapy of periodontal disease. J Periodontol 2000;71:14-21.
    132.Lindhe J, Nyman S. Long-term maintenance of patients treated for advanced periodontal disease. J Clin Periodontol 1984; 11:504-514.
    133.Goodson JM. Antimicrobial strategies for treatment of periodontal diseases.Periodontology 1994;5:142-168.
    134.Addy M, Renton-Harper P. Local and systemic chemotherapy in the management of periodontal disease: an opinion and review of the concept. J Oral Rehabilitation 1996;23:219-231.
    135.O'Connor BC, Newman HN, Wilson M. Susceptibility and resistance of plaque bacteria to minocycline. J Periodontol 1990;61:228-233.
    136.Larsen T, Fiehn NE. Development of resistance to metronidazole and minocycline in vitro. J Clin Periodontol 1997;24:254-259.
    137.Goodson JM, Holborow D, Dunn RL, et al. Monolithic tetracycline containing fibers for controlled delivery to periodontal pockets. J Periodontol 1983;54:575-579.
    138.Goodson JM. Antimicrobial strategies for treatment of periodontal diseases.Periodontology 1994;5:142-168.
    139.Vienneau DS, Kindberg CG. Development tetracycline in and validation of a sensitive method for gingival crevicular fluid by HPLC using fluorescence detection. J Pharm Biomed Anal 1997; 16:111 -117.
    140.Schwach-Abdellaoui K, Loup PJ, Vivien-Castioni N, et al. Bioerodible injectable poly(ortho ester) for tetracycline controlled delivery to periodontal pockets: preliminary trial in humans. AAPS PharmSci. 2002;4:E20.
    141.Hussar DA, Niebergall PJ, Sugita ET, et al. Aspects of the epimerization of certain tetracycline derivatives. J Pharm Pharmacol 1968;20:539-546.
    142.Drisko CL, Cobb CM, Killoy WJ, et al. Evaluation of periodontal treatments using controlled release tetracycline fibers. Clinical response. J Periodontol 1995;66:692-699.
    143.Higashi K, Matsushita M, Morisaki K, et al. Local drug delivery systems for the treatment of periodontal disease. J Pharmacobio Dyn 1991;14:72-81.
    144.Stoltze K. Elimination of Elyzol 25% Dentalgel matrix from periodontal pockets.J Clin Periodontol 1995;22:185-187.
    145.Nakagawa T, Yamada S, Oosuka Y, et al. Clinical and microbiological study of local minocycline delivery (PERIOCLINE R) following scaling and root planing in recurrent periodontal pockets. Bull Tokyo Dent Coll 1991 ;32:63-70.
    146.Vandekerckhove BNA, Quirynen M, VanSteenberghe D. The use of tetracycline-containing controlled release fibers in the treatment of refractory periodontitis. J Periodontol 1997;68:353-361.
    147.Kulik EM, Lenkeit K, Chenaux S, et al. Antimicrobial susceptibility of periodontopathogenic bacteria. J Antimicrob Chemother 2008;61:1087-1091.
    148.Wikesjo UM, Sigurdsson TJ, Lee MB, et al. Dynamics of wound healing in periodontal regenerative therapy. J Calif Dent Assoc 1995;23:30-35.
    149.Shirakata Y, Oda S, Kinoshita A, et al. Histocompatible healing of periodontal defects after application of an injectable calcium phosphate bone cement. A preliminary study in dogs. J Periodontol 2002;73:1043-1053.
    150.Hayashi C, Kinoshita A, Oda S, et al. Injectable Calcium Phosphate Bone Cement Provides Favorable Space and a Scaffold for Periodontal Regeneration in Dogs. J Periodontol 2006;77:940-946.
    151.Park YJ, Lee YM, Park SN, et al. Enhance guide bone regeneration by controlled tetracycline release from poly(L-lactied) barrier membrans. J Biomed Mater Res 2000;51:391-397.
    1.Garret S. Periodontal regeneration around natural teeth, in The AmericanAcademy of Periodontology. 1996 World Workshop in Periodontics, Annals of Periodontology, Chicago, The American Academy of Periodontology 1996;1:621-626.
    2.Ouhayoun J. Bone grafts and biomaterials used as bone graft substitutes, in European Academy of Periodontology. Proceedings of the 2nd European Workshop on Periodontology, Chicago. Quintessence Books 1997;p313-360.
    3.Kao RT. Periodontal regeneration and reconstructive surgery in Periodontics.Medicine, Surgery, and Implants, Rose LF, Mealey BL, et al. (eds). St Louis.Elsevier Mosby 2004; p572-609.
    4.Melcher AH. On repair potential of periodontal tissues. J Periodontol 1976;47:256-260.
    5.Weigel C, Bragger U, Hummerle CH, et al. Maintenance of new attachment one and four years following guided tissue regeneration. J Clin Periodontol 1995;22:661-669.
    6.Cortellini P, Pino Prato GP, Tonetti MS. Long-term stability of clinical attachment following guided tissue regeneration and conventional treatment. J Clin Periodontol 1996;23:106-111.
    7.Selvig KA, Nilveus RE, Fitzmorris L, et al. Scanning electron microscopic observations of cell populations and bacterial contamination of membranes used for guided periodontal tissue regeneration in humans. J Periodontol 1990;61:515-520.
    8.Nowzari H, Slots J. Micro-organisms in polytetrafluoroethylene barrier membranes for guided tissue regeneration. J Clin Periodontol 1994;21:203-210.
    9.Nowzari H, MacDonald ES, Flynn J, et al. The dynamics of microbial colonization of barrier membranes for guided tissue regeneration. J Periodontol 1996;67:694-702.
    10.Simion M, Trisi P, Maglione M, et al. Bacterial penetration in vitro through GTAM membrane with and without topical chlorhexidine application. A light and scanning election microscopic study. J Clin Periodontol 1995;22:321-331.
    11.Cortellini P, Pino Prato GP, Tonetti MS. Periodontal regeneration of human intrabony defects with bioresorbable membranes. A controlled clinical trial. J Periodontol 1996;67:217-223.
    12.Cristgau M, Schmalz G, Reich E, et al. Clinical and radiographical split-mouth study onresorbable guided tissue regeneration membranes. J Clin Periodontol 1995;22:306-315.
    13.Falk H, Laurell L, Ravald N, et al. Guided tissue regeneration procedures of 203 consecutively treated intrabony defects using a bioabsorbable matrix barrier.Clinical and radiographic findings. J Periodontol 1997;68:571-581.
    14.Cristgau M, Schmalz G, Wenzel A, et al. Periodontal regeneration of intrabony defects with resorbable and nonresorbable membranes: 30- month results. J Clin Periodontol 1997;24:17-27.
    15.Weltman R, Trojo PM, Morrison E, et al. Assessment of guided tissue regeneration procedures in intrabony defects with bioabsorbable and nonresorbable barriers, J Periodontol 1997;68:582-591.
    16.Schallhorn RG, McClain PK. Combined osseous grafting, root conditioning and guided tissue regeneration, Int J Periodontics Restorative Dent 1988;4:9-34.
    17.McClain PK, Schallhorn RG. Long-term assessment of combined osseous composite grafting, root conditioning, and guided tissue regeneration, Int J Periodontics Restorative Dent 1993;13:9-27.
    18.Stahl SS, Froum SJ. Histologic healing responses in human vertical lesions following the osseous allografts and barrier membranes, J Clin Periodontol 1991;18:149-152.
    19.Guillemin MR, Mellonig JT, Brusvold MA. Healing in periodontal defects treated by decalcified freeze-dried bone allografts in combination with ePTFE membranes. I. Clinical and scanning electron microscope analysis, J Clin Periodontol 1993;20:528-536.
    20.Guillemin MR, Mellonig JT, Brusvold MA, et al. Healing in periodontal defects treated by decalcified freeze-dried bone allografts in combination with ePTFE membranes. Assessment by computerized densitometric analysis, J Clin Periodontol 1993;20:520-527.
    21.Peltier LF. The use of plaster of Paris to fill large defects in bone. Am J Surg 1959;97:311-318.
    22.Bier SJ. Plaster of Paris, an adequate bone substitute to bone for filling periodontal defects. Clin Dent 1974;2:l-34.
    23.Bell WH. Resorption characteristics of bone substitutes. Oral Surg Oral Med Oral Pathol 1964; 17:650-657.
    24.Radentz WH, Collings CK. The implantation of plaster of Paris in the alveolar process of the dog. J Periodontol 1965;36:357-362.
    25.Alderman N. Sterile plaster of Paris as an implant in the infrabony environment. J Periodontol 1969;40:11-13.
    26.Shaffer CD, App G. The use of plaster of Paris in treating infrabony periodontal defects in human. J Periodontol 1971;42:685-690.
    27.Sottosanti JS, Calcium sulfate. A biodegradable and a biocompatible barrier for guided tissue regeneration. Compend Contin Educ Dent 1992; 13:226-228.
    28.Anson D. Saving periodontally "hopeless teeth" using calcium sulfate and demineralized freeze-dried bone allograft. Compend Contin Educ Dent 1998;19:284-298.
    29.Anson D. Using calcium sulfate in guided tissue regeneration. Compend Contin Educ Dent 2000;21:365-378.
    30.Froum SJ, Weinberg MA, Rosenberg E, et al. A comparative utilizing open flap debridement with and without enamel matrix derivative in the treatment of periodontal intrabony defects: A 12-month re-entry study. J Periodontol 2001;72:25-34.
    31.Heijl L, Heden G, Svardstrom G, et al. Enamel matrix derivative (EMDOGAIN) in the treatment of intrabony periodontal defects. J Clin Periodontol 1997;24:705-714.
    32.Heijl L. Periodontal regeneration with enamel matrix derivative in one human experimental defect. A case report. J Clin Periodontol 1997;24:693-696.
    33.Lind M. Growth factors: Possible new clinical tools. A review. Acta Orthop Scand 1996;67:407-417.
    34.Lynch SE, Ruiz de Castilla G, et al. The effects of short-term application of a combination of platelet-derived and insulin-like growth factors on periodontal wound healing. J Periodontol 1991;62:458-467.
    35.Howell TH, Fiorellini JP, Paquette DW, et al. A phase Ⅰ/Ⅱtrial to evaluate a combination of recombinant human platelet-derived growth factor-BB and recombinant human insulin-like growth factor-Ⅰin patients with periodontal disease. J Periodontol 1997;68:1186-1193.
    36.Camelo M, Nevins ML, Schenk RK, et al. Periodontal regeneration in human classⅡfucations using purified recombinant human platelet-derived growth factor-BB (rhPDGF-BB) with bone allograft. Int J Periodontics Restorative Dent 2003;23:213-225.
    37.Landesberg R, Roy M, Glickman RS. Quantification of growth factor levels using a simplified method of platelet-rich plasma gel preparation. J Oral Maxillofac Surg2000;58:297-301.
    38.Massague J. TGF-b signal transduction. Ann Rev Biochem 1998;67:753-791.
    39.Sigurdsson TJ, Lee MB, Kubota K, et al. Periodontal repair in dogs: Recombinant human bone morphogenetic protein-2 significantly enhances periodontal regeneration. J Periodontol 1995;66:131-138.
    40.Giannobile WV, Ryan S, Shih MS, et al. Recombinant human osteogenic protein-1 (OP-1) promotes periodontal wound healing in class Ⅲfurcation defects. J Periodontol 1998;69:129-137.
    41. King GN, King N, Cruchley AT, et al. Recombinant human bone morphogenetic protein-2 promotes wound healing in rat periodontal fenestration defects. J Dent Res 1997;76:1460-1470.
    42. Lindhe J, Westfelt E, Nyman S, et al. Longterm effects of surgical/nonsurgical treatment of periodontal disease. J Clin Periodontol 1984; 11:448-459.
    43. Cortellini P, Pini Prato G, Tonetti M. Periodontal regeneration of human infrabony defects V. Effect of oral hygiene on long-term stability. J Clin Periodontol 1994;21:606-610.
    44. Grossi SG, Genco RJ, Machtei EE. Assessment of risk for periodontal disease.Ⅱ.Risk indicators for alveloar bone loss. J Periodontol 1995;66:23-69.
    45. Hall WB. Periodontal reasons to extract a tooth. In Hall WB, editor: Decision Making in Periodontology. St. Louis, Mosby, 1998.
    46. Jansson LE, Ehnevid H, Blomlof L, et al. Endodontic pathogens in periodontal disease augmentation. J Clin Periodontol 1995;22:598-602.
    47. Klein F, Kim TS, Hassfeld S, et al. Radiographic defect depth and width for prognosis and description of periodontal healing of infrabony defects. J Periodontol 2001;72:1639.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700