用户名: 密码: 验证码:
马尾松响应松材线虫侵染的CaM和CaMBP钙信号转导特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松材线虫病是由松材线虫(Bursaphelenchus xylophilus)侵染引起、松属树种上最具破坏性的病害之一,目前在全球范围内已造成了严重的经济、生态损失。松材线虫病是多元复杂的病害系统,其致病机理一直存在争议,分析松材线虫侵染后,松树的病理学响应分子机制,是松材线虫致病机理和寄主松树抗病研究难关的重要途径。信号转导是病原-寄主互作的早期事件,Ca2+作为胞内重要的第二信使,在植物防御反应信号转导中具有重要作用。本研究,围绕松树响应松材线虫侵染的钙信号转导特征进行了系列工作。结果如下:
     建立了马尾松--松材线虫互作研究体系:分离、鉴定了松材线虫虫株,测定了松材线虫致病性,筛选获得强致病力松材线虫虫株NXY61,并测定了松材线虫侵染马尾松幼苗过程中的迁移扩散特征及其时间进程,为研究马尾松响应松材线虫侵染的早期钙信号转导特征奠定了基础。
     采用非损伤微测技术测定了NXY61接种后,在30min-180min时间序列中,马尾松苗根、茎、叶胞外Ca2+流变化特征。研究发现,马尾松幼苗在钙瞬变和钙振荡特征上均表现出响应松材线虫侵染的特异性特征。钙瞬变特征表现为:松材线虫侵染早期,马尾松苗根茎叶均发生瞬时Ca2+内流;呈现明显Ca2+内流的早晚时间依次为茎(7min)=叶(7min)>根(15min);Ca2+内流最大流速分别为根(3700pmolcm-2s-1)>叶(1300pmolcm-2s-1)>茎(250pmolcm-2s-1); Ca2+内流持续时间则分别为茎(大于48min)>叶(43min)>根(20min)。钙振荡特征表现为:松材线虫侵染,Ca2+内流流速呈现显著变化前,马尾松根茎叶钙振荡振幅和频率无显著变化;而Ca2+内流流速降至平稳期后,尽管钙振荡频率变化不显著,但马尾松茎处振幅却极显著减少,叶部显著增大,并且叶部振幅显著大于茎部。因此,本研究证实了松材线虫侵染早期,马尾松苗胞外Ca2+流变化响应松材线虫侵染,根、茎、叶均出现特异响应松材线虫侵染的钙瞬变和钙振荡特征。
     基于生物信息学方法,利用马尾松响应松材线虫侵染差减文库(SSH)数据,分析了马尾松响应松材线虫侵染早期的分子特征,及其可能的信号转导特征。通过对马尾松响应松材线虫侵染差减文库(SSH)的144个有效克隆序列的深入分析,发现:松材线虫侵染早期(24h、72h),大量钙相关蛋白基因受诱导表达,包括EFh家族蛋白,钙网蛋白,以及预测的钙调素结合蛋白(CaMBPs)。其中发现的6类CaMBPs,包括防卫响应相关的热激蛋白HSP70.HSP101,病程相关蛋白PR-14,Bcl-2家族蛋白BAG6;解毒和氧化还原相关的乙二醛酶Ⅰ,以及信号传导过程相关的NPG1.此外,本研究同时发现:松材线虫侵染早期,编码受体抗病蛋白RPS2,病程相关蛋白PR-3、PR-4、PR-5、PR-14以及类黄酮类合成相关的CHS等大量防卫相关蛋白基因诱导表达;编码木质素合成相关的蛋氨酸合酶2、PCBER、CAD、 CoMT、CCoAOMT以及dirigen-like等基因均上调表达;而参与H202还原过程的GPX、Cyt_b561_FRRSl_like-containing protein以及活性碳催化还原过程的AER等基因也表达上调。因此,松材线虫侵染早期,马尾松表现出对松材线虫侵染的特异性互作特征,同时发现的大量钙相关蛋白基因诱导表达,暗示了松材线虫-马尾松互作早期,可能经由CaMBPs的一条重要的钙信号转导途径存在,参与调控松树早期的互作反应。
     马尾松钙调素(CaM)作为Ca2+的主要受体蛋白,在传递Ca2+信号转导过程中发挥了重要作用,它可能经由CaMBPs进行Ca2+信号传递。本研究采用分了克隆技术,克隆了CaM和CaMBPs基因,证实了马尾松中该系列基因的存在,暗示了Ca2+信号经由CaM转导的可能性。基于普通PCR和RACE技术,首次从马尾松上克隆获得CaM基因(pmCaM),以及钙结合蛋白基因pmCBP100、pmCBP153, CaMBP基因(CaMBP)其中,pmCBP100、pmCBP153以及pmCaM隶属EFh家族蛋白,具有直接与Ca2+结合的EFh结构域;而pmCaMBP是一类跨膜蛋白,其钙调素结合结构域(CaMBD)位于该蛋白的543-554氨基酸位置处,三个TPR结构域(428-509,573-673,606-707氨基酸位置处),功能涉及在植物细胞信号转导过程中的蛋白间互作。
     采用qRT-PCR技术,对松材线虫侵染后,马尾松pmCaM, pmCaMBP表达模式进行测定分析。利用NXY61接种半年生马尾松苗,选择在松材线虫侵染初期(接种后30-180min)的30min、45min、60min、90min、180min五个时间点,以及在松材线虫侵染早期(接种后12h-96h)的12h、24h、48h、72h、96h,测定马尾松根、茎、叶的pmCaM, pmCaMBP响应特征。发现马尾松响应松材线虫侵染,CaM, CaMBP表达产生显著变化,不同器官CaM, CaMBP基因上调或者下调表达的时间点,以及随时间的变化趋势、程度均存在差异,揭示了松材线虫侵染早期,马尾松pmCaM, pmCaMBP的特异的时序表达特征和表达器官的特异性。结合松材线虫侵染后,马尾松钙流特征表现的特异性,认为pmCaM\pmCaMBP参与了马尾松响应松材线虫侵染的钙信号转导。因此,马尾松在响应松材线虫侵染早期,应该存在"Ca2+-CaM-CaMBP"信号转导途径,参与了松树响应松材线虫侵染的早期钙信号传递,及对松树早期抗病防卫反应的调控。
Pine wilt disease (PWD) is caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, which is believed to be the most destructive diseases to pine tree species, resulting in economic and ecological loss in the global scope. PWD is the multiple complex disease systems, its pathogenic mechanism has been controversial. At present, analysis of pine's pathological response to related molecular mechanisms after PWN invasion has become an important way to conquer the pathogenesis of PWN and disease resistance of pine trees. Signal transduction is the initial event of the resistance reaction in plants, Ca2+as an important intracellular second messenger, plays an important role in signal transduction of plant defense response. In the study, we did a set of work on the calcium signal transduction characteristics of pine response to PWD infection. The results is as followed:
     The experiment system study on the interactions of Pinus massoniana and B. xylophilus was established: high virulence PWN strain NXY61was obtained by separation, identification and screening in the study. The migration rule of B. xylophilus in P. massoniana followed time development was determined. The result would provide the foundation for studing calcium signal transduction characteristics in pine in the early of PWD infection.
     Extracellular Ca2+flux profiles in different organs of Masson pine30-180min after B. xylophilus NXY61inoculation was observed by non-invasive micro-test technique (NMT). This study confirms that specific calcium transient and calcium oscillation characteristics appear in masson pine root, stem and leaf in the early of PWN infection; and the calcium transient and calcium oscillation characteristics have significant differences among different organs. Calcium transient characteristics is as followed:transient Ca2+inflow in masson pine root, stem and leave happens in the early of PWN infection and significant changes of Ca2+inflow velocity started to appear in15min,7min,7min after inoculation, respectively; the respective maximum velocity of Ca2+inflow is root (3700pmolcm-2s-1)> leaf (1300pmolcm-2s-1)> stem (250pmolcm-2s-1), and the respective duration of Ca2+inflow is stem (more than48min)> leave (43min)> root (20min). And the calcium oscillation characteristics is as followed: before velocity of Ca2+inflow shows significant changes after PWN infection, the amplitude and frequency of calcium oscillation in masson pine root, stem and leaf does not change significantly; while velocity of Ca2+inflow reduces to the stationary stage, the frequency of calcium oscillation does not change significantly, but the amplitude is significantly reduced in stem, significantly increased in leaf, and amplitude in leaf is significantly greater than that in stem. In a word, this study reveals that the Ca2+change in masson pine is response to PWN infection, and specific calcium signals produce in masson pine root, stem and leaf due to the PWN infection.
     In the study, based on the bioinformatics methods and the constructed four subtractive suppression hybridization cDNA libraries (SSH) by taking time-course samples from PWN-inoculated Masson pine trees, we studied the molecular characteristics and signal transduction characteristics of pine early after PWD infection. One-hundred forty-four differential expression sequence tags (ESTs) were in-depth analysis. It is found that:in the early stage of pine wood nematode infection (24h,72h), lots of calcium related protein genes expression are induced, including EFh family proteins, calreticulin, and prediction calmodulin-binding protein (CaMBPs). Combined with bioinformatics analysis as well as the previous reported studies,6types of CaMBPs,which exercise different functions in the early stage of PWN infection, including heat shock protein HSP70, HSP101, pathogenesis related protein PR-14and Bcl-2family protein BAG6participate in defense response process; aldehyde enzyme I is involved in the detoxification and redox process; NPG1is involved in the signal transduction process. In addition, based on SSH, It is found that: in the early stage of pine wood nematode infection (24h,72h), a lot of defense related protein genes expression are induced, including encoding receptor resistant protein RPS, pathogenesis related protein PR-3, PR-4, PR-5, PR-14and flavonoid synthesis related CHS gene; at the same time, lignin biosynthesis related protein genes including methionine synthase expression2, PCBER, CAD, CoMT, CCoAOMT and dirigen-like protein genes are all up-regulated expression; GPX and Cyt_b561FRRS1like-containing protein genes participating in the reduction process of H2O2and AER participating in catalytic reduction process of activated carbon are also upregulated expression. The results of this study reveals that early during pine wood nematode infection, masson pine got especial interactions characteristics, and massive calcium related protein genes, including6kinds of CaMBP genes, are induced expression early after PWN infection, suggesting that a important calcium signal transduction pathway mediated by CaMBPs may exist, and involves in regulation of masson pine defense response.
     Calmodulin (CaM) is the key node protein locating upstream CaMBPs, and CaM, as the main receptor protein Ca2+, plays an important role in the transmission of Ca2+signals, it may transmit Ca2+signaling via CaMBPs. Based on the ordinary PCR and RACE technology, combined with the predicted protein structure and phylogenetic tree analysis, CaM and CaMBPs are approved to be in pine and it may transmit Ca2+signaling via CaM. in our study, CaM gene (pmCaM) was cloned from masson pine for the first time; and calcium binding protein genes pmCBP100, pmCBP'153and CaMBP gene (pmCaMBP), which are response to PWN infection, were also cloned from masson pine in this study. Among them, pmCBP100, pmCBP153and pmCaM belonged to EFh family protein, had EFh domains, directly combining with Ca2+While pmCaMBP is a kind of transmembrane protein, has CaMBD and TPR domains. Its CaMBD located543-554amino acid position in the protein; three TPRs located428-509,573-673,606-707amino acid positions in the protein, and the function of TPRs is involved in protein-protein interaction for cell signal transduction in plant.
     Based on Real time fluorescence quantitative PCR technology, expression pattern of pmCaM and pmCaMBP in half a year old masson pine seedlings30min,45min,60min,90min,180min and12h,24h,48h,72h,96h after inoculation with strain NXY61was studied. The results showed that after PWN inoculation, the expression of pmCaM, pmCaMBP is significantly changed; and the time points for significant changes and the change trend and degree at the same point of CaM, CaMBP expression are different among organs. In a word, this study reveales that in the early of PWN infection, the pmCaM, pmCaMBP expression of masson pine are in response to PWN infection, and have specific temporal and spatial expression characteristics. Combining with the confirmed calcium signal generated in PWN infection aove, it is confirmed that pmCaM and pmCaMBP participated in the regulation of calcium signaling transmission. In conclusion, the results of this study reveales that the "Ca2+-CaM-CaMBP" signal transduction pathway may exist, participating in the regulation of calcium signaling transmission and involve in the regulation of the early defense responses in pine early after PWN infection.
引文
1. 程瑚瑞,林茂松,黎伟强等.南京黑松上发生的萎蔫线虫病[J].森林病虫通讯,1983,4:1-5.
    2.陈浩明,颜长辉,姜晓芳等.热激诱导烟草悬浮细胞的凋亡[J].科学通报,1999,44(2):196-200.
    3.杜俊变,段江燕.逆境胁迫下植物细胞中Ca2+作用的研究进展[J].农业与技术.2010,30(2):40-44.
    4.东方.高世勇.季宇彬.Ca2+介导的细胞凋亡通路研究进展[J].齐齐哈尔医学院学报.2008,29(13):1602-1604.
    5. 郭碧花.活性氧诱导细胞凋亡作用机理的研究进展[J].川北医学院学报,2002,17(4):166-169.
    6. 郭道森,赵博光,高蓉.利用愈伤组织验证细菌分离物与B619与松材线虫病的关系[J].南京林业大学学报(自然科学版).2001,25(5):71-74.
    7. 关春蕾,侯春燕,王冬梅.影响Ca2+代谢和钙通道的药物对小麦受叶锈菌侵染后诱发的HR的作用[J].河北农业大学学报.2006,29(6):4-8.
    8. 胡文全,谢万钦,张蕊等.外源茉莉酸和真菌激发子诱导白菜CaMBP10的表达[J].植物病理学报,2009,39(3):328-332.
    9. 胡笳,郭燕婷,李艳梅.蛋白质翻译后修饰研究进展[J].科学通报,2005,50(11):1061-1072.
    10.黄敏.Hsp70与CaM的时空特异性结合对细胞周期及调亡的调控[D].南京师范大学博士学位论文.2009.
    11.黄锦文,骆娟,陈冬梅等.低温胁迫下高羊茅抑制消减文库的构建与分析[J].中国生态农业学报.2009,17(6):1162-1167.
    12.金钢.黑松与松材线虫互作过程中细胞程序性死亡的研究[D].南京林业大学博士学位论文,2007.
    13.贾燕涛.植物抗病信号转导途径[J].植物学通报.2003,20(5):602-608.
    14.刘世骐.国外松材线虫病现状综述[J].安徽林业科技,1998,(1):4-8.
    15.刘曼,毛国红,孙大业.植物的钙调素亚型[J].植物生理学通讯,2005,41(1):1-6.
    16.厉艳.松材线虫病早期寄主薄壁细胞死亡方式的研究[D].南京林业大学硕士学位论文.2004.
    17.马健.杨树(Populus spp)与茶薦子葡萄座腔菌(Botryosphaeria dothidea)互作中SA和H2O2的信号转导特征[D].中国林业科学研究院博士学位论文.2012.
    18.马琛,乙引,张习敏等.钙离子在植物生理调节中的作用[J].贵州农业科学.2010,38(2):36-41.
    19.毛国红,宋林霞,孙大业.植物钙调素结合蛋白研究进展[J].植物生理与分子生物学学报,2004,30(5):481-488.
    20.宁眺,方宇凌,汤坚等.松材线虫及其传媒松墨天牛的监测和防治现状[J].昆虫知识,2005,42(3):264-269.
    21.祁倩,饶恩于,王喆等.CaMBP-10的cDNA克隆和表达及钙调素结合活性分析[J].中国生物化学与分子生物学报,2004,20(4):451-456.
    22.尚克进,凌启阆,李翠风等.一种新的植物钙调素结合蛋白[J].生物化学与生物物理学报,1991,23:416-422.
    23.尚忠林,毛国红,孙大业.植物细胞内钙信号的特异性[J].植物生理学通讯,2003,39(2):93-100.
    24.宋春风,吕佩源,孙大业.钙调素结合蛋白定位研究进展[J].解剖科学进展,2000,6(1):11-13.
    25.孙旭彤,周人纲,汤文强等.玉米细胞质HSC70:一种钙调素结合蛋白[J].植物学报,1998,40(3):288-290.
    26.孙永春.南京中山陵发现松材线虫[J].江苏林业科技,1982,4:47.
    27.孙玉剑,崔永三.松材线虫病可控可防[J].农药市场信息.2008,3:40.
    28.谈家金,王新荣,冯志新.松材线虫伴生细菌与松树萎蔫病关系的初步研究[J].植物检疫.2001,15(6):326-328.
    29.万佳,况浩池,谢必武等.一个水稻钙调素结合蛋白基因OsCaMBP的克隆及表达分析[J].中国水稻科学,2008,22(3):243-248.
    30.王艳辉,贾慧,司贺龙等.不同基因型玉米受HT-毒素胁迫后细胞内CaM的动态变化[J].河北农业大学学报,2007,30(5):4-7.
    31.王莉,李健,张健等.细胞凋亡机制与方法学研究进展[J].解剖科学进展,2002,8(2):170-174.
    32.王文静,高志英.信号分子Ca2+在植物逆境应答中的作用[J].商丘职业技术学院学报.2009,8(2):108-110.
    33.王媛.一氧化氮诱导烟草细胞程序性死亡的信号调控机理研究[D].兰州大学博士学位论文.2005.
    34.万方浩,郑小波,郭建英.重要农林外来入侵物种的生物学与控制[M].北京:科学出版社,2005.
    35.谢立群,赵博光.松材线虫病的病理学研究进展[J].江西农业大学学报.2003,25(2):204-208.
    36.于明革,杨洪强,赵福庚等.植物细胞编程性死亡的调控[J].植物生理学通讯.2002,38(5):493-499.
    37.于维华,陈鹏,王莉等.植物细胞程序性死亡(PCD)的研究进展[J].广西植物,2004,24(2):146-151.
    38.杨宝君,贺长洋,王成法.国外松材线虫病发生概况[J].森林病虫通讯,1999,(5):40-42.
    39.杨宝君.松材线虫病致病机理的研究进展[J].中国森林病虫.2002,21(1):27-31,14.
    40.杨新颖,李静,耿美玉.蛋白质O-GIcNAc糖基化及其细胞生物学功能[J].细胞生物学杂志,2007.29:682-686.
    41.杨宝君,潘宏阳,汤坚等.松材线虫病[M].北京:中国林业出版社,2003.
    42.赵良平.中国林业检疫性有害生物及检疫技术操作方法[M].北京:中国林业出版社,2005.
    43.赵博光,高蓉,巨云为等.抗生素对松材线虫病的影响[J].南京林业大学学报.2000,24(4):75-77.
    44.赵博光,郭道森,高蓉.松材线虫携带细菌部位的电镜观察[J].南京林业大学学报.2000a,24(4):69-71.
    45.赵博光,郭道森,高蓉等.细菌分离物B619与松材线虫病关系的初步研究[J].南京林业大学学报.2000b,24(4):72-74.
    46.张锴.受松材线虫侵染的马尾松抑制消减文库构建与表达谱分析[D].中国林业科学研究院博士学位论文.2010.
    47.张锴.松材线虫纤维素酶特异性研究[D].中国林业科学研究院硕士学位论文.2007.
    48.张星耀,骆有庆.中国森林重大生物灾害[M].北京:中国林业出版社,2003.
    49.张星耀,吕全,冯益明等.中国松材线虫病危险性评估及对策[M].北京:科学出版社.2011.
    50.张润志,张大勇,叶万辉等.农业外来生物入侵种研究现状与发展趋势[J].植物保护,2004, 30(3):5-9.
    51.朱克恭,朱正昌,严敖金.松材线虫病的流行与研究进展[A].//杨宝君.中国松材线虫病的流行与治理[C].北京:中国林业出版社,1995,297-314.
    52.赵玉龙,谢万钦,胡文全等.豌豆质膜内源CDPK对植物转脂蛋白CaMBP-1.0的磷酸化及CaMBP-10对激酶自磷酸化的影响[J].中国科学(C辑:生命科学),2009,39(9):862-872.
    53.周卫,汪洪.植物钙吸收、转运及代谢的生理和分子机制[J].植物学通报,2007,24(6):762-778.
    54.张蓓,刘刚,上冬梅.植物抗病防卫反应中的特异性钙信号[J].细胞生物学杂志.2008,30:611-616.
    55.张晓燕,武爱兵,芦春莲等.Ca2+在植物诱导抗病性中的作用[J].河北林果研究.2002,17(2):169-172.
    56. Ali GS, Reddy VS, Lindgren PB, et al. Differential expression of genes encoding calmodulin-binding proteins in response to bacterial pathogens and inducers of defense responses. Plant Mol Biol.2003,51(6):803-815.
    57. Anonymous EC. Pine wood nematode survey protocol 2000. European Commission, Directorate-General Health and Consumer Proection, Directorate E-Public, animal and plant health. Unite El. Legislation relating to crop products and animal nutrition. SANCO E/l D(00):2000:7 http://Mwww.skogoglandskap.no/filearchieve/2007_bioforsk_pwn_rapport_6_.PDF[2011-7-19].
    58. van Der Luit AH, Olivari C, Haley A, et al. Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco [J]. Plant Physiol.1999,121(3):705-714.
    59. Arondel V, Kader JC. Lipid transfer in plants [J]. Experientia.1990,46(6):579-585.
    60. Gunawardena AH, Pearce DM, Jackson MB, et al. Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.) [J]. Pianta.2001,212(2):205-214.
    61. Barry WH, Bridge JH. Intracellular calcium homeostasis in cardiac myocytes [J]. Circulation, 87(6):1806-1815.
    62. Baujard P, Trois nouvelles especes de Bursaphelenchus (Nematoda:Tylenchida) et remarques sur le genre [J]. Rev Nematol,1980,3:167-177.
    63. Bergdahl DR. Impact of pinewood nematode in north america: present and future. J Nematol., 20(2):260-265.
    64. Blume B, Nurnberger T, Nass N, et al. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley [J]. Plant Cell,12(8):1425-1440.
    65. Bouche N, Scharlat A, Snedden W, et al. A novel family of calmodulin-binding transcription activators in multicellular organisms [J]. J Biol Chem.2002,277(24):21851-21861.
    66. Bush DS:Calcium regulation in plant cells and its role in signaling [J]. Annu Rev Plant Physiol Plant Mol Biol,1995,46:95-122.
    67. Cao H, Li X, Dong X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance [J]. Proc Natl Acad Sci USA.1998, 95(11):6531-6536.
    68. Deswal R, Sopory SK. Glyoxalase 1 from Brassica juncea is a calmodulin stimulated protein [J]. Biochim Biophys Acta.1999,1450(3):460-467.
    69. Dropkin VH, Foudin AS. Report of the occurrence of Bursaphelenchus lignicolus-induced pine wilt disease in Missouri [J]. Plant Dis,1979,63:904-905.
    70. Dropkin VH, Foudin A, Kondo E, et al. Pinewood nematode:a threat to U.S. forests? [J]. Plant Dis, 1981,65:1022-1027.
    71. Fath A, Bethke P, Lonsdale J, et al. Programmed cell death in cereal aleurone [J]. Plant Mol Biol. 2000,44(3):255-266.
    72. Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones [J]. Annu Rev Cell Biol.1993,9:601-634.
    73. Ali GS, Reddy VS, Lindgren PB, et al. Differential expression of genes encoding calmodulin-binding proteins in response to bacterial pathogens and inducers of defense responses [J]. Plant Mol Biol.2003,51(6):803-815.
    74. Harding SA, Oh SH, Roberts DM. Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species [J]. EMBO J.1997,16(6):1137-1144.
    75. Heath MC. Hypersensitive response-related death [J]. Plant Mol Biol.2000,44(3):321-334.
    76. Heo WD, Lee SH, Kim MC, et al. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses [J]. Proc Natl Acad Sci USA. 1999,96(2):766-771.
    77. Hirao T, Fukatsu E, Watanabe A. Characterization of resistance to pine wood nematode infection in Pinus thunbergii using suppression subtractive hybridization [J]. BMC Plant Biol.2012,12:13.
    78. Fukuda H. Programmed cell death of tracheary elements as a paradigm in plants [J]. Plant Mol Biol. 2000,44(3):245-253.
    79. Huang L, Ye JR, Wu XQ, et al. Detection of the pine wood nematode using a real-time PCR assay to target the DNA topoisomerase I gene [J]. Eur J Plant Pathol,2010,127:89-98.
    80. Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response [J]. Plant Mol Biol.2003,51(1):21-37.
    81. Jones A. Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? [J]. Trends Plant Sci.2000,5(5):225-230.
    82. Jones JT, Moens M, Mota M, et al. Bursaphelenchus xylophilus:opportunities in comparative genomics and molecular host-parasite interactions [J]. Mol Plant Pathol.2008,9(3):357-368.
    83. Kader JC. Lipid-transfer proteins in plants [J]. Annu Rev Plant Physiol Plant Mol Biol,1996,47: 627-654.
    84. Kang CH, Jung WY, Kang YH, et al. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants [J]. Cell Death Differ.2006,13(1):84-95.
    85. Kawazu K, kaneko N. Asepsis of the pine wood nematode isolate OKD-3 causes it to lose its pathogenicity [J]. Jpn. J Nematol,1997,27:76-80.
    86. Kawazu K, Zhang H, Kanzaki H. Accumulation of benzoic acid in suspension cultured cells of Pinus thunbergii Parl. in response to phenylacetic acid administration [J]. Biosci Biotechnol Biochem.1996,60(9):1410-1412.
    87. Kim MC, Lee SH, Kim JK, et al. Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue [J]. J Biol Chem.2002,277(22):19304-19314.
    88. Kim MC, Panstruga R, Elliott C, et al. Calmodulin interacts with MLO protein to regulate defence against mildew in barley [J]. Nature.2002,416(6879):447-451.
    89. Knight H. Calcium signaling during abiotic stress in plants [J]. Int Rev Cytol.2000,195:269-324.
    90. Lee K, Song EH, Kim HS, et al. Regulation of MAPK phosphatase 1 (AtMKPl) by calmodulin in Arabidopsis [J]. J Biol Chem.2008,283(35):23581-23588.
    91. Lara MV, Drincovich MF, Muller GL, et al. NADP-malic enzyme and Hsp70:co-purification of both proteins and modification of NADP-malic enzyme properties by association with Hsp70 [J]. Plant Cell Physiol.2005,46(6):997-1006.
    92. Lee SH, Johnson JD, Walsh MP, et al. Differential regulation of Ca2+/calmodulin-dependent enzymes by plant calmodulin isoforms and free Ca2+concentration [J]. Biochem J.2000,350(1): 299-306.
    93. Lee GJ, Vierling E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein [J]. Plant Physiol.2000,122(1):189-198.
    94. Le6n J, Rojo E, Titarenko E, et al. Jasmonic acid-dependent and-independent wound signal transduction pathways are differentially regulated by Ca2+/calmodulin in Arabidopsis thaliana [J]. Mol Gen Genet.1998,258(4):412-419.
    95. Leon J, Rojo E, Sanchez-Serrano JJ. Wound signaling in plants[J]. J Exp Bot,2001,52:1-9.
    96. Liao B, Gawienowski MC, Zielinski RE. Differential stimulation of NAD kinase and binding of peptide substrates by wild-type and mutant plant calmodulin isoforms [J]. Arch Biochem Biophys, 1996,327(1):53-60.
    97. Xu L, Liu ZY, Zhang K, et al. Characterization of the Pinus massoniana Transcriptional Response to Bursaphelenchus xylophilus Infection Using Suppression Subtractive Hybridization [J]. Int J Mol Sci.2013,14(6):11356-11375.
    98. Liebhold AM, MacDonald WL, Bergdahl D, et al. Invasion by exotic forest pests:a threat to forest ecosystems [J]. For Sci Monogr,1995,30:1-49.
    99. Ling V, Snedden WA, Shelp BJ, et al. Analysis of a soluble calmodulin binding protein from fava bean roots:identification of glutamate decarboxylase as a calmodulin-activated enzyme [J]. Plant Cell.1994,6(8):1135-1143.
    100. Liu H, Xue L, Li C, et al. Calmodulin-binding protein BP-10, a probable new member of plant nonspecific lipid transfer protein superfamily [J]. Biochem Biophys Res Commun.2001,285(3): 633-638.
    1O1.Luan S, Kudla J, Rodriguez-Concepcion M, et al. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants [J]. Plant Cell.2002,14: S389-S400.
    102. Mamiya Y, Kiyohara T. Description of Bursaphelenchus lignicolus n. sp. (Nematoda: Aphelenchoididae) from pine wood and histopathology of nematode-infested trees [J]. Nematologica,1972,18:120-124.
    103. Mamiya Y., Enda N. Bursaphelenchus mucronatus n. sp. (Nematoda:Aphelenchoididae) from pine wood and its biology and pathogenicity to pine trees[J]. Nematologica,1979,25:353-361.
    104. Mamiya Y. Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus [J]. Ann Rev Phytopathol.1983,21:201-220.
    105. Mamiya Y. History of pine wilt disease in Japan [J]. J Nematol.1988,20(2):219-226.
    106. Mamiya Y. Pine wilt disease in Japan [R]//Mota M, Vieria P. The pine wood nematode, Bursaphelenchus xylophilus. Proceedings of an international Workshop, University of Evora, Portugal, August 20-22,2001. Nematology Mongraphs and Perspectives. Vol. I. Leiden, The Netherlands, Brill Academic Publishers.2004.9-20.
    107. Golovkin M, Reddy AS. A calmodulin-binding protein from Arabidopsis has an essential role in pollen germination [J]. Proc Natl Acad Sci USA.2003,100(18):10558-10563.
    108. McAinsh MR, Webb A, Taylor JE, et al. Stimulus-Induced Oscillations in Guard Cell Cytosolic Free Calcium [J]. Plant Cell.1995,7(8):1207-1219.
    109. Miermyk JA, Duck NB, Shatters RG Jr, et al. The 70-Kilodalton Heat Shock Cognate Can Act as a Molecular Chaperone during the Membrane Translocation of a Plant Secretory Protein Precursor [J]. Plant Cell.1992,4(7):821-829.
    110. Yamamoto M, Shitsukawa N, Yamada M, et al. Identification of a novel homolog for a calmodulin-binding protein that is upregulated in alloplasmic wheat showing pistillody [J]. Planta. 2013,237(4):1001-1013.
    111. Molina A, Garcia-Olmedo F. Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins [J]. Plant J.1993,4(6):983-991.
    112. Mota MM, Braasch H, Bravo MA, et al. First report of Bursaphelenchus xylophilus in Portugal and in Europe [J]. Nematology,1999,1:7-8.
    113. Mori T. Inoue T. Pine-wood nematode-induced ethylene production in pine stems and cellulase as an inducer [J]. J Jpn For Soc,1986,68:43-50 (in Japanese with an English summary).
    114. Nickle WR. A taxonomic review of the genera of the aphelenchoidea (fuchs,1937) thorne,1949 (nematoda:tylenchida) [J]. J Nematol.1970,2(4):375-392.
    115. Orozco-Cardenas M, Ryan CA. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway [J]. Proc Natl Acad Sci USA.1999, 96(11):6553-6557.
    116. Orzaez D, Granell A. DNA fragmentation is regulated by ethylene during carpel senescence in Pisum sativum [J]. Plant J,1997,11:137-144.
    117. Pennell Rl, Lamb C. Programmed cell death in Plants[J]. Plant Cell,1997,9:1157-1168.
    118. Reddy VS, Ali GS, Reddy AS. Genes encoding calmodulin-binding proteins in the Arabidopsis genome [J]. J Biol Chem.2002,277(12):9840-9852.
    119. Reddy AS. Calcium:silver bullet in signaling [J]. Plant Sci.2001,160(3):381-404.
    120. Reddy ASN, Reddy V. Calcium as a messenger in stress signal transduction. In:M. Pessarakali (Ed.) Handbook of Plant and Crop Physiology [R]. Marcel Dekker, New York,2001.697-733.
    121. Robbins K. Distribution of the pine wood nematode in the United States [R]//Appleby J E and Malek RB. Proceeding of the National Pine Wilt Disease Workshop, Rosemout,IL, April 1982. Illinois. Natural History Survey, Champaign,1982, IL:3-6.
    122. Roy-Barman S, Sautter C, Chattoo BB. Expression of the lipid transfer protein Ace-AMPI in transgenic wheat enhances antifungal activity and defense responses [J]. Transgenic Res.2006, 15(4):435-446.
    123. Rutherford TA, Webster JM. Distribution of pine wilt disease with respect to temperature in North-America, Japan, and Europe [J]. Can J For Res,1987,17:1050-1059.
    124. Sanders D, Brownlee C, Harper JF. Communicating with calcium [J]. Plant Cell,1999,11: 691-706.
    125. Shacklock P, Read ND, Trewavas AJ:Cytosolic free calcium mediates red light-induced photomorphogenesis[J]. Nature,1992,358:753-755.
    126. Snedden WA, Fromm H. Calmpdulin as a versatile calcium signal transducer in plants [J]. New Phytol,2001,151:35-66.
    127. Snedden WA, Arazi T, Fromm H, et al. Calcium/Calmodulin Activation of Soybean Glutamate Decarboxylase [J]. Plant Physiol.1995,108(2):543-549.
    128. Snedden, WA. Fromm, H. Calmodulin as a versatile calcium signal transducer in plants [J]. New Phytol,2001,151:35-66.
    129. Snedden WA, Fromm H. Calmodulin, calmodulin-related proteins and plant responses to the environment [J]. Trends Plant Sci,1998,3:299-304.
    130. Steiner, G, Buhrer, EM. Aphelenchoides xylophilus, n, sp. a nematode associated with blue-stain and other fungi in timber [J]. J Agric Res,1934,48(10):949-951.
    131. Sun XT, Li B, Zhou GM, et al.. Binding of the maize cytosolic Hsp70 to calmodulin, and identification of calmodulin-binding site in Hsp70 [J]. Plant Cell Physiol.2000,41(6):804-810.
    132. Tabashnik B. Pest adaptation [J]. Nature,1997, (389):778.
    133. Tavernier E, Wendehenne D, Blein JP, et al. Involvement of Free Calcium in Action of Cryptogein, a Proteinaceous Elicitor of Hypersensitive Reaction in Tobacco Cells [J]. Plant Physiol.1995, 109(3):1025-1031.
    134. Takezawa D, Liu ZH, An G, et al. Calmodulin gene family in potato:developmental and touch-induced expression of the mRNA encoding a novel isoform [J]. Plant Mol Biol.1995,27(4): 693-703.
    135. Taylor CB. Defense responses in plants and animals-more of the same [J]. Plant Cell.1998,10(6): 873-876.
    136. Yang T, Poovaiah BW. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death [J]. J Biol Chem.2000,275(49):38467-38473.
    137. Tokushige Y, Kiyohara T. Bursaphelenchus sp. in the wood of dead pine trees [J]. J Jpn Forest Soc. 1969,51:193-195.
    138. Trewavas A. Le calcium, C'est la vie:calcium makes waves [J] Plant Physiol.1999,120(1):1-6.
    139. Trump BF, Berezesky IK. Calcium-mediated cell injury and cell death [J]. FASEB J.1995,9(2): 219-228.
    140. Hua W, Liang S, Lu YT. A tobacco (Nicotiana tabaccum) calmodulin-binding protein kinase, NtCBK2, is regulated differentially by calmodulin isoforms [J]. Biochem J.2003, 376(1):291-302.
    141. Wang H, Li J, Bostock RM, et al. Apoptosis:A functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell,1996,8: 375-391.
    142. Wang Z, Xie W, Chi F, et al. Identification of non-specific lipid transfer protein-1 as a calmodulin-binding protein in Arabidopsis [J]. FEBS Lett.2005,579(7):1683-1687.
    143. Thornalley PJ. The glyoxalase system:new developments towards functional characterization of a metabolic pathway fundamental to biological life [J]. Biochem J.1990,269(1):1-11.
    144. Wingfield, MJ., Blanchette RA, Nicholls TH. Is the pinewood nematode an important pathogen in the United States? [J]. J. Forestry,1984,82:232-235.
    145. Wingfield MJ, Blanchette RA, Kondo E. Comparison of the pine wood nematode Bursaphelenchus xylophilus from pine and balsam fir [J]. Eur. J. For. Pathol.1983,13:360-372.
    146. Wu HM, Cheun AY. Programmed cell death in plant reproduction [J]. Plant Mol Biol.2000,44(3): 267-281.
    147. Yamakawa H, Mitsuhara I, Ito N, et al. Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant [J]. Eur J Biochem.2001,268(14):3916-3929.
    148. Yang T, Poovaiah BW. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein [J]. Biochem Biophys Res Commun.2000,275(2):601-607.
    149. Yang T, Poovaiah BW. Hydrogen peroxide homeostasis:activation of plant catalase by calcium/calmodulin [J]. Proc Natl Acad Sci USA.2002,99(6):4097-4102.
    150. Yang BJ, Pan HY, Tang J, et al. Pine wood nematode disease [M]. Beijing:Chinese Forestry Press, 2003:6-143.
    151. Yano S. Investigation of pine death in Nagasaki prefecture (In Japanese) [J]. Sanrin-Kouhou,1913, 4:1-14.
    152. Zhang C, Guy CL. Co-immunoprecipitation of Hsp101 with cytosolic Hsc70 [J]. Plant Physiol Biochem.2005,43(1):13-18.
    153. Zhu WH, Loh TT. Differential effects of phorbol ester on apoptosis in HL-60 promyelocytic leukemia cells [J]. Biochem Pharmacol.1996,51(9):1229-1236.
    154. Zielinski RE. Calmodulin and calmodulin-binding proteins in plants [J]. Annu Rev Plant Physiol Plant Mol Biol.1998,49:697-725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700