用户名: 密码: 验证码:
牵张力对椎间盘细胞基质蛋白的影响及相关基因芯片研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]腰椎间盘退变是引起临床上各种下腰痛、腰椎间盘突出及腰椎管狭窄的常见病理生理过程。研究表明,搬运重物的体力劳动者、长时间坐位工作者在病理学上椎间盘退行性改变显著;从事机床、卡车司机及搬运重物的职业是下腰痛及椎间盘突出的危险因素,患椎间盘突出症的几率是一般成人的3倍。由此可见力学因素在腰椎间盘退行性变的发展中起非常重要的作用。在生物化学水平上,椎间盘退变首先表现为髓核基质蛋白改变,糖胺聚糖减少、Ⅰ型胶原蛋白(Collagen-Ⅰ)和Ⅱ型胶原蛋白(Collagen-Ⅱ)比例变化,伴基质金属蛋白酶(MMPs)合成及活性增加,纤维环则主要表现为基质蛋白中胶原组分和构成的变化。因此,研究力学因素对基质蛋白的影响对于深入理解椎间盘退变的过程有重要意义,可为临床治疗提供理论依据。
     [目的](1)深入研究牵张力对人椎间盘细胞基质蛋白及其代谢相关基因表达的影响,以及力学作用后相关基因的时间动力学变化,探讨牵张力在腰椎间盘退变过程中的作用;(2)建立基因芯片,研究牵张力作用于椎间盘细胞后其余基因的变化,寻找其中变化显著者,为进一步深入研究奠定基础、指明方向。[材料与方法]取人腰椎间盘组织体外培养纤维环细胞及髓核细胞。(1)验证纤维环细胞及髓核细胞的表型;(2)将纤维环细胞及髓核细胞种植于弹力膜上,分别施加2%、5%、10%形变量的牵张力1小时,24小时后用Real-time RT-PCR检测基质蛋白Aggrecan和Collagen-Ⅱ、基质降解酶MMP-3及其抑制剂TIMP-1的mRNA表达变化;(3)10%形变量的牵张力作用于纤维环细胞后,用Affymetrix公司提供的GeneChip3'IVT Express Kit行基因芯片实验,检测纤维环细胞中各基因表达变化;(4)以10%形变量的牵张力作用于髓核细胞1小时,此后分别于0、12、24、48小时收取细胞,检测Aggrecan、Collagen-Ⅱ、MMP-3、TIMP-1mRNA表达变化及其时间动力学特点。[结果](1)纤维环细胞及髓核细胞呈多角形单层生长,Ⅱ型胶原表达阳性;(2)纤维环细胞中,5%及10%形变量牵张力对Aggrecan mRNA表达无显著影响,但可明显促进Collagen-Ⅱ、MMP-3及TIMP-1mRNA表达(P<0.05),以TIMP-1升高为著;2%牵张力对上述基因表达均无显著影响:(3)10%形变量的牵张力作用1小时后,纤维环细胞中mRNA表达出现2倍以上变化的基因有1600多个,5倍以上变化的基因有119个。mRNA水平升高最为显著的四个基因是SERPINA1、IL-8、PRG4和TNFAIP6,分别为对照33.8倍、27.1倍、26.9倍和25.3倍;下降最为显著的基因是KRT19,其表达降至对照的0.04。(4)髓核细胞中,5%和10%形变量的牵张力均可显著抑制Aggrecan mRNA表达,促进MMP-3及TIMP-1mRNA表达(P<0.05),以MMP-3升高为著。5%牵张力促进Collagen-Ⅱ mRNA表达,10%牵张力则表现为抑制作用(P<0.05)。(5)10%牵张力作用后,髓核细胞不同基因mRNA的表达呈现一定时序性:Aggrecan和Collagen-Ⅱ mRNA分别于作用后12h、0h降至最低值,MMP-3和TIMP-1mRNA分别于作用后0h、24h达峰。[结论](1)牵张力对椎间盘细胞基质蛋白的影响与牵张力强度有关:低强度(2%形变量)牵张力对纤维环细胞基质蛋白表达无显著影响;中等强度(5%形变量)和较高强度(10%形变量)牵张力在纤维环细胞中倾向于引起基质重塑,而在髓核细胞中则表现为基质破坏为主的过程,且在较高强度牵张力时该作用更为显著。髓核细胞对牵张力的耐受阈值可能较纤维环细胞低。(2)较高强度牵张力作用后髓核细胞细胞外基质中不同基因mRNA表达有一定时序性,反映了基质急性损伤和修复、重塑的过程。力学刺激强度、持续时间以及作用时间间隔可能决定了髓核细胞是否朝退变方向发展。(3)除了已知MMPs、TIMPs参与维持基质稳定的过程,SERPINA1、GRP4等基因也可能在椎间盘基质代谢中扮演重要角色。关于力学因素对椎间盘SERPINA1、GRP4、KRT19表达的影响在国内外尚属首次报道。
Background. Degeneration of the intervertebral disc (IVD) is the main pathophysiological process implicated in low back pain and is a prerequisite to disc herniation and vertebral canal stenosis. Investigations reveal that degenerative changes of IVD are obvious in both manual workers carrying heavy things and sedentary workers whose jobs require prolonged sitting. Machine operators, drivers and porters are at high risk of low back pain and disc herniation, with the chance of heniation three times greater than ordinary adults. Such observations suggest a significant role of mechanics in progression of IVD degeneration. Degenerative changes on the biochemical level are noted first in the nucleus pulposus(NP), with a loss of glysosaminoglycans (GAG) and a change in the ratio of Collagen-I and Collagen-Ⅱ; these changes are accompanied or initiated by increased synthesis and activation of matrix degrading enzymes such as matrix metalloproteinases (MMPs). Changes in the annulus fibrosus (AF) are less evident, but are characterized by changes in collagen matrix composition and organization.
     Objective. To investigate the effect of tensile stress on gene expression of human intervertebral disc cells and the role of mechanics in the dynamic process of intervertebral disc degeneration. To research into related GeneChip to find out other genes affected by tensile stress so as to provide clues for advanced research.
     Materials and methods. IVDs were obtained from patients with disc herniation undergoing discectomy. The discs were divided into AF and NP tissues, and cells were cultured in vitro.(1) Phenotype of AF cells and NP cells were verified.(2) AF cells and NP cells were seeded in elastic membranes, and tensile stress was applied with2%, or5%, or10%elongation separately for one hour.24hours later, AF cells and NP cells were harvested and changes in expression of genes known to influence IVD matrix turnover (Aggrecan, Collagen-II, MMP-3, TIMP-1) were analyzed by real-time RT-PCR.(3) AF cells applied with10%elongation stress for one hour were analyzed by Affymetrix GeneChip3'IVT Express Kit;(4) NP cells applied with10%elongation stress for one hour were harvested immediately at the end of stimulation, or12hours,24hours and48hours later separately, and kinetics of gene expression by real-time RT-PCR.
     Results.(1) AF cells and NP cells grew in monolayer with a polygonal structure. Collagen-Ⅱ expression was positive.(2) In AF cells, tensile stress with2%elongation had no effect on gene expression.5%and10%stress promoted gene expression of Collagen-Ⅱ, MMP-3and TIMP-1significantly (P<0.05), but no obvious change on Aggrecan expression was detected.(3) According to the results of GeneChip,10%elongation stress for one hour led to expression changes greater than2folds in more than1600genes, and changes greater than5folds in119genes in AF cells. SERPINA1, IL-8, PRG4and TNFAIP6ranked the first four places, with the ratio to control being33.8,27.1,26.9and25.3respectively. KRT19was the most significantly suppressed gene, with the expression ratio to control being0.04.(4) In NP cells,5%stress led to significant suppression of Aggrecan expression (P<0.05) and dramatic increase in Collagen-Ⅱ, MMP-3and TIMP-1expression (P<0.05).10%elongation inhibited gene expression of Aggrecan and Collagen-Ⅱ (P<0.05), while the effect on MMP-3and TIMP-1was quite the reverse.(5) In response to10%elongation, Aggrecan mRNA and Collagen-Ⅱ mRNA decreased to minimum at12hours and0hour respectively after withdrawing tensile stress, while MMP-3and TIMP-1peaked at0hour and24hours respectively in NP cells.
     Conclusions.(1) The effect of tensile stess on IVD cells depended on the intensity of stress. Low-intensity stress had no effect on expression of genes known to influence AF cell matrix, while moderate-to-high intensity stress resulted in degradation or remodeling.(2) Kinetics of mRNA expression following tensile stress, regulated by intensity, duration and interval of stress, represented the process of acute injury, degradation or remodeling in NP cells.(3) Besides MMPs and TIMPs, SERPINA1and GRP4may also play important roles in metabolism of IVD matrix. It was the first time that the impact of tensile stress on mRNA expression of SERPINA1, GRP4and KRT19was investigated.
引文
1. Frymoyer JW, Cats-Baril WL.1991. An overview of the incidence and costs of low back pain. Orthop Clin North Am 22:263-271.
    2. Akeson,W.H.,Woo, S.L., Taylor, T.K., Ghosh, P., Bushell, G.R.,1977.Biomechanics and biochemistry of the intervertebral disks:The need for correlation studies. Clinical Orthopedies and Related Research 129,133-140.
    3. Karin Wuertz, Karolyn Godburn, Jeffrey J. MacLean, et al. In vivo remodeling of intervertebral discs in response to short and long term dynamic compression. J Orthop Res.2009 September; 27(9):1235-1242.
    4. Skaggs DL, Weidenbaum M, Iatridis JC, et al. Regional variation in tensile properties and biochemical composition of the human lumbar annulus fibrosus. Spine,1994,19(12):1310-1319.
    5. Ahsan R, Tajima N, Chosa E, et al. Biochemical and morphological changes in herniated human intervertebral disc. J Orthop Sci,2001,6(6):510-518.
    6. Hayes AJ, Benjmnin M, Ralphs JR. Extracellular matrix in development of the intervertebral disc. Matrix Biol,2001,20:107-121.
    7. Kanemoto M, Hukuda S, Komiya Y, et al. Immunohistochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 human intervertebral disc. Spine, 1996,21:1-8.
    8. 吴继彬,龚维成.基质金属蛋白酶与椎间盘退变.实用骨科杂志,2006年,第12卷,第6期,521-525.
    9. Kang JD, Georgescu HI, McIntyre-Larkin L, et al. Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6 and prostaglandin E2. Spine,1996,21:271-277.
    10. Frymoyer JW, Pope MH, Clements JH, et al. Risk factors in low back pain. An epidemiological survey. J Bone Joint Surg (Am),1983,65 (2):213-218.
    11. Kelsey JL, Githens PB, White AA, et al. An epidemiologic study of lifting and twisting on the job and risk for acute prolapsed lumbar intervertebral disc. J Orthop Res,1984,2 (1):61-66.
    12. Ariga K, Yonenobu K, Nakase T, et al.2003. Mechanical stress-induced apoptosis of endplate chondrocytes in organ-cultured mouse intervertebral disc:an ex vivo study. Spine 28:1528-1533.
    13. Lee CR, Poveda L, Iatridis JC, et al.2004. Intervertebral disc organ culture system: application for mechanobiology. Trans Orthop Res Soc 29:383.
    14. Chen J, Yan W, Setton LA.2004. Static compression induces zonal-specific changes in gene expression for extracellular matrix and cytoskeletal proteins in intervertebral disc cells in vitro. Matrix Biol 22:573-583.
    15. Ohshima H, Urban JP, Bergel DH.1995. Effect of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique. J Orthop Res 13:22-29.
    16. Lotz JC, Chin JR.2000. Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine 25:1477-1483.
    17. Iatridis JC, Mente PL, Stokes IA, et al.1999. Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 24:996-1002.
    18. Cornelia Neidlinger-Wilke, Karin Wurtz, Jill P. G. Urban, et al. Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure. Eur Spine J (2006) 15 (Suppl.3):S372-S378.
    19. Handa T, Ishihara H, Ohshima H, Osada R, Tsuji H, Obata K (1997) Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine 22(10):1085-1091.
    20. CL. Korecki, JJ. MacLean, JC. Iatridis. Dynamic compression effects on intervertebral disc mechanics and biology. Spine.2008 June 1; 33(13):1403-1409.
    21. K Wuertz, K Godburn, JJ. MacLean, et al. In vivo remodeling of intervertebral discs in response to short and long term dynamic compression. J Orthop Res.2009; 27(9):1235-1242.
    22. Basson MD. Paradigms for mechanical signal transduction in the intestinal epithelium. Category:molecular, cell, and developmental biology. Digestion,2003; 68:217-225.
    23. Ching CT, Chow DH, Yao FY, et al. The effect of cyclic compression on the mechanical properties of the intervertebral disc:an in vivo study in a rat tail model. Clin Biomech,2003, 18(3):182-189.
    24. Ching CT, Chow DH, Yao FY, et al. Changes in nuclear composition following cyclic compression of the intervertabral disc in an in vivo rat tail model.
    25. Kasra M, Merryman WD, Loveless KN, et al. Frequency response of pig intervertebral disc cells subjected to dynamic hydrostatic pressure. J Orthop Res,2006,24(10):1967-1973.
    26. Maclean JJ, Lee CR, Alini M, et al. Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. J Orthop Res,2004,22(6):1193-1200.
    27. Walsh AJ, Lotz JC. Biological response of the intervertebral disc to dynamic loading. J Biomech,2004,37(3):329-337.
    28. Omlor GW, Lorenz H, Engelleiter K, et al. Changes in gene expression and protein distribution at different stages of mechanically induced disc degenation-an in vivo study on the New Zealand white rabbit. J Orthop Res,2006,24(3):385-392.
    29. Ishihara H, McNally DS, Urban JP, et al. Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disc. J Appl Physiol,1996,80(3):839-846.
    30. JJ. MacLean, PJ. Roughley, RD. Monsey, et al. In vivo intervertebral disc remodeling: Kinetics of mRNA expression in response to a single loading event. J Orthop Res.2008 May 26(5):579-588.
    31. Kroeber M, Unglaub F, Guehring T, et al. Effects of controlled dynamic disc distraction on degenerated intervertebral discs:an in vivo study on the rabbit lumbar spine model. Spine, 2005,30(2):181-187.
    32. Unglaub F, Guehring T, Omlor G, et al. Controlled distraction as a therapeutic option in moderate degeneration of the intervertebral disc- an in vivo study in the rabbit spine model. Z Orthop Ihre Grenzgeb,2006,144(1):68-73.
    33. Guehring T, Unglaub F, Lorenz H, et al. Intradiscal pressure measurements in normal discs, compressed discs and compressed discs treated with axial posterior disc distraction:an expremental study on the rabbit lumbar spine model. Eur Spine J,2006,15(5):597-604.]
    34. Guehring, Thorsten MD; Omlor, Georg W. MD; et al. Disc Distraction Shows Evidence of Regenerative Potential in Degenerated Intervertebral Discs as Evaluated by Protein Expression, Magnetic Resonance Imaging, and Messenger Ribonucleic Acid Expression Analysis. Spine, July 2006,31(15):1658-1665.
    35. Hwan Tak Hee, Jituan Zhang, Hee Kit Wong. Effects of Cyclic Dynamic Tensile Strain on Previously Compressed Inner Annulus Fibrosus and Nucleus Pulposus Cells of Human Intervertebral Disc—An In Vitro Study. J Orthop Res 28:503-509,2010.
    36. Sowa G, Agarwal S. Cyclic tensile stress exerts a protective effect on intervertebral disc cells. Am J Phys Med Rehabil 2008;87:537-544.
    37. JJ Costi, I A Stokes, M Gardner-Morse, et al. Direct measurement of intervertebral disc maximum shear strain in six degrees of freedom:Motions that place disc tissue at risk of injury. J Biomech.2007; 40(11):2457-2466.
    38. Kasra M, Goel V, Martin J, Wang ST, Choi W, Buckwalter J (2003) Effect of dynamic hydrostatic pressure on rabbit intervertebral disc cells. J Orthop Res 21(4):597-603.
    39. Franc.ois Rannou, Pascal Richette, Mourad Benallaoua, et al. Cyclic Tensile Stretch Modulates Proteoglycan Production by Intervertebral Disc Annulus Fibrosus Cells Through Production of Nitrite Oxide. Journal of Cellular Biochemistry 90:148-157 (2003).
    40. Alini M, Li W, Markovic P, et al. The potential and limitation of a cell seeded collagen/hyaluronan scaffold to engineer:An intervertebral disc-like matrix [J].Spine,2003; 28:446-454.
    41. Shingo M. Shoichi K. Changes with age in proteoglycan synthesis in cells cultures in vitro from the inner and outer rabbit annulus fibrosus responses to interleukin-1 and interleukin-1 receptor antagonist protein [J].Spine,2000; 25:166-169.
    42. 杨吉成,宋礼华,周建华,等主编.医用细胞工程[M].上海:上海交通大学出版社.2003:45-46.
    43. Rannou F, Pioraudeau S, Foltz V, et al. Monolayer annulus fibrosus cell cultures in a mechanically active environment:Local culture condition adaptmion and cell phenotype study. J Lab Clin Med,2000; 136(5):412-421.
    44. Pioraudeau S, Monteiro I, Anract P, et al. Phenotype characteristics of rabbit intervertebral disc cells:comparison with cartilage cells from the same animals [J]. Spine,1999; 24(9):837-844.
    45. Locksley RM,Killeen N, Lenardo MJ. The TNF and TNF Receptor Superfamilies: IntegratingMammalian Biology. Cell,2001:104(4):487.
    46. Seguin CA, Piiliar RM, Roughley PJ, et al. Tumor necrosis factor-alpha medulales matrix production and catabolism in nucleus pulposus tissue. Spine.2005,30(17):1940-1948.
    47. Milner CM, Day AJ. TSG-6:a multifunctional protein associated with inflammation. J. Cell Science,2003,116(Pt 10):1863-1873.
    48. Le Maitre CL, Freernont AJ, Hoyland JA. The role of interleukin-1 in the pathogenesis of human interveritebral disc degeneration. Arthritis Res Ther.2005,7(4):R732-745.
    49. Waugh DJ, Wilson C. The Interleukin-8 Pathway in Cancer. Clin Cancer Res 2008;6735 14(21):6735-6741.
    50. Hor S, Pirzer H, Dumoutier L, et al. The T-cell lymphokine interleukin 26 targets epithelial cells through the interleukin 20 receptor 1 and interleukin 10 receptor 2 chains. J Biol Chem.2004,279(32):33343-33351.
    51. Young AA, McLennan S, Smith MM, Smith SM, Cake MA, Read RA, et al. Proteoglycan 4 downregulation in a sheep meniscectomy model of early osteoarthritis. Arthritis Res Ther 2006;8(2):R41.
    52. Wong M, Siegrist M, Goodwin K. Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone 2003;33:685-93.
    53. Nugent GE, Schmidt TA, Schumacher BL, Voegtline MS, Bae WC, Jadin KD, et al. Static and dynamic compression regulate cartilage metabolism of proteoglycan 4 (PRG4). Biorheology.2006:43(3-4):191-200.
    54. Nugent GE, Aneloski NA, Schmidt TA, Schumacher BL, Voegtline MS, Sah RL. Dynamic shear stimulation of bovine cartilage biosynthesis of proteoglycan4. Arthritis Rheum 2006;54:1888-96.
    55. Nugent GE, Takara T, O'Neill JK, et al. Continuous Passive Motion Applied to Whole Joints Stimulates Chondrocyte Biosynthesis of PRG4. Osteoarthritis Cartilage.2007; 15(5): 566-574.
    56. Schmidt TA, Gastelum NS, Han EH, et al. Differential regulation of proteoglycan4 metabolism in cartilage by IL-la, IGF-I, and TGF-bl. Osteoarthritis and Cartilage (2008) 16, 90-97.
    57. Shine KM, Spector M. The presence and distribution of lubricin in the caprine intervertebral disc.J Orthop Res.2008 Oct;26(10):1398-406.
    58. Shine KM, Simson JA, SpectoM, et al. Lubricin Distribution in the Human Intervertebral Disc. The Journal of Bone and Joint Surgery (American).2009;91:2205-2212.
    59. Urist MR. Bone:formation by autoinduction[J]. Science,1965,150(698):893-899.
    60. Masuda K, Oegema TR JR, An Hs. Growth Factors and Treatment of Intervertebral Disc Degeneration[J]. Spine,2004,29(23):2757-2769.
    61. Takae R, Matsunaga S, Origuchi N, et al. Immunolocalization of bone morphogenetic protein and its receptor in degeneration of intervertebral disc[J]. Spine,1999,24(14):1397-1401.
    62. Kim DJ, Moon SH, Kim H, et al. Bone morphogenetic protein-2 facilitates expression of chondrogenic, not osteogenic, phenotype of human intervertebral disc cells[J]. Spine,2003, 28(24):2679-2684.
    63. Sobajim S, Shimer AL, Chadderdon RC, et al. Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction[J]. Spine,2005,5(1):14-23.
    64. Lee CR, Sakai D, Nakai T, et al. A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat. Eur Spine J (2007) 16:2174-2185.
    1. 樊学军.细胞生物力学[J].力学进展.1995,25;197-207
    2. Nguyen K T, et al.2001, Ann Biomed Eng,29(2):145-152.
    3. McAister T N, et al.2000, Biochemical and Biophysical Research Commum, 270(2):643-648.
    4. Chiu J J, et al.1998, J Biomech Eng,120(1):2-8.
    5. 柳兆荣等,2001,中国生物医学工程学报,20(2):187-192.
    6. Dewey CF. J Biomed Eng,1981,103(3):177-185.
    7. Tardy Y, Resnick N, Nagel T, et al. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle [J]. Arterioscler Thromb Vasc Biol, 1997,17(11):3102-3106.
    8. Qin Kairong, Jiang Weiyuan, Li Xixi, et al. On analysis of the steady flow in an irrectangular paraller-plate flow chamber [J]. Applied Mathematics and mechanics, 1998,19(9):791-798.
    9. Cheng C, van Haperen R, de Waard M, et al. Shear stress affects the intracellular distribution of eNOS:direct demonstration by a novel in vivo technique [J].Blood, 2005,106(12):3691-3698.
    10. Brooks AR, Lelkes PI, Rubanyi GM. Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow [J].Physiol Genomics, 2002,9(1):27-41.
    11. Honda HM, Hsiai T, Wortham CM, et al. A complex flow pattern of low shear stress and flow reversal promotes monocyte binding to endothelial cells [J]. Atherosclerosis, 2001,158(2):385-390.
    12. Jiang GL, White CR, Stevens HY, et al. Temporal gradients in shear stimulate osteoblastic proliferation via ERK1/2 and retinoblastoma protein [J]. Am J Physiol Endocrinol Metab, 2002,283(2):383-389.
    13. Parkkinen JJ, Lammi MJ, Inkinen R, et al. Influence of shortterm hydrostatic pressure on organization of stress fibers in cultured chondrocytes. J Orthop Res,1995; 13:49
    14. Imamura K, Ozwawa H, Hiraide T, et al. Continuously applied compressive pressure induce bone resorption by a mechanism involving prostaglandin E2 synthesis. J Cell Physiol, 1990; 144:222.
    15. Sah RL, Kim YJ, Doong JYH, et al. Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res,1989;7(5):619.
    16. Burton-Wurster N, Vernier-Singer M, Farquhar T, et al. Effect of compressive loading and unloading on the synthesis of total protein, J Orthop Res,1993;11:717.
    17. Torzilli PA, Grigiene R, Huang C, et al. Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. J Biomech,1997;30:1.
    18. Tanaka SM. A new mechanical stimulator for cultured bone cells using piezoelectric actuator. J Biomech,1999;32:427.
    19. Wang JH, Yang G, Li Z, et al. Fibrobiast responses to cyclic mechanical stretching depend on cell orientation to the stretching direction [J]. J Biomech,2000,33(1):45-51.
    20. Jones DB, Nolte H, Scholubbers JG, et al. Biochemical signal transduction of mechanical steain in osteoblast-like cells. Biomaterials,1991; 12:101-110
    21. Jones BF, Wail ME, Carroll RL, et al. Ligament cells stretch-adapted on a microgrooved substrate increase intercellular communication in response to a mechanical stimulus [J]. J Biomech,2005,38(8):1653-1664.
    22. Pererali FA, Basdra EK, Padareassiliou AG, et al. Mol Med,2001,7(1):68-78.
    23. Ikegame M, Ishibashi O, Yoshizawa T, et al. Bone Miner Res,2001,16(1):24-32.
    24. Wang Xinmin, Kan Huizhen, Ren Qingrong, et al. Multifunctional clinostat as a simulator of welightlessness [P]. China Patent,99217825.8,2000-7-12.
    25. Hammond TG, Hammond JM. Optimized suspension culture:the roteting-wall vessel [J]. Am J Physiol Renal Physiol,2001,281(1):12-25.
    26. Sato Y, Wada M, Kadota A. Accumulation response of chloroplasts induced by mechanical stimulation in byyophyte cells [J]. Planta,2003,216:772-777.
    27. Mitchison JM, Swann MM. The mechanical properties of the red cell surface:I. The cell elastimeter. J Exp Biol,1954;31:443.
    28. Miyazaki H, Hayashi K. Tensile property of fibroblasts from the rabbit patellar tendon. BIO'99:Cell and Tissue Engng Ⅰ, Ⅱ, Ⅲ, Ⅳ, VBIO'99.
    29. Parekh SH, Chaudhuri O, Theriot JA, et al. Loading history determines the velocity of actin-network growth [J]. Nat Cell Biol,2005,7(12):1119-1123.
    30. Hochmuth FM, Shao JY, Dai J, et al. Deformation and flow of membrane into tethers extracted from neuronal growth cones [J], Biophys J,1996,70(1):358-369.
    31. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science,1993; 260(5111):1124-1127.
    1. Frymoyer JW, Cats-Baril WL.1991. An overview of the incidence and costs of low back pain. Orthop Clin North Am 22:263-271.
    2. Akeson,W.H.,Woo, S.L., Taylor, T.K., Ghosh, P., Bushell, G.R.,1977.Biomechanics and biochemistry of the intervertebral disks:The need for correlation studies. Clinical Orthopedies and Related Research 129,133-140.
    3. Karin Wuertz, Karolyn Godburn, Jeffrey J. MacLean, et al. In vivo remodeling of intervertebral discs in response to short and long term dynamic compression. J Orthop Res. 2009 September; 27(9):1235-1242.
    4. Skaggs DL, Weidenbaum M, Iatridis JC, et al. Regional variation in tensile properties and biochemical composition of the human lumbar annulus fibrosus. Spine,1994,19(12): 1310-1319.
    5. Ahsan R, Tajima N, Chosa E, et al. Biochemical and morphological changes in herniated human intervertebral disc. J Orthop Sci,2001,6(6):510-518.
    6. Hayes AJ, Benjmnin M, Ralphs JR. Extracellular matrix in development of the intervertebral disc. Matrix Biol,2001,20:107-121.
    7. Kanemoto M, Hukuda S, Komiya Y, et al. Immunohistochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 human intervertebral disc. Spine,1996,21:1-8.
    8.吴继彬,龚维成.基质金属蛋白酶与椎间盘退变.实用骨科杂志,2006年,第12卷,第6期,521-525.
    9. Kang JD, Georgescu HI, McIntyre-Larkin L, et al. Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6 and prostaglandin E2. Spine,1996,21:271-277.
    10. Frymoyer JW, Pope MH, Clements JH, et al. Risk factors in low back pain. An epidemiological survey. J Bone Joint Surg (Am),1983,65 (2):213~218.
    11. Kelsey JL, Githens PB,White AA, et al. An epidemiologic study of lifting and twisting on the job and risk for acute prolapsed lumbar intervertebral disc. J Orthop Res,1984,2 (1): 61~66.
    12. Ariga K, Yonenobu K, Nakase T, et al.2003. Mechanical stress-induced apoptosis of endplate chondrocytes in organ-cultured mouse intervertebral disc:an ex vivo study. Spine 28:1528-1533.
    13. Lee CR, Poveda L, Iatridis JC, et al.2004. Intervertebral disc organ culture system: application for mechanobiology. Trans Orthop Res Soc 29:383.
    14. Chen J, Yan W, Setton LA.2004. Static compression induces zonal-specific changes in gene expression for extracellular matrix and cytoskeletal proteins in intervertebral disc cells in vitro. Matrix Biol 22:573-583.
    15. Ohshima H, Urban JP, Bergel DH.1995. Effect of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique. J Orthop Res 13: 22-29.
    16. Lotz JC, Chin JR.2000. Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine 25:1477-1483.
    17. Iatridis JC, Mente PL, Stokes I A, et al.1999. Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 24:996-1002.
    18. Cornelia Neidlinger-Wilke, Karin Wurtz, Jill P. G. Urban, et al. Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure. Eur Spine J (2006) 15 (Suppl.3):S372-S378.
    19. Handa T, Ishihara H, Ohshima H, Osada R, Tsuji H, Obata K (1997) Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine 22(10):1085-1091.
    20. CL. Korecki, JJ. MacLean, JC. Iatridis. Dynamic compression effects on intervertebral disc mechanics and biology. Spine.2008 June 1; 33(13):1403-1409.
    21. K Wuertz, K Godburn, JJ. MacLean, et al. In vivo remodeling of intervertebral discs in response to short and long term dynamic compression. J Orthop Res.2009; 27(9):1235-1242.
    22. Basson MD. Paradigms for mechanical signal transduction in the intestinal epithelium. Category:molecular, cell, and developmental biology. Digestion,2003; 68:217-225.
    23. Ching CT, Chow DH, Yao FY, et al. The effect of cyclic compression on the mechanical properties of the intervertebral disc:an in vivo study in a rat tail model. Clin Biomech,2003, 18(3):182-189.
    24. Ching CT, Chow DH, Yao FY, et al. Changes in nuclear composition following cyclic compression of the intervertabral disc in an in vivo rat tail model.
    25. Kasra M, Merryman WD, Loveless KN, et al. Frequency response of pig intervertebral disc cells subjected to dynamic hydrostatic pressure. J Orthop Res,2006,24(10):1967-1973.
    26. Maclean JJ, Lee CR, Alini M, et al. Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. J Orthop Res,2004,22(6):1193-1200.
    27. Walsh AJ, Lotz JC. Biological response of the intervertebral disc to dynamic loading. J Biomech,2004,37(3):329-337.
    28. Omlor GW, Lorenz H, Engelleiter K, et al. Changes in gene expression and protein distribution at different stages of mechanically induced disc degenation-an in vivo study on the New Zealand white rabbit. J Orthop Res,2006,24(3):385-392.
    29. Ishihara H, McNally DS, Urban JP, et al. Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disc. J Appl Physiol,1996,80(3):839-846.
    30. JJ. MacLean, PJ. Roughley, RD. Monsey, et al. In vivo intervertebral disc remodeling: Kinetics of mRNA expression in response to a single loading event. J Orthop Res.2008 May; 26(5):579-588.
    31. Kroeber M, Unglaub F, Guehring T, et al. Effects of controlled dynamic disc distraction on degenerated intervertebral discs:an in vivo study on the rabbit lumbar spine model. Spine, 2005,30(2):181-187.
    32. Unglaub F, Guehring T, Omlor G, et al. Controlled distraction as a therapeutic option in moderate degeneration of the intervertebral disc-an in vivo study in the rabbit spine model. Z Orthop Ihre Grenzgeb,2006,144(1):68-73.
    33. Guehring T, Unglaub F, Lorenz H, et al. Intradiscal pressure measurements in normal discs, compressed discs and compressed discs treated with axial posterior disc distraction:an expremental study on the rabbit lumbar spine model. Eur Spine J,2006,15(5):597-604.]
    34. Guehring, Thorsten MD; Omlor, Georg W. MD; et al. Disc Distraction Shows Evidence of Regenerative Potential in Degenerated Intervertebral Discs as Evaluated by Protein Expression, Magnetic Resonance Imaging, and Messenger Ribonucleic Acid Expression Analysis. Spine, July 2006,31(15):1658-1665.
    35. Franc ois Rannou, Pascal Richette, Mourad Benallaoua, et al. Cyclic Tensile Stretch Modulates Proteoglycan Production by Intervertebral Disc Annulus Fibrosus Cells Through Production of Nitrite Oxide. Journal of Cellular Biochemistry 90:148-157 (2003).
    36. Hwan Tak Hee, Jituan Zhang, Hee Kit Wong. Effects of Cyclic Dynamic Tensile Strain on Previously Compressed Inner Annulus Fibrosus and Nucleus Pulposus Cells of Human Intervertebral Disc—An In Vitro Study. J Orthop Res 28:503-509,2010.
    37. James JY, Rudolph B, Paul C, et al.2008.Motion preservation surgery of the spine: advanced techniques and controversies:expert consult:online and print. New York:Elsevier health Sciences.644 p.
    38. Sowa G, Agarwal S. Cyclic tensile stress exerts a protective effect on intervertebral disc cells. Am J Phys Med Rehabil 2008;87:537-544.
    39. JJ Costi, I A Stokes, M Gardner-Morse, et al. Direct measurement of intervertebral disc maximum shear strain in six degrees of freedom:Motions that place disc tissue at risk of injury. J Biomech.2007; 40(11):2457-2466.
    40. Kasra M, Goel V, Martin J, Wang ST, Choi W, Buckwalter J (2003) Effect of dynamic hydrostatic pressure on rabbit intervertebral disc cells. J Orthop Res 21(4):597-603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700