用户名: 密码: 验证码:
谷子DREB类转录因子SiARDP功能及其表达调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱胁迫严重影响植物生长,是限制农作物产量的主要环境因素之一。植物进化出了多种分子机制来适应和抵抗干旱胁迫。在植物中,响应干旱胁迫的信号途径主要有两个:一个是脱落酸(abscisic acid, ABA)依赖信号途径,另一个是非ABA依赖信号途径。两条信号通路之间并不是孤立的,它们彼此相互联系,形成了一个复杂的调控网络。
     谷子是原产于我国的一种古老的粮食作物,具有营养丰富和抵抗干旱环境等特点,是我国重要的战略粮食作物。目前对谷子抗旱的分子机理还知之甚少。在本研究中,我们以干旱响应元件(dehydration responsive element, DRE)为诱饵,通过酵母单杂交技术从谷子cDNA文库中克隆到一个响应ABA信号的DRE元件结合蛋白基因。我们将该基因命名为SiARDP (Setaria italica ABA-responsive DRE-binding protein)。 Quantitative real-time PCR (qRT-PCR)和Northern blot结果显示SiARDP受干旱、高盐、ABA和低温诱导表达。SiARDP在谷子的根、茎、叶和花序中都有表达,并且在叶中表达量较高。谷子原生质体亚细胞定位显示SiARDP蛋白定位于细胞核;凝胶阻滞(electrophoretic mobility shift assay, EMSA)实验表明原核表达的SiARDP-His融合蛋白能与DRE元件结合;酵母转录激活实验证明SiARDP蛋白具有转录激活活性。在拟南芥中异源表达SiARDP能够提高植物对干旱和高盐的耐受力,干旱胁迫下转基因植株比野生型植株积累更多的脯氨酸,高盐胁迫下转基因植株的离子渗透率低于野生型植株。在谷子中超表达SiARDP提高了转基因谷子的耐旱性,并且干旱胁迫下转基因谷子比野生型谷子积累了更多的脯氨酸。超表达转基因谷子中多个启动子区存在DRE元件与干旱胁迫相关基因的表达量升高,说明超表达谷子植株中SiARDP通过调控干旱胁迫相关基因的表达来提高植株耐旱能力。
     分析显示SiARDP启动子区存在两个ABA响应元件(ABA-responsive element, ABRE)。我们从谷子中克隆了两个ABRE结合蛋白(ABRE-binding protein, AREB)基因分别命名为SiAREBl和SIAREB2。 SiAREBl和SiAREB2受干旱、高盐和ABA诱导,但不受低温胁迫诱导。谷子原生质体亚细胞定位显示SiAREB1和SiAREB2定位于细胞核,酵母转录激活实验证明SiAREB1和SiAREB2具有转录激活活性。EMSA,酵母单杂和ChIP分析证明SiAREB1和SiAREB2在体内和体外都能够与SiARDP启动子区的ABRE元件直接结合。在拟南芥中异源表达SiAREBl和SiAREB2同样能够提高转基因拟南芥对干旱和高盐的耐受力。点突变和蛋白磷酸化实验表明SiAREB2蛋白活性受磷酸化修饰调控。
     综上所述,SiARDP作为DREB类转录因子参与谷子非生物胁迫应答,在干旱和高盐胁迫下受AREB转录因子调控,参与ABA信号通路,在低温胁迫下可能受其它因子调控参与非ABA信号通路。
Drought stress greatly impacts growth, and is one of the major environmental factors that limit crop production. Plants have evolved many molecular mechanisms to adapt and resist to drought stress. There are two main transcriptional signal pathways to response to drought stress:abscisic acid (ABA)-dependent and-independent signal pathway. Drought stress responsive signals are complex, and some cross-talks exist between two signal pathways.
     Foxtail millet, an ancient crop in China, provides rich nutrient elements and has excellent drought tolerance, and is an important strategic food crops in China. However the molecular mechanisms of drought stress in foxtail millet remain unknown. In this study, an ABA-responsive dehydration responsive element (DRE) binding protein gene, named SiARDP, was cloned from foxtail millet using a yeast one-hybrid screening assay. Northern blot and qRT-PCR assay showed that SiARDP induced by drought, high salt, low temperature stress and ABA treatment. The qRT-PCR assay showed that the transcriptional levels of SiARDP in leaf were higher than in root, stem and inflorescence. The SiARDP was located in the nucleus of foxtail millet protoplasts. Electrophoretic mobility shift assay (EMSA) showed that the fusion protein SiARDP-His could bind to the DRE core element, and the SiARDP had the ability of transcriptional activity in yeast. Heterologous expression of SiARDP in Arabidposis enhanced the tolerance to drought and high salt stresses. Under drought stress, transgenic Arabidposis accumulated more proline than the wild type plants, and under high salt stress, the electrolyte leakage of transgenic plants was much lower than that of wild type plants. Overexpression of SiARDP in foxtail millet enhanced tolerance to drought stress, and accumulated more proline. The qRT-PCR assay showed that the transcriptional levels of many stress-relevant genes with several DRE core elements in their promoter regions increased in transgenic foxtail millet. The data suggested that SiARDP responds to drought stress and regulates some functional genes to improve tolerance.
     Further analyses showed that two ABA-responsive element (ABRE) exist in the promoter region of SiARDP. We cloned two ABRE binding protein (AREB) genes from foxtail millet, named SiAREBl and SiAREB2. The qRT-PCR showed that SiAREB1and SiAREB2induced by drought, high salt stresses and ABA treatment. SiAREB1and SiAREB2located in nucleus of foxtail millet protoplasts and had the ability of transcriptional activation in yeast. The EMSA, yeast one hybird and ChIP assays shown that SiAREB1and SiAREB2could bind to the ABRE core element in SiARDP promoter region in vitro and vivo. Heterologous expression of SiAREB1and SiAREB2in Arabidopsis enhanced the tolerance to drought and high salt stresses and activated the transcription of the target genes. The point mutant and protein phosphorylation assay demonstrated that the ability of transcriptional activation of SiAREB2was regulated by phosphorylation.
     Taken together, SiARDP was DREB-type transcriptional factor and responsive to abiotic stress. SiAREB transcriptional factors regulated the expression of SiARDP under drought and salt stress in ABA-dependent pathway, but under low temperature other regulatory factors regulated SiARDP in ABA-independent pathway.
引文
Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15,63-78.
    Agarwal, M., Hao, Y., Kapoor, A., Dong, C.H., Fujii, H., Zheng, X., and Zhu, J.K. (2006). A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem.281,37636-37645.
    Agarwal, P., Agarwal, P.K., Joshi, A.J., Sopory, S.K., and Reddy, M.K. (2010). Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol. Biol. Rep.37,1125-1135.
    Agarwal, P., Agarwal, P.K., Nair, S., Sopory, S.K., and Reddy, M.K. (2007). Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Mol. Genet. Genomics 277,189-198.
    Ahmad, I., and Hellebust, J.A. (1988). The Relationship between Inorganic Nitrogen Metabolism and Proline Accumulation in Osmoregulatory Responses of Two Euryhaline Microalgae. Plant Physiol. 88,348-354.
    Akashi, K., Miyake, C., and Yokota, A. (2001). Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. Febs. Lett.508,438-442.
    Albrecht, V., Weinl, S., Blazevic, D., D'Angelo, C., Batistic, O., Kolukisaoglu, U., Bock, R., Schulz, B., Harter, K., and Kudla, J. (2003). The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J.36,457-470.
    Allen, R.D. (1995). Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol.107, 1049-1054.
    Apel, K., and Hirt, H. (2004). Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol.55,373-399.
    Assmann, S.M., and Wang, X.Q. (2001). From milliseconds to millions of years:guard cells and environmental responses. Curr. Opin. Plant Biol.4,421-428.
    Aukerman, M.J., and Sakai, H. (2003). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 75,2730-2741.
    Bartel, D.P. (2004). MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 116,281-297.
    Bartels, D. (2001). Targeting detoxification pathways:An efficient approach to obtain plants with multiple stress tolerance? pp.284-286.
    Bartels, D., and Sunkar, R. (2005). Drought and salt tolerance in plants, pp.23-58.
    Bennetzen, J.L., Schmutz, J., Wang, H., Percifield, R., Hawkins, J., Pontaroli, A.C., Estep, M., Estep, M., Feng, L., and Vaughn, J.N. (2012). Reference genome sequence of the model plant Setaria. Nature Biotechnology 30,555-561.
    Borsani, O., Valpuesta, V., and Botella, M.A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol. 126,1024-1030.
    Bray, E.A. (1993). Molecular Responses to Water Deficit. Plant Physiol 103,1035-1040.
    Bray, E.A. (2004). Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J. Exp. Bot.55,2331-2341.
    Burbidge, A., Grieve, T., Jackson, A., Thompson, A., and Taylor, I. (1997). Structure and expression of a cDNA encoding a putative neoxanthin cleavage enzyme (NCE), isolated from a wilt-related tomato (Lycopersicon esculentum Mill.) library. J. Exp. Bot.48,2111-2112.
    Busk, P.K., Jensen, A.B., and Pages, M. (1997). Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J.11,1285-1295.
    Carrington, J.C., and Ambros, V. (2003). Role of microRNAs in plant and animal development. Science 301,336-338.
    Casaretto, J., and Ho, T.H. (2003). The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell 15,271-284.
    Chapman, E.J., and Carrington, J.C. (2007). Specialization and evolution of endogenous small RNA pathways. Nat. Rev. Genet.8,884-896.
    Chen, T.H., and Murata, N. (2002). Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr. Opin. Plant Biol. J,250-257.
    Chen, X. (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303,2022-2025.
    Chini, A., Grant, J.J., Seki, M., Shinozaki, K., and Loake, G.J. (2004). Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J.38,810-822.
    Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., and Zhu, J.K. (2003). ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev.17, 1043-1054.
    Chinnusamy, V., Zhu, J., and Zhu, J.K. (2006). Salt stress signaling and mechanisms of plant salt tolerance. Genet. Eng. (N Y) 27,141-177.
    Choi, D., Zhu, B., and Close, T.J. (1999). The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor. Appl. Genet.98,1234-1247.
    Choi, H., Hong, J., Ha, J., Kang, J., and Kim, S.Y. (2000). ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem.275,1723-1730.
    Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., and Sarhan, F. (1998). Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10,623-638.
    Delauney, A.J., Hu, C.A., Kishor, P.B., and Verma, D.P. (1993). Cloning of ornithine delta-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. J. Biol. Chem.268,18673-18678.
    Delauney, A.J., and Verma, D.P.S. (1993). Proline biosynthesis and osmoregulation in plants. Plant J.4, 215-223.
    Denby, K., and Gehring, C. (2005). Engineering drought and salinity tolerance in plants:lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol.23,547-552.
    Devos, K.M., Pittaway, T.S., Reynolds, A., and Gale, M.D. (2000). Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theor. Appl. Genet.100,190-198.
    Devos, K.M., Wang, Z.M., Beales, J., Sasaki, T., and Gale, M.D. (1998). Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theor. Appl. Genet.96,63-68.
    DeWald, D.B., Torabinejad, J., Jones, C.A., Shope, J.C., Cangelosi, A.R., Thompson, J.E., Prestwich, G.D., and Hama, H. (2001). Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol.126,759-769.
    Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M, Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J.33,751-763.
    Dure Ⅲ, L. (1993). Structural motifs in lea proteins. Current topics in plant physiology 10.
    Dure Ⅲ, L., Greenway, S.C., and Galau, G.A. (1981). Developmental biochemistry of cottonseed embryogenesis and germination:changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20,4162-4168.
    Dure, L.R., Crouch, M., Harada, J., Ho, T.H., Mundy, J., Quatrano, R., Thomas, T., and Sung, Z.R. (1989). Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol.12,475-486.
    Egawa, C., Kobayashi, F., Ishibashi, M., Nakamura, T., Nakamura, C., and Takumi, S. (2006). Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet. Syst.81,77-91.
    Espelund, M., Saeboe-Larssen, S., Hughes, D.W., Galau, G.A., Larsen, F., and Jakobsen, K.S. (1992). Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J.2,241-252.
    Eun, S.O., and Lee, Y. (1997). Actin filaments of guard cells are reorganized in response to light and abscisic acid. Plant Physiol.115,1491-1498.
    Fowler, S., and Thomashow, M.F. (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14,1675-1690.
    Frandsen, G., Muller-Uri, F., Nielsen, M., Mundy, J., and Skriver, K. (1996). Novel plant Ca(2+)-binding protein expressed in response to abscisic acid and osmotic stress. J. Biol. Chem. 277,343-348.
    Frank, W., Munnik, T., Kerkmann, K., Salamini, F., and Battels, D. (2000). Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 12, 111-124.
    Fujii, H., Verslues, P.E., and Zhu, J.K. (2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485-494.
    Fujii, H., and Zhu, J.K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc. Natl. Acad. Sci. USA 106, 8380-8385.
    Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M.M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2005). AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 77,3470-3488.
    Fukunaga, K., Wang, Z., Kato, K., and Kawase, M. (2002). Geographical variation of nuclear genome RFLPs and genetic differentiation in foxtail millet, Setaria italica (L.) P. Beauv. Genet. Resour. Crop. Ev.49,95-101.
    Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl. Acad. Sci. USA 103,1988-1993.
    Gagne, J.M., Downes, B.P., Shiu, S.H., Durski, A.M., and Vierstra, R.D. (2002). The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl. Acad. Sci. USA 99,11519-11524.
    Galau, G.A., Hughes, D.W., and Dure, L.R. (1986). Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol. Biol.7,155-170.
    Gampala, S.S., Finkelstein, R.R., Sun, S.S., and Rock, CD. (2002). ABI5 interacts with abscisic acid signaling effectors in rice protoplasts. J. Biol. Chem.277,1689-1694.
    Gampala, S.S., Hagenbeek, D., and Rock, C.D. (2001). Functional interactions of lanthanum and phospholipase D with the abscisic acid signaling effectors VP1 and ABIl-1 in rice protoplasts. J. Biol. Chem.276,9855-9860.
    Gao, J.J., Zhang, Z., Peng, R.H., Xiong, A.S., Xu, J., Zhu, B., and Yao, Q.H. (2011). Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis. Mol. Biol. Rep.38,205-211.
    Garcia-Mata, C., and Lamattina, L. (2001). Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol.126,1196-1204.
    Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., and Thomashow, M.F. (2000). Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol.124,1854-1865.
    Halford, N.G., and Hardie, D.G. (1998). SNF1-related protein kinases:global regulators of carbon metabolism in plants? Plant Mol. Biol.37,735-748.
    Hennemann, H., Schwarz, H.J., and Willecke, K. (1992). Characterization of gap junction genes expressed in F9 embryonic carcinoma cells:molecular cloning of mouse connexin31 and-45 cDNAs. Eur. J. Cell Biol.57,51-58.
    Hirayama, T., Ohto, C., Mizoguchi, T., and Shinozaki, K. (1995). A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 92,3903-3907.
    Hobo, T., Kowyama, Y., and Hattori, T. (1999). A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc. Natl. Acad. Sci. USA 96,15348-15353.
    Hong, Z., Lakkineni, K., Zhang, Z., and Verma, D.P. (2000). Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol.122,1129-1136.
    Huang, G.T., Ma, S.L., Bai, L.P., Zhang, L., Ma, H., Jia, P., Liu, J., Zhong, M., and Guo, Z.F. (2012). Signal transduction during cold, salt, and drought stresses in plants. Mol. Biol. Rep.39,969-987.
    Huang, Y., Li, H., Gupta, R., Morris, P.C., Luan, S., and Kieber, J.J. (2000). ATMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEKl through threonine phosphorylation. Plant Physiol.122,1301-1310.
    Hwang, J.U., and Lee, Y. (2001). Abscisic acid-induced actin reorganization in guard cells of dayflower is mediated by cytosolic calcium levels and by protein kinase and protein phosphatase activities. Plant Physiol.125,2120-2128.
    Ibrahim, L., Proe, M.F., and Cameron, A.D. (1998). Interactive effects of nitrogen and water availabilities on gas exchange and whole-plant carbon allocation in poplar. Tree Physiol.18, 481-487.
    Ichimura, K., Shinozaki, K., Tena, G., Sheen, J., Henry, Y., Champion, A., Kreis, M., Zhang, S., Hirt, H., and Wilson, C. (2002). Mitogen-activated protein kinase cascades in plants:a new nomenclature. Trends Plant Sci.7,301-308.
    Ingram, J., and Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol. Biol.47,377-403.
    Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol.47, 141-153.
    Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2001). Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J.27,325-333.
    Iuchi, S., Kobayashi, M., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2000). A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol.123,553-562.
    Jacob, T., Ritchie, S., Assmann, S.M., and Gilroy, S. (1999). Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity. Proc. Natl. Acad. Sci. USA 96,12192-12197.
    Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., and Thomashow, M.F. (1998). Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280,104-106.
    Jang, H.J., Pih, K.T., Kang, S.G., Lim, J.H., Jin, J.B., Piao, H.L., and Hwang, I. (1998). Molecular cloning of a novel Ca2+ -binding protein that is induced by NaCl stress. Plant Mol. Biol.37, 839-847.
    Jia, G., Huang, X., Zhi, H., Zhao, Y., Zhao, Q., Li, W., Chai, Y., Yang, L., Liu, K., and Lu, H. (2013). A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat. Genet.45,957-961.
    Jiang, M., and Zhang, J. (2001). Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol.42,1265-1273.
    Jin, S., Chen, C., and Plant, A.L. (2000). Regulation by ABA of osmotic-stress-induced changes in protein synthesis in tomato roots. Plant, Cell & Environment 23,51-60.
    Johnson, R.R., Wagner, R.L., Verhey, S.D., and Walker-Simmons, M.K. (2002). The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol.130, 837-846.
    Jonak, C., Kiegerl, S., Ligterink, W., Barker, P.J., Huskisson, N.S., and Hirt, H. (1996). Stress signaling in plants:a mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA 93,11274-11279.
    Kagaya, Y., Hobo, T., Murata, M., Ban, A., and Hattori, T. (2002). Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell 14,3177-3189.
    Kantar, M., Lucas, S.J., and Budak, H. (2011). miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233,471-484.
    Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol.17,287-291.
    Katagiri, T., Takahashi, S., and Shinozaki, K. (2001). Involvement of a novel Arabidopsis phospholipase D, AtPLDdelta, in dehydration-inducible accumulation of phosphatidic acid in stress signalling. Plant J.26,595-605.
    Kende, H., and Zeevaart, J. (1997). The five "classical" plant hormones. Plant Cell 9,1197-1210.
    Kiegerl, S., Cardinale, F., Siligan, C., Gross, A., Baudouin, E., Liwosz, A., Eklof, S., Till, S., Bogre, L., and Hirt, H., et al. (2000). SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell 12,2247-2258.
    Kim, J.S., Mizoi, J., Kidokoro, S., Maruyama, K., Nakajima, J., Nakashima, K., Mitsuda, N., Takiguchi, Y., Ohme-Takagi, M., and Kondou, Y., et al. (2012). Arabidopsis growth-regulating factor7 functions as a transcriptional repressor of abscisic acid-and osmotic stress-responsive genes, including DREB2A. Plant Cell 24,3393-3405.
    Kim, J.S., Mizoi, J., Yoshida, T., Fujita, Y., Nakajima, J., Ohori, T., Todaka, D., Nakashima, K., Hirayama, T., and Shinozaki, K., et al. (2011). An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol.52,2136-2146.
    Kishor, P.K., Hong, Z., Miao, G., Hu, C.A., and Verma, D.P.S. (1995). Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol.108,1387-1394.
    Knight, H., and Knight, M.R. (2001). Abiotic stress signalling pathways:specificity and cross-talk. Trends Plant Sci.6,262-267.
    Kobayashi, Y., Murata, M., Minami, H., Yamamoto, S., Kagaya, Y., Hobo, T., Yamamoto, A., and Hattori, T. (2005). Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J.44,939-949.
    Kopka, J., Pical, C., Gray, J.E., and Muller-Rober, B. (1998). Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato. Plant Physiol.116, 239-250.
    Kudla, J., Xu, Q., Harter, K., Gruissem, W., and Luan, S. (1999). Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc. Natl. Acad. Sci. USA 96, 4718-4723.
    Kulcheski, F.R., de Oliveira, L.F., Molina, L.G., Almerao, M.P., Rodrigues, F.A., Marcolino, J., Barbosa, J.F., Stolf-Moreira, R., Nepomuceno, A.L., and Marcelino-Guimaraes, F.C., et al. (2011). Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics 12,307.
    Leung, J., and Giraudat, J. (1998). Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol.49,199-222.
    Li, W.X., Oono, Y., Zhu, J., He, X.J., Wu, J.M., Iida, K., Lu, X.Y., Cui, X., Jin, H., and Zhu, J.K. (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20,2238-2251.
    Lim, Y.S., Cha, M.K., Kim, H.K., Uhm, T.B., Park, J.W., Kim, K., and Kim, I.H. (1993). Removals of hydrogen peroxide and hydroxyl radical by thiol-specific antioxidant protein as a possible role in vivo. Biochem. Bioph. Res. Co.192,273-280.
    Liu, Y., Feng, X., Xu, Y., Yu, J., Ao, G., Peng, Z., and Zhao, Q. (2009). Overexpression of millet ZIP-like gene (SiP/40) affects lateral bud outgrowth in tobacco and millet. Plant Physiol. Bioch.47, 1051-1060.
    Llave, C., Xie, Z., Kasschau, K.D., and Carrington, J.C. (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297,2053-2056.
    Luan, Y., Wang, B., Zhao, Q., Ao, G., and Yu, J. (2010). Ectopic expression of foxtail millet zip-like gene, SiPf40, in transgenic rice plants causes a pleiotropic phenotype affecting tillering, vascular distribution and root development. Science China Life Sciences 53,1450-1458.
    Mansour, M.M.F. (1998). Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress. Plant Physiol. Bioch.36,161-112.
    Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J.38,982-993.
    Mikami, K., Katagiri, T., Iuchi, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). A gene encoding phosphatidylinositol-4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana. Plant J.75,563-568.
    Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K., Matsumoto, K., and Shinozaki, K, (1996). A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 93, 765-769.
    Montgomery, T.A., and Cairington, J.C. (2008). Splicing and dicing with a SERRATEd edge. Proc. Natl. Acad. Sci. USA 105,8489-8490.
    Mowla, S.B., Thomson, J.A., Farrant, J.M., and Mundree, S.G. (2002). A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker. Planta 215, 716-726.
    Munnik, T., Ligterink, W., Meskiene, I.I., Calderini, O., Beyerly, J., Musgrave, A., and Hirt, H. (1999). Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J.20,381-388.
    Munnik, T., and Meijer, H.J. (2001). Osmotic stress activates distinct lipid and MAPK signalling pathways in plants. Febs. Lett.498,172-178.
    Munns, R., Passioura, J.B., Guo, J., Chazen, O., and Cramer, G.R. (2000). Water relations and leaf expansion:importance of time scale. J. Exp. Bot.51,1495-1504.
    Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plantarum 75,473-497.
    Nakashima, K., Ito, Y., and Yamaguchi-Shinozaki, K. (2009a). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol.149,88-95.
    Narasimhan, M.L., Binzel, M.L., Perez-Prat, E., Chen, Z., Nelson, D.E., Singh, N.K., Bressan, R.A., and Hasegawa, P.M. (1991). NaC1 Regulation of Tonoplast ATPase 70-Kilodalton Subunit mRNA in Tobacco Cells. Plant Physiol.97,562-568.
    Neill, S.J., Burnett, E.C., Desikan, R., and Hancock, J.T. (1998). Cloning of a wilt-responsive cDNA from an Arabidopsis thaliana suspension culture cDNA library that encodes a putative 9-cis-epoxy-carotenoid dioxygenase. J. Exp. Bot.49,1893-1894.
    Ni, B.R., and Pallardy, S.G. (1992). Stomatal and nonstomatal limitations to net photosynthesis in seedlings of woody angiosperms. Plant Physiol.99,1502-1508.
    Nonami, H., and Boyer, J.S. (1990). Primary events regulating stem growth at low water potentials. Plant Physiol.93,1601-1609.
    Osorio, J., Osorio, M.L., Chaves, M.M., and Pereira, J.S. (1998). Water deficits are more important in delaying growth than in changing patterns of carbon allocation in Eucalyptus globulus. Tree Physiol.18,363-373.
    Oztur, Z.N., Talame, V., Deyholos, M., Michalowski, C.B., Galbraith, D.W., Gozukirmizi, N., Tuberosa, R., and Bohnert, H.J. (2002). Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley. Plant Mol. Biol.48,551-573.
    Patharkar, O.R., and Cushman, J.C. (2000). A stress - induced calcium - dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two - component pseudo - response regulator. Plant J.24,679-691.
    Perruc, E., Charpenteau, M., Ramirez, B.C., Jauneau, A., Galaud, J.P., Ranjeva, R., and Ranty, B. (2004). A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Plant J.38,410-420.
    Pical, C, Westergren, T., Dove, S.K., Larsson, C., and Sommarin, M. (1999). Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J. Biol. Chem.274, 38232-38240.
    Qi, X., Xie, S., Liu, Y., Yi, F., and Yu, J. (2013). Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Mol. Biol. 83,459-473.
    Qin, F., Kakimoto, M., Sakuma, Y., Maruyama, K., Osakabe, Y., Tran, L.S., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J.50,54-69.
    Qin, F., Sakuma, Y., Li, J., Liu, Q., Li, Y.Q., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol.45,1042-1052.
    Qin, F., Sakuma, Y., Tran, L.S., Maruyama, K., Kidokoro, S., Fujita, Y., Fujita, M., Umezawa, T., Sawano, Y., and Miyazono, K., et al. (2008). Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20,1693-1707.
    Qin, F.F., Zhao, Q., Ao, G.M., and Yu, J.J. (2008). Co-suppression of Si401, a maize pollen specific Zm401 homologous gene, results in aberrant anther development in foxtail millet. Euphytica 163, 103-111.
    Qin, X., and Zeevaart, JA. (2002). Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol.128,544-551.
    Ramanjulu, S., Veeranjaneyulu, K., and Sudhakar, C. (1994). Relative tolerance of certain mulberry (Morus alba L.) varieties to NaCl salinity. Sericologia 34,695-705.
    Ramanjulu, S., and Bartels, D. (2002). Drought-and desiccation-induced modulation of gene expression in plants. Plant Cell Environ.25,141-151.
    Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B., and Bartel, D.P. (2002). MicroRNAs in plants. Genes Dev.16,1616-1626.
    Reiser, V., Raitt, D.C., and Saito, H. (2003). Yeast osmosensor Slnl and plant cytokinin receptor Crel respond to changes in turgor pressure. J. Cell Biol.161,1035-1040.
    Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., and Creehnan, R. (2000). Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science 290,2105-2110.
    Risseeuw, E.P., Daskalchuk, T.E., Banks, T.W., Liu, E., Cotelesage, J., Hellmann, H., Estelle, M., Somers, D.E., and Crosby, W.L. (2003). Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J.34,753-767.
    Robinson, M.J., and Cobb, M.H. (1997). Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol.9,180-186.
    Rontein, D., Basset, G., and Hanson, A.D. (2002). Metabolic engineering of osmoprotectant accumulation in plants. Metab. Eng.4,49-56.
    Roosens, N.H., Al Bitar, F., Loenders, K., Angenon, G., and Jacobs, M, (2002). Overexpression of ornithine-δ-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol. Breeding 9,73-80.
    Ryu, S.B., and Wang, X. (1995). Expression of phospholipase D during castor bean leaf senescence. Plant Physiol.108,713-719.
    Sage, R.F., and Monson, R.K. (1998). C4 plant biology. Academic Press.
    Saito, S., Hirai, N., Matsumoto, C., Ohigashi, H., Ohta, D., Sakata, K., and Mizutani, M. (2004). Arabidopsis CYP707As encode (+)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol.134,1439-1449.
    Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290,998-1009.
    Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18,1292-1309.
    Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl. Acad. Sci. USA 103,18822-18827.
    Sanders, D., Brownlee, C., and Harper, J.F. (1999). Communicating with calcium. Plant Cell 11, 691-706.
    Sang, Y., Zheng, S., Li, W., Huang, B., and Wang, X. (2001). Regulation of plant water loss by manipulating the expression of phospholipase Dalpha. Plant J.28,135-144.
    Schontz, D., and Rether, B. (1999). Genetic variability in foxtail millet, Setaria italica (L.) P. Beauv.: identification and classification of lines with RAPD markers. Plant Breeding 118,190-192.
    Schroeder, J.I., Kwak, J.M., and Allen, G.J. (2001). Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410,327-330.
    Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., and Shinozaki, K. (2001). Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13,61-72.
    Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., and Sakurai, T., et al. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J.31,279-292.
    Sharp, R.E., Silk, W.K., and Hsiao, T.C. (1988). Growth of the maize primary root at low water potentials:I. Spatial distribution of expansive growth. Plant Physiol.87,50-57.
    Shen, Y.G., Zhang, W.K., He, S.J., Zhang, J.S., Liu, Q., and Chen, S.Y. (2003). An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor. Appl. Genet.106,923-930.
    Sheveleva, E., Chmara, W., Bohnert, H.J., and Jensen, R.G. (1997). Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol.115,1211-1219.
    Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol.6,410-417.
    Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol.3,217-223.
    Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007a). Gene networks involved in drought stress response and tolerance. J. Exp. Bot.58,221-227.
    Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007b). Gene networks involved in drought stress response and tolerance. J. Exp. Bot.58,221-227.
    Skinner, J.S., von Zitzewitz, J., Szucs, P., Marquez-Cedillo, L., Filichkin, T., Amundsen, K., Stockinger, E.J., Thomashow, M.F., Chen, T.H., and Hayes, P.M. (2005). Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol. Biol.59,533-551.
    Smirnoff, N. (1998). Plant resistance to environmental stress. Curr. Opin. Biotechnol.9,214-219.
    Smirnoff, N., and Cumbes, Q.J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28,1057-1060.
    Staxen, I., Pical, C., Montgomery, L.T., Gray, J.E., Hetherington, A.M., and McAinsh, M.R. (1999). Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc. Natl. Acad. Sci. USA 96,1779-1784.
    Stone, S.L., Hauksdottir, H., Troy, A., Herschleb, J., Kraft, E., and Callis, J. (2005). Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol.137,13-30.
    Streeter, J.G., Lohnes, D.G., and Fioritto, R.J. (2001). Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant, Cell Environ.24,429-438.
    Sun, W., Bernard, C., van de Cotte, B., Van Montagu, M., and Verbruggen, N. (2001). At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J.27,407-415.
    Sunkar, R., and Zhu, J.K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16,2001-2019.
    Takahashi, S., Katagiri, T., Hirayama, T., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2001). Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol.42,214-222.
    Tamura, T., Hara, K., Yamaguchi, Y., Koizumi, N., and Sano, H. (2003). Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol.131,454-462.
    Tan, B.C., Schwartz, S.H., Zeevaart, J.A., and McCarty, D.R. (1997). Genetic control of abscisic acid biosynthesis in maize. Proc. Natl. Acad. Sci. USA 94,12235-12240.
    Tena, G., Asai, T., Chiu, W.L., and Sheen, J. (2001). Plant mitogen-activated protein kinase signaling cascades. Curr. Opin. Plant Biol.4,392-400.
    Thompson, A.J., Jackson, A.C., Symonds, R.C., Mulholland, B.J., Dadswell, A.R., Blake, P.S., Burbidge, A., and Taylor, I.B. (2000). Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J.23,363-374.
    Treisman, R. (1996). Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol.8, 205-215.
    Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA 97, 11632-11637.
    Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T., and Shinozaki, K. (1999). A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11,1743-1754.
    Valliyodan, B., and Nguyen, H.T. (2006). Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol.9,189-195.
    Wang, M.Z., Pan, Y.L., Li, C., Liu, C., Zhao, Q., Ao, G.M., and Yu, J.J. (2011). Culturing of immature inflorescences and Agrobacterium-medieated treansformation of foxtail millet (Setaria italica). African Journal of Biotechnologe 10,16466-16479.
    Wang, W., Vinocur, B., Shoseyov, O., and Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci.9,244-252.
    Wang, X. (2001). Plant phospholipases. Annu Rev Plant Physiol Plant Mol. Biol.52,211-231.
    Wang, X. (2002). Phospholipase D in hormonal and stress signaling. Curr. Opin. Plant Biol.5,408-414.
    Wang, Z.M., Devos, K.M., Liu, C.J., Wang, R.Q., and Gale, M.D. (1998). Construction of RFLP-based maps of foxtail millet, Setaria italica (L.) P. Beauv. Theor. Appl. Genet.96,31-36.
    Wehmeyer, N., and Vierling, E. (2000). The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol.122,1099-1108.
    Wendehenne, D., Pugin, A., Klessig, D.F., and Durner, J. (2001). Nitric oxide:comparative synthesis and signaling in animal and plant cells. Trends Plant Sci.6,177-183.
    Westgate, M.E., and Boyer, J.S. (1985). Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta 164,540-549.
    Xiong, L., Lee, H., Ishitani, M., and Zhu, J.K. (2002). Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J. Biol. Chem.277,8588-8596.
    Xiong, L., Schumaker, K.S., and Zhu, J. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell 14, S165-S183.
    Xiong, L., and Zhu, J.K. (2001). Abiotic stress signal transduction in plants:Molecular and genetic perspectives. Physiol. Plant 112,152-166.
    Xiong, Y., Xing, G., Gong, C., Li, F., Wang, S., Li, Z., and Wang, Y. (2006). Dual role of abscisic acid on antioxidative defense in grass pea seedling (Lathyrus sativus L.). Pakistan J. Bot.38,999.
    Xiong, Y., and Fei, S.Z. (2006). Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Loliumperenne L.). Planta 224,878-888.
    Xu, C., Yang, R., Li, W., and Fu, F. (2010). Identification of 21 microRNAs in maize and their differential expression under drought stress. African Journal of Biotechnology 9,4741-4753.
    Xu, X., Nagarajan, H., Lewis, N.E., Pan, S., Cai, Z., Liu, X., Chen, W., Xie, M., Wang, W., and Hammond, S., et al. (2011). The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol.29,735-741.
    Xue, G.P., and Loveridge, C.W. (2004). HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J.37,326-339.
    Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264.
    Yamaguchi-Shinozaki, K., and Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci.10,88-94.
    Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D., and Somero, G.N. (1982). Living with water stress:evolution of osmolyte systems. Science 217,1214-1222.
    Yang, T., and Poovaiah, B.W. (2003). Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci.8,505-512.
    Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2010). AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J.61,672-685.
    Yoshida, T., Ohama, N., Nakajima, J., Kidokoro, S., Mizoi, J., Nakashima, K., Maruyama, K., Kim, J.M., Seki, M., and Todaka, D., et al. (2011). Arabidopsis HsfAl transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol. Genet. Genomics 286, 321-332.
    Zeevaart, J., and Creelman, R.A. (1988). Metabolism and physiology of abscisic acid. Annual review of plant physiology and plant molecular biology 39,439-473.
    Zeng, C., Wang, W., Zheng, Y., Chen, X., Bo, W., Song, S., Zhang, W., and Peng, M. (2010). Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants. Nucleic Acids Res.35,981-995.
    Zhang, G., Liu, X., Quan, Z., Cheng, S., Xu, X., Pan, S., Xie, M., Zeng, P., Yue, Z., and Wang, W., et al. (2012). Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat. Biotechnol.30,549-554.
    Zhao, B., Liang, R., Ge, L., Li, W., Xiao, H., Lin, H., Ruan, K., and Jin, Y. (2007). Identification of drought-induced microRNAs in rice. Biochem. Biophys. Res. Commun.354,585-590.
    Zhao, H., and Bughrara, S.S. (2008). Isolation and characterization of cold-regulated transcriptional activator LpCBF3 gene from perennial ryegrass (Lolium perenne L.). Mol. Genet. Genomics 279, 585-594.
    Zhao, L., Zhao, Q., Ao, G., and Yu, J. (2009). The foxtail millet Si69 gene is a Wali7 (wheat aluminum-induced protein 7) homologue and may function in aluminum tolerance. Chinese Sci. Bull.54,1697-1706.
    Zhou, L., Liu, Y., Liu, Z., Kong, D., Duan, M., and Luo, L. (2010). Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J. Exp. Bot.61,4157-4168.
    Zhu, B., Su, J., Chang, M., Verma, D.P.S., Fan, Y., and Wu, R. (1998). Overexpression of a Δ-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci.139,41-48.
    Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant. Biol.53, 247-273.
    Zou, M., Guan, Y., Ren, H., Zhang, F., and Chen, F. (2008). A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol. Biol.66,675-683.
    刁现民,刘玉乐(1999).影响谷子愈伤组织基因枪转化的因素。华北农学报14,31-36.
    郭德仁(1995).正确认识谷子地位,积极发展谷子生产。pp.37-40.
    李荫梅等.(1997).谷子育种学(中国农业出版社).
    欧阳韶晖,陈卫军,魏益民,张国权(2000).国内外谷子的研究现状。pp.27-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700